Answer:
-10
Step-by-step explanation:
We can substitute c into the equation as -2.
[tex]-(-2) - 12[/tex]
Two negatives make a positive:
[tex]2-12[/tex]
And [tex]2 - 12 = -10[/tex].
Hope this helped!
identify(describe) each part of the ellipse as labeled by a letter
Answer: see below
Step-by-step explanation:
A) y has the smaller radius so this is the Minor Axis
B) y has the smaller radius so these are the CoVertices
C) x has the bigger radius so these are the Vertices
D) This is the Center of the ellipse.
F & G) These are the Foci (plural for Focus)
H) x has the bigger radius so this is the Major Axis
You are starting a sock company. You must determine your costs to manufacture your product. The start-up cost is $2000 (which helps you purchase sewing machines). Material and labor is $2.50 per pair of socks.
a. Write an equation to model your company’s cost for manufacturing the socks. (i.e. y=mx+b)
b. Which variable represents the domain? Explain your answer.
c. What is the domain for this situation?
d. Which variable represents the range? Explain your answer.
e. What is the range for this situation?
f. Using your equation, what would be the cost of manufacturing 25 pairs of socks?
g. How many socks could you make with $2500?
h. Create a coordinate graph on a sheet of paper to represent this situation. Describe the graph. Include the dimensions you would use for the x and y axes.
PLS HELP ASAP!
a. y = 2.5x + 2000
b. The variable x represents the domain because the domain is the range of the possible x values.
c. x ≥ 0
d. The variable y represents the range because the range is the range of the possible y values.
e. y ≥ 2000
f. y = 2.5(25) + 2000
y = 62.5 + 2000
y = $2062.50
g. 2500 = 2.5x + 2000
2.5x = 500
x = 200
h. I am sorry I cannot make the graph but hopefully you can figure out how to make it using the info I have given in the above parts of the problem :)
how to write this in number form The difference of 9 and the square of a number
Answer:
9-x^2
Step-by-step explanation:
The difference of means subtracting. the first number is 9 and the second is x^2, so you get 9-x^2
A cube has an edge of 2 feet. The edge is increasing at the rate of 5 feet per minute. Express the volume of the cube as a function of m, the number of minutes elapsed.
Answer:
[tex]V(m) = (2 + 5m)^3[/tex]
Step-by-step explanation:
Given
Solid Shape = Cube
Edge = 2 feet
Increment = 5 feet per minute
Required
Determine volume as a function of minute
From the question, we have that the edge of the cube increases in a minute by 5 feet
This implies that,the edge will increase by 5m feet in m minutes;
Hence,
[tex]New\ Edge = 2 + 5m[/tex]
Volume of a cube is calculated as thus;
[tex]Volume = Edge^3[/tex]
Substitute 2 + 5m for Edge
[tex]Volume = (2 + 5m)^3[/tex]
Represent Volume as a function of m
[tex]V(m) = (2 + 5m)^3[/tex]
In the number 5,794,032,861, which digit is in the ten millions place?
09
0 5
o 7
0 4
Two charged particles, Q1, and Q2, are a distance r apart with Q2 = 5Q1 Compare the forces they exert on one another when F1 is the force Q2 exerts on Q1and F2 is the force Q1 exerts on Q2.
a) F2 = 5F1.
b) F2 =-5F1.
c) F2 = F1.
d) F2 = -F1.
e) 5F2 = F1.
Answer:
d) F2 = -F1.
Step-by-step explanation:
According to Coulomb's law of forces on electrostatic charges, the force of attraction is proportional to the product of their charges, and inversely proportional to the square of their distance apart.
What this law means is that both particles will experience an equal amount of force on them, due to the presence of the other particle. This force is not just as a result of their individual charges, but as a result of the product of their charges. Also, the force is a vector quantity that must have a direction alongside its magnitude, and the force on the two particles will always act in opposite direction, be it repulsive or attractive.
An architect is designing a gym for a new elementary
school. The gym will be 116 feet long and have an area of
6,960 square feet. What will be the width of the gym?
The width of the gym will be W=60 feet for the area of 6,960 square feet.
What is area?Area is defines as the space covered by a surface in the two dimensional plane.
It is given that
Area of the gym =6960 square feet
Width of the gym = ?
