Explanation:
Given that,
Linear speed of both disks is 5 m/s
Mass of disk 1 is 10 kg
Radius of disk 1 is 35 cm or 0.35 m
Mass of disk 2 is 3 kg
Radius of disk 2 is 7 cm or 0.07 m
(a) The angular velocity of disk 1 is :
[tex]v=r_1\omega_1\\\\\omega_1=\dfrac{v}{r_1}\\\\\omega_1=\dfrac{5}{0.35}\\\\\omega_1=14.28\ rad/s[/tex]
(b) The angular velocity of disk 2 is :
[tex]v=r_2\omega_2\\\\\omega_2=\dfrac{v}{r_2}\\\\\omega_2=\dfrac{5}{0.07}\\\\\omega_2=71.42\ rad/s[/tex]
(c) The moment of inertia for the two disk system is given by :
[tex]I=I_1+I_2\\\\I=\dfrac{1}{2}m_1r_1^2+\dfrac{1}{2}m_2r_2^2\\\\I=\dfrac{1}{2}(m_1r_1^2+m_2r_2^2)\\\\I=\dfrac{1}{2}\times (10\times (0.35)^2+3\times (0.07)^2)\\\\I=0.619\ kg-m^2[/tex]
Hence, this is the required solution.
Currents in DC transmission lines can be 100 A or higher. Some people are concerned that the electromagnetic fields from such lines near their homes could pose health dangers.
A. For a line that has current 150 A and a height of 8.0 m above the ground, what magnetic field does the line produce at ground level? Express your answer in teslas.
B. What magnetic field does the line produce at ground level as a percent of earth's magnetic field which is 0.50 G?
C. Is this value of magnetic field cause for worry? Choose your answer below.
i. Yes. Since this field does not differ a lot from the earth's magnetic field, it would be expected to have almost the same effect as the earth's field.
ii. No. Since this field is much lesser than the earth's magnetic field, it would be expected to have less effect than the earth's field.
iii. Yes. Since this field is much greater than the earth's magnetic field, it would be expected to have more effect than the earth's field.
iv. No. Since this field does not differ a lot from the earth's magnetic field, it would be expected to have almost the same effect as the earth's field.
Answer:
Explanation:
magnetic field due to an infinite current carrying conductor
B = k x 2I / r where k = 10⁻⁷ , I is current in conductor and r is distance from wire
putting the given data
B = 10⁻⁷ x 2 x 100 / 8
= 25 x 10⁻⁷ T .
B )
earth's magnetic field = .5 gauss
= .5 x 10⁻⁴ T
= 5 x 10⁻⁵ T
percent required = (25 x 10⁻⁷ / 5 x 10⁻⁵) x 100
= 5 %
C )
ii. No. Since this field is much lesser than the earth's magnetic field, it would be expected to have less effect than the earth's field.
A stationary coil is in a magnetic field that is changing with time. Does the emf induced in the coil depend
Answer:
Explanation:
The e.m.f induced in the coil depend on the following :
(a) No. of turns in the coil
(b) Cross-sectional Area of the coil
(c) Magnitude of Magnetic field
(d) Angular velocity of the coil
A spring with spring constant 15 N/m hangs from the ceiling. A ball is attached to the spring and allowed to come to rest. It is then pulled down 6.0 cm and released. If the ball makes 30 oscillations in 20 s, what are its (a) mass and (b) maximum speed?
Answer:
a
[tex]m = 0.169 \ kg[/tex]
b
[tex]|v_{max} |= 0.5653 \ m/s[/tex]
Explanation:
From the question we are told that
The spring constant is [tex]k = 14 \ N/m[/tex]
The maximum extension of the spring is [tex]A = 6.0 \ cm = 0.06 \ m[/tex]
The number of oscillation is [tex]n = 30[/tex]
The time taken is [tex]t = 20 \ s[/tex]
Generally the the angular speed of this oscillations is mathematically represented as
[tex]w = \frac{2 \pi}{T}[/tex]
where T is the period which is mathematically represented as
[tex]T = \frac{t}{n}[/tex]
substituting values
[tex]T = \frac{20}{30 }[/tex]
[tex]T = 0.667 \ s[/tex]
Thus
[tex]w = \frac{2 * 3.142 }{ 0.667}[/tex]
[tex]w = 9.421 \ rad/s[/tex]
this angular speed can also be represented mathematically as
[tex]w = \sqrt{\frac{k}{m} }[/tex]
=> [tex]m =\frac{k }{w^2}[/tex]
substituting values
[tex]m =\frac{ 15 }{(9.421)^2}[/tex]
[tex]m = 0.169 \ kg[/tex]
In SHM (simple harmonic motion )the equation for velocity is mathematically represented as
[tex]v = - Awsin (wt)[/tex]
The velocity is maximum when [tex]wt = \(90^o) \ or \ 1.5708\ rad[/tex]
[tex]v_{max} = - A* w[/tex]
=> [tex]|v_{max} |= A* w[/tex]
=> [tex]|v_{max} |= 0.06 * 9.421[/tex]
=> [tex]|v_{max} |= 0.5653 \ m/s[/tex]
if a 1-m diameter sewer pipe is flowing at a depth of 0.4 m and has a flow rate of 0.15 m^3/s, what will be the flow rate when the pipe flows full?