Length of the gym=116 feet
The width of the gym will be calculated as
[tex]A=\L\times W\\\\\\6960=116\times W\\\\\\w=\dfrac{6960}{116}=60\ \ Feet[/tex]
hence the width of the gym will be W=60 feet for the area of 6,960 square feet.
To know more about Area follow
https://brainly.com/question/3948796
#SPJ2
Step 1: Subtract 3 from both sides of the inequality
Step 2
Step 3: Divide both sides of the inequality by the
coefficient of x.
What is the missing step in solving the inequality 5 -
8x < 2x + 3?
O Add 2x to both sides of the inequality
O Subtract 8x from both sides of the inequality
O Subtract 2x from both sides of the inequality
Add 8x to both sides of the inequality.
Mark this and return
Save and Exit
Intext
Submit
Answer:
add 8x to both sides
Step-by-step explanation:
5-8x<2x+3
first step, subtract 3 from both sides:
2-8x<2x
second step,?
2<?x
so you need to add 8x first
Prove that for all integers m and n, m - n is even if, and only if, both m and n are even or both m and n are odd.
Answer:
Below
Step-by-step explanation:
Suppose that m and n are both even numbers.
So we can express them as the product of 2 and another number.
● n = 2×a
● m = 2×b
● m-n = 2b-2a
● m-n = 2(b-a)
m-n is an even number since it is divisible by 2.
■■■■■■■■■■■■■■■■■■■■■■■■■■
Suppose that both n and m are odd numbers.
● n = 2a+1
● m = 2b+1
● m-n = 2b+1-(2a+1)
● m-n = 2b+1-2a-1
● m-n = 2b-2a
● m-n = 2(b-a)
So m-n is even since it is divisible by 2.
■■■■■■■■■■■■■■■■■■■■■■■■■■
Suppose that m is odd and n is even ir vice versa
● n = 2a or n= 2a+1
● m = 2b+1 or m = 2b
● m-n = 2b+1-2a or m-n = 2b-2a-1
● m-n = 2(b-a) +1 or m-n = 2(b-a)-1
In both cases m-n isn't even.
■■■■■■■■■■■■■■■■■■■■■■■■■■
So m-n is even if and only if m and n are odd or m and are even
Answer:
Case 1
both m and n are even
Therefore m/2 and n/2 are integers
Then,
m-n
=2(m/2 - n/2)
Since m/2 and n/2 are integers
Then m/2 - n/2 will be an integer
Therefore,
m-n = 2(Z)
Where Z is an integer
Since 2 is a factor of m-n
Therefore m -n is even
Case 2
Both m and n are odd
m-n
= 2(½m - ½n)
When an odd number is divided by 2 it gives an integer and a remainder of 1
Therefore
½m = Y + ½
And
½n = Z + ½
Where Y and Z are integers
Then
m-n = 2(Y+½-Z-½)
= 2(Y-Z)
Y-Z will also be an integer
m-n= 2A
Therefore m-n is even
Case 3
One is odd and the other even
m-n = 2(m/2 - n/2)
Assume m is even and n is odd
From the discussions above
m-n = 2(Y - Z - ½)
m-n = 2(A - ½)
Hence m-n is not even because when is divided by two it doesn't give an integer.
Therefore for all integers m and n, m - n is even if, and only if, both m and n are even or both m and n are odd.
If vectors i+j+2k, i+pj+5k and 5i+3j+4k are linearly dependent, the value of p is what?
Answer:
[tex]p = 2[/tex] if given vectors must be linearly independent.
Step-by-step explanation:
A linear combination is linearly dependent if and only if there is at least one coefficient equal to zero. If [tex]\vec u = (1,1,2)[/tex], [tex]\vec v = (1,p,5)[/tex] and [tex]\vec w = (5,3,4)[/tex], the linear combination is:
[tex]\alpha_{1}\cdot (1,1,2)+\alpha_{2}\cdot (1,p,5)+\alpha_{3}\cdot (5,3,4) =(0,0,0)[/tex]
In other words, the following system of equations must be satisfied:
[tex]\alpha_{1}+\alpha_{2}+5\cdot \alpha_{3}=0[/tex] (Eq. 1)
[tex]\alpha_{1}+p\cdot \alpha_{2}+3\cdot \alpha_{3}=0[/tex] (Eq. 2)
[tex]2\cdot \alpha_{1}+5\cdot \alpha_{2}+4\cdot \alpha_{3}=0[/tex] (Eq. 3)
By Eq. 1:
[tex]\alpha_{1} = -\alpha_{2}-5\cdot \alpha_{3}[/tex]
Eq. 1 in Eqs. 2-3:
[tex]-\alpha_{2}-5\cdot \alpha_{3}+p\cdot \alpha_{2}+3\cdot \alpha_{3}=0[/tex]
[tex]-2\cdot \alpha_{2}-10\cdot \alpha_{3}+5\cdot \alpha_{2}+4\cdot \alpha_{3}=0[/tex]
[tex](p-1)\cdot \alpha_{2}-2\cdot \alpha_{3}=0[/tex] (Eq. 2b)
[tex]3\cdot \alpha_{2}-6\cdot \alpha_{3} = 0[/tex] (Eq. 3b)
By Eq. 3b:
[tex]\alpha_{3} = \frac{1}{2}\cdot \alpha_{2}[/tex]
Eq. 3b in Eq. 2b:
[tex](p-2)\cdot \alpha_{2} = 0[/tex]
If [tex]p = 2[/tex] if given vectors must be linearly independent.
Find the area of the surface generated by revolving x=t + sqrt 2, y= (t^2)/2 + sqrt 2t+1, -sqrt 2 <= t <= sqrt about the y axis
The area is given by the integral
[tex]\displaystyle A=2\pi\int_Cx(t)\,\mathrm ds[/tex]
where C is the curve and [tex]dS[/tex] is the line element,
[tex]\mathrm ds=\sqrt{\left(\dfrac{\mathrm dx}{\mathrm dt}\right)^2+\left(\dfrac{\mathrm dy}{\mathrm dt}\right)^2}\,\mathrm dt[/tex]
We have
[tex]x(t)=t+\sqrt 2\implies\dfrac{\mathrm dx}{\mathrm dt}=1[/tex]
[tex]y(t)=\dfrac{t^2}2+\sqrt 2\,t+1\implies\dfrac{\mathrm dy}{\mathrm dt}=t+\sqrt 2[/tex]
[tex]\implies\mathrm ds=\sqrt{1^2+(t+\sqrt2)^2}\,\mathrm dt=\sqrt{t^2+2\sqrt2\,t+3}\,\mathrm dt[/tex]
So the area is
[tex]\displaystyle A=2\pi\int_{-\sqrt2}^{\sqrt2}(t+\sqrt 2)\sqrt{t^2+2\sqrt 2\,t+3}\,\mathrm dt[/tex]
Substitute [tex]u=t^2+2\sqrt2\,t+3[/tex] and [tex]\mathrm du=(2t+2\sqrt 2)\,\mathrm dt[/tex]:
[tex]\displaystyle A=\pi\int_1^9\sqrt u\,\mathrm du=\frac{2\pi}3u^{3/2}\bigg|_1^9=\frac{52\pi}3[/tex]
ax+r=7 , solve for x
Answer:
3
Step-by-step explanation:
a is 4 and 3 is x so 4+3=7
Answer: a=2 {x=3} r=1. 2(3)+ 1= 7
Step-by-step explanation:
[tex]4x - 2x = [/tex]
Answer:
2x
Step-by-step explanation:
These are like terms so we can combine them
4x-2x
2x
Answer:
2x
Explanation:
Since both terms in this equation are common, we can simply subtract them.
4x - 2x = ?
4x - 2x = 2x
Therefore, the correct answer should be 2x.
Tina's age is 4 years less than 3 times her niece's age. If her niece's age is x years, which of the following expressions best shows Tina's age? x − 4 4x − 3 3x − 4 4 − 3x
Answer:
3x - 4
Step-by-step explanation:
As Tina's age is 3 into x ( 3 x x= 3x)but 4years less (-4)
Therefore Tina's age is 3x - 4
Answer:
3x - 4
Step-by-step explanation:
Use these representations: niece's age: x
We triple x and then subract 4 years from the result, obtaining:
Tina's age: 3x - 4
The residents of a city voted on whether to raise property taxes. The ratio of yes votes to no votes was 5 to 6. If there were 4508 no votes, what was the total
number of votes
Answer:
total number of votes was 8265.
Step-by-step explanation:
Ratio of yes to no votes = 5:6
we know by rule of indices that
a/b = a*x/b*x
let the no. of people who voted yes be 5x
the no. of people who voted no be 6x
Thus, total no of votes = 5x+6x= 11x
given that
If there were 4508 no votes
thus,
6x = 4508
x = 4508/6 = 751 1/3 = 751.33
Thus, total no. of votes = 11 x = 11* 751.33 = 8264.63
rounding it to next integral no. as no. of votes cannot be fraction or decimal
the total number of votes was 8265.
For the following graph, state the polar coordinate with a positive r and positive q (in radians). Explain your steps as to how you determined the coordinate (in your own words). I'm looking for answers that involve π, not degrees for your angles. State the polar coordinate with (r, -q). Explain how you found the new angle. State the polar coordinate with (-r, q). Explain how you found the new angle. State the polar coordinate with (-r, -q). Explain how you found the new angle.
Answer:
Points : ( 8, - 2π/3 ), ( - 8, π/3 ), ( - 8, - 5π/3 )
Step-by-step explanation:
For the first two cases, ( r, θ ) r would be > 0, where r is the directed distance from the pole, and theta is the directed angle from the positive x - axis.
So when r is positive, we can tell that this point is 8 units from the pole, so r is going to be 8 in either case,
( 8, 240° ) - because r is positive, theta would have to be an angle with which it's terminal side passes through this point. As you can see that would be 2 / 3rd of 90 degrees more than a 180 degree angle,or 60 + 180 = 240 degrees.
( 8, - 120° ) - now theta will be the negative side of 360 - 240, or in other words - 120
Now let's consider the second two cases, where r is < 0. Of course the point will still be 8 units from the pole. Again for r < 0 the point will lay on the ray pointing in the opposite direction of the terminal side of theta.
( - 8, 60° ) - theta will now be 2 / 3rd of 90 degrees, or 60 degrees, for - r. Respectively the remaining degrees will be negative, 360 - 60 = 300, - 300. Thus our second point for - r will be ( - 8, - 300° )
_________________________________
So we have the points ( 8, 240° ), ( 8, - 120° ), ( - 8, 60° ), and ( - 8, - 300° ). However we only want 3 cases, so we have points ( 8, - 120° ), ( - 8, 60° ), and ( - 8, - 300° ). Let's convert the degrees into radians,
Points : ( 8, - 2π/3 ), ( - 8, π/3 ), ( - 8, - 5π/3 )
On a coordinate plane, line K L goes through (negative 6, 8) and (6, 0). Point M is at (negative 4, negative 2). Which point could be on the line that is parallel to line KL and passes through point M? (–10, 0) (–6, 2) (0, –6) (8, –10)
Answer:
The point that lies on the line parallel to line KL would be ( 8, - 10 )
Step-by-step explanation:
Line KL passes through the points ( - 6, 8 ) and ( 6, 0 ) while it's respective parallel line passes through point M, ( - 4, - 2 ).
Our approach here is to first determine the slope of KL such that the slope of it's parallel line will be the same, and hence we can determine a second point on this line.
Slope of KL : ( y₂ - y₁ ) / ( x₂ - x₁ ),
( 0 - 8 ) / ( 6 - ( - 6 ) ) = - 8 / 6 + 6 = - 8 / 12 = - 2 / 3
Slope of respective Parallel line : - 2 / 3,
Another point on Parallel line : ( 8, - 10 )
How can we check if this point really belongs to the parallel line? Let's take the slope given the points ( - 4, - 2 ) and ( 8, - 10 ), and check if it is - 2 / 3.
( y₂ - y₁ ) / ( x₂ - x₁ ),
( - 10 - ( - 2 ) ) / ( 8 - ( - 4 ) ) = ( - 10 + 2 ) / ( 8 + 4 ) = - 8 / 12 = - 2 / 3
And therefore we can confirm that this point belongs to line KL's parallel line, that passes through point M.
Answer:
D
Step-by-step explanation:
You are an assistant director of the alumni association at a local university. You attend a presentation given by the university’s research director and one of the topics discussed is what undergraduates do after they matriculate. More specifically, you learn that in the year 2018, a random sample of 216 undergraduates was surveyed and 54 of them (25%) decided to continue school to pursue another degree, and that was up two percentage points from the prior year. The Dean of the College of Business asks the research director if that is a statistically significant increase. The research director says she isn’t sure, but she will have her analyst follow up. You notice in the footnotes of the presentation the sample size in the year of 2017 was 200 undergraduates, and that 46 of them continued their education to pursue another degree.
There is a short break in the meeting. Take this opportunity to answer the dean’s question using a confidence interval for the difference between the proportions of students who continued their education in 2018 and 2017. (Use 95% confidence level and note that the university has about 10,000 undergraduate students).
Answer:
(0.102, -0.062)
Step-by-step explanation:
sample size in 2018 = n1 = 216
sample size in 2017 = n2 = 200
number of people who went for another degree in 2018 = x1 = 54
number of people who went for another degree in 2017 = x2 = 46
p1 = x1/n1 = 0.25
p2 = x2/n2 = 0.23
At 95% confidence level, z critical = 1.96
now we have to solve for the confidence interval =
[tex]p1 -p2 ± z*\sqrt{((1-p1)*p1)/n1 + ((1-p2)*p2/n2}[/tex][tex]0.25 -0.23 ± 1.96*\sqrt{((1 - 0.25) * 0.25)/216 + ((1 - 0.23) *0.23/200}[/tex]
= 0.02 ± 1.96 * 0.042
= 0.02 + 0.082 = 0.102
= 0.02 - 0.082 = -0.062
There is 95% confidence that there is a difference that lies between - 0.062 and 0.102 on the proportion of students who continued their education in the years, 2017 and 2018.
There is no significant difference between the two.
A normal distribution has a mean of 30 and a variance of 5.Find N such that the probability that the mean of N observations exceeds 30.5 is 1%.
Answer:
109
Step-by-step explanation:
Use a chart or calculator to find the z-score corresponding to a probability of 1%.
P(Z > z) = 0.01
P(Z < z) = 0.99
z = 2.33
Now find the sample standard deviation.
z = (x − μ) / s
2.33 = (30.5 − 30) / s
s = 0.215
Now find the sample size.
s = σ / √n
s² = σ² / n
0.215² = 5 / n
n = 109
The radius of a right circular cylinder is increasing at the rate of 7 in./sec, while the height is decreasing at the rate of 6 in./sec. At what rate is the volume of the cylinder changing when the radius is 20 in. and the height is 16 in.
Answer:
[tex]\approx \bold{6544\ in^3/sec}[/tex]
Step-by-step explanation:
Given:
Rate of change of radius of cylinder:
[tex]\dfrac{dr}{dt} = +7\ in/sec[/tex]
(This is increasing rate so positive)
Rate of change of height of cylinder:
[tex]\dfrac{dh}{dt} = -6\ in/sec[/tex]
(This is decreasing rate so negative)
To find:
Rate of change of volume when r = 20 inches and h = 16 inches.
Solution:
First of all, let us have a look at the formula for Volume:
[tex]V = \pi r^2h[/tex]
Differentiating it w.r.to 't':
[tex]\dfrac{dV}{dt} = \dfrac{d}{dt}(\pi r^2h)[/tex]
Let us have a look at the formula:
[tex]1.\ \dfrac{d}{dx} (C.f(x)) = C\dfrac{d(f(x))}{dx} \ \ \ (\text{C is a constant})\\2.\ \dfrac{d}{dx} (f(x).g(x)) = f(x)\dfrac{d}{dx} (g(x))+g(x)\dfrac{d}{dx} (f(x))[/tex]
[tex]3.\ \dfrac{dx^n}{dx} = nx^{n-1}[/tex]
Applying the two formula for the above differentiation:
[tex]\Rightarrow \dfrac{dV}{dt} = \pi\dfrac{d}{dt}( r^2h)\\\Rightarrow \dfrac{dV}{dt} = \pi h\dfrac{d }{dt}( r^2)+\pi r^2\dfrac{dh }{dt}\\\Rightarrow \dfrac{dV}{dt} = \pi h\times 2r \dfrac{dr }{dt}+\pi r^2\dfrac{dh }{dt}[/tex]
Now, putting the values:
[tex]\Rightarrow \dfrac{dV}{dt} = \pi \times 16\times 2\times 20 \times 7+\pi\times 20^2\times (-6)\\\Rightarrow \dfrac{dV}{dt} = 22 \times 16\times 2\times 20 +3.14\times 400\times (-6)\\\Rightarrow \dfrac{dV}{dt} = 14080 -7536\\\Rightarrow \dfrac{dV}{dt} \approx \bold{6544\ in^3/sec}[/tex]
So, the answer is: [tex]\approx \bold{6544\ in^3/sec}[/tex]
Find the interquartile range of the following data set.
Number of Points Scored at Ten Basketball Games
57 63 44 29 36 62 48 50 42 34
a .21
B.28
C. 6
D. 34
Answer:
b.28 its ans is no.b
Step-by-step explanation:
no point score in basketball
Emily made a pot of cream of pumpkin soup for thanksgiving dinner. She put 5
cups of cream in the soup. She poured the soup into 24 small soup bowls. How
much cream (measured in oz.) is used for each small bowl of soup?
Answer:
1 2/3 ounces in each bowl
Step-by-step explanation:
We need to convert 5 cups to ounces
1 cup = 8 ounces
5 cups = 5*8 = 40 ounces
We divide the 40 ounces into 24 bowls
40 ounces / 24 bowl
5/3 ounces per bowl
1 2/3 ounces in each bowl
Answer:
each bowl can contain 5/3 oz. of soup.
Step-by-step explanation:
1 cup = 8 oz.
8 oz.
5 cups x -------------- = 40 oz.
1 cup
to get the measurement of each bowl,
40 oz. divided into 24 bowls.
therefore, each bowl can contain 5/3 oz. of soup.
WILLL GIVE ALL MY POINT PLUS MARK BRAILIEST PLS HELP ASAP TY <3
Answer:
The unknown integer that solves the equation is 6.
Step-by-step explanation:
In order to find the missing number, we can set up an equation as if we are solving for x.
x + (-8) = -2
Add 8 on both sides of the equation.
x = 6
So, the unknown integer is 6.
Answer:
6
Step-by-step explanation:
6 plus -8 is -2
A manufacturer claims that the calling range (in feet) of its 900-MHz cordless telephone is greater than that of its leading competitor. A sample of 19 phones from the manufacturer had a mean range of 1160 feet with a standard deviation of 32 feet. A sample of 11 similar phones from its competitor had a mean range of 1130 feet with a standard deviation of 30 feet.
Required:
Do the results support the manufacturer's claim?
Complete question is;
A manufacturer claims that the calling range (in feet) of its 900-MHz cordless telephone is greater than that of its leading competitor. A sample of 19 phones from the manufacturer had a mean range of 1160 feet with a standard deviation of 32 feet. A sample of 11 similar phones from its competitor had a mean range of 1130 feet with a standard deviation of 30 feet. Required:
Do the results support the manufacturer's claim?
Let μ1 be the true mean range of the manufacturer's cordless telephone and μ2 be the true mean range of the competitor's cordless telephone. Use a significance level of α = 0.01 for the test. Assume that the population variances are equal and that the two populations are normally distributed
Answer:
We will fail to reject the null hypothesis as there is no sufficient evidence to support the manufacturers claim.
Step-by-step explanation:
For the first sample, we have;
Mean; x'1 = 1160 ft
standard deviation; σ1 = 32 feet
Sample size; n1 = 19
For the second sample, we have;
Mean; x'2 = 1130 ft
Standard deviation; σ2 = 30 ft
Sample size; n2 = 11
The hypotheses are;
Null Hypothesis; H0; μ1 = μ2
Alternative hypothesis; Ha; μ1 > μ2
The test statistic formula for this is;
z = (x'1 - x'2)/√[(σ1)²/n1) + (σ2)²/n2)]
Plugging in the relevant values, we have;
z = (1160 - 1130)/√[(32)²/19) + (30)²/11)]
z = 2.58
From the z-table attached, we have a p-value = 0.99506
This p-value is more than the significance value of 0.01,thus,we will fail to reject the null hypothesis as there is no sufficient evidence to support the manufacturers claim.
Evaluate −x^2−5 y^3 when x = 4 and y = 1
Answer:
Simplify:
[tex]-4^2-5(1^3)[/tex]
So you get:
[tex]-21\\[/tex]
Answer:
[tex]\huge\boxed{-21}[/tex]
Step-by-step explanation:
-x²-5y³
Given that x = 4, y = 1
[tex]-(4)^2-5(1)^3[/tex]
[tex]-16-5(1)\\-16-5\\-21[/tex]
A research center poll showed that % of people believe that it is morally wrong to not report all income on tax returns. What is the probability that someone does not have this belief? 78 The probability that someone does not believe that it is morally wrong to not report all income on tax returns is . (Type an integer or a decimal.)
Question:
A research center poll showed that 78% of people believe that it is morally wrong to not report all income on tax returns. What is the probability that someone does not have this belief?
The probability that someone does not believe that it is morally wrong to not report all income on tax returns is . (Type an integer or a decimal.)
Answer:
[tex]q = 0.22[/tex]
Step-by-step explanation:
Given
Let p represent the given proportion
p = 78%
Required
Determine the probability that someone holds a contrary belief
Start by converting the given proportion to decimal
[tex]p = 78\%[/tex]
[tex]p = \frac{78}{100}[/tex]
[tex]p = 0.78[/tex]
In probability, the sum of opposite probability is equal to 1
Represent the probability that someone holds a contrary belief with q
So;
[tex]p + q = 1[/tex]
Make q the subject of formula
[tex]q = 1 - p[/tex]
Substitute 0.78 for p
[tex]q = 1 - 0.78[/tex]
[tex]q = 0.22[/tex]
Hence, the probability that someone does not believe is 0.22
In 2018, the population of a district was 25,000. With a continuous annual growth rate of approximately 4%, what will the
population be in 2033 according to the exponential growth function?
Round the answer to the nearest whole number.
Answer:
40,000 populationsStep-by-step explanation:
Initial population in 2018 = 25,000
Annual growth rate (in %) = 4%
Yearly Increment in population = 4% of 25000
= 4/100 * 25000
= 250*4
= 1000
This means that the population increases by 1000 on yearly basis.
To determine what the population will be in 2033, we need to first know the amount of years we have between 2018 and 2033.
Amount of years we have between 2018 and 2033 = 2033-2018
= 15 years
After 15 years, the population will have increased by 15*1000 i.e 15,000 more than the initial population.
Hence the population in 2033 will be Initial population + Increment after 15years = 25,000+15000 = 40,000 population.
I NEED HELP! I will name the person who answers this corectly the Brainliest
Answer:
[tex]\large \boxed{\sf \bf \ \ 12 \ \ }[/tex]
Step-by-step explanation:
Hello, we can see that this shape is ...
...at the left, a right triangle of side = 2
area = (2*2)/2 =2
... at the middle, a square of side = 2
area = 2*2 = 4
... at the right, a right triangle of sides 2 and 6
area= (2*6)/2 = 6
So the total is 2 + 4 + 6 = 12
Hope this helps.
Do not hesitate if you need further explanation.
Thank you
Money is invested into an account earning 4.25% interest compounded annually. If the accumulated value after 18 years
will be $25,000, approximately how much money is presently in the account?
a $5,875
b. $11,820
c. $19,125
d. $23,960
Answer:
b. $11,820
Step-by-step explanation:
The 'rule of 72' tells you the doubling time of this account is about ...
(72 years)/(4.25) = 16.9 years
So, in 18 years, the amount will be slightly more than double the present value. That is, the present value is slightly less than half the future amount.
$25,000/2 = $12,500
The closest answer choice is ...
$11,820
__
The present value of that future amount is ...
PV = FV×(1 +r)^-t = $25,000×1.0425^-18 ≈ $11,818.73
The present value is about $11,820.
Answer:
B
Step-by-step explanation:
What is the value of x to the nearest tenth?
Answer:
x=9.6
Step-by-step explanation:
The dot in the middle represents the center of the circle, so therefore, the line that is represented by 16 is the radius. Since that is the radius, the side that is the hypotenuse of the small triangle is also 16, since they have the same distance.
The line represented by 25.6 with x as its bisector shows that when we divide it by 2, the other side of the triangle besides the hypotenuse is 12.8.
Now that we have the two sides of the triangle, we can find the last side (represented by x). Use pythagorean theorem:
[tex]a^2 +b^2=c^2\\x^2+(12.8)^2=16^2\\x^2+163.84=256\\x^2=92.16\\x=9.6[/tex]