Answer:
0.35 m³/s
Explanation:
When the pipe's depth is 0.4 m, the area of the circular segment is:
A = ½ R² (θ − sin θ)
The depth of the water is:
h = R (1 − cos(θ/2))
Solving for θ:
0.4 = 0.5 (1 − cos(θ/2))
0.8 = 1 − cos(θ/2)
cos(θ/2) = 0.2
θ/2 = acos(0.2)
θ = 2 acos(0.2)
θ ≈ 2.74 rad
The area is therefore:
A = ½ (0.5 m)² (2.74 − sin 2.74)
A = 0.338 m²
The cross-sectional area when the pipe is full is:
A = π (0.5 m)²
A = 0.785 m²
The flow velocity is constant:
v = v
Q / A = Q / A
(0.15 m³/s) / (0.338 m²) = Q / (0.785 m²)
Q = 0.35 m³/s
how does a system naturally change over time
Answer:
The movement of energy and matter in a system differs from one system to another. On the other hand, in open system both the matter and energy move into and out of the system. Therefore, matter and energy in a system naturally change over time will decrease in entropy.
Explanation:
Answer:
Decrease in entropy
Explanation:
Various systems which exist in nature possess energy and matter that move through these system continuously. The movement of energy and matter in a system differs from one system to another.
In a closed system for example, only energy flows in and out of the system while matter does not enter or leave the system.
On the other hand, in open system both the matter and energy move into and out of the system.
a 1010 W radiant heater is constructed to operate at 115 V. (a) What is the current in the heater when the unit is operating?
Answer:
8.78 AmpsExplanation:
Given data:
power rating of the heater P= 1010 W
voltage of the heater V= 115 volts
current taken by the heater I= ?
We can apply the power formula to solve for the current in the heater
i.e P= IV
Making I the current subject of formula we have
I= P/V
Substituting our given data into the expression for I we have
I=1010/115= 8.78 A
Hence the current when the unit/heater is operating is 8.78 AmpA metal sphere A of radius a is charged to potential V. What will be its potential if it is enclosed by a spherical conducting shell B of radius b and the two are connected by a wire?
Answer:
The potential will be Va/b
Explanation:
So Let sphere A charged Q to potential V.
so, V= KQ/a. ....(1
Thus, spherical shell B is connected to the sphere A by a wire, so all charge always reside on the outer surface.
therefore, potential will be ,
V ′ = KQ/b = Va/b... That is from .....(1), KQ=Va]
A particle moves along line segments from the origin to the points (2, 0, 0), (2, 3, 1), (0, 3, 1), and back to the origin under the influence of the force field F(x, y, z).
Required:
Find the work done.
Answer:
the net work is zero
Explanation:
Work is defined by the expression
W = F. ds
Bold type indicates vectors
In this problem, the friction force does not decrease, therefore it will be zero.
Consequently for work on a closed path it is zero.
The work in going from the initial point (0, 0, 0) to the end of each segment is positive and when it returns from the point of origin the angle is 180º, therefore the work is negative, consequently the net work is zero
A spherical balloon has a radius of 6.95m and is filled with helium. The density of helium is 0.179 kg/m3, and the density of air is 1.29 kg/m3. The skin and structure of the balloon has a mass of 960kg . Neglect the buoyant force on the cargo volume itself. Determine the largest mass of cargo the balloon can lift.
Answer:
602.27 kg
Explanation:
The computation of the largest mass of cargo the balloon can lift is shown below:-
Volume of helium inside the ballon= (4 ÷ 3) × π × r^3
= (4 ÷ 3) × 3.14 × 6.953
= 1406.19 m3
Mass the balloon can carry = volume × (density of air-density of helium)
= 1406.19 × (1.29-0.179)
= 1562.27 kg
Mass of cargo it can carry = Mass it can carry - Mass of structure
= 1562.27 - 960
= 602.27 kg
A stone is dropped from the bridge, it takes 4s to reach the water. what's the height of the bridge?
Explanation:
Using Equations of Motion :
[tex]s = ut + \frac{1}{2} g {t}^{2} [/tex]
Height = 0 * 4 + 4.9 * 16
Height = 78.4 m
A 10kg block with an initial velocity of 10 m/s slides 1o m across a horizontal surface and comes to rest. it takes the block 2 seconds to stop. The stopping force acting on the block is about
Answer:
-50N
Explanation:
F=ma=m(Vf-Vi)/t
m=10kgVf=0m/sVi=10m/st=2sF=(10)(-10)/(2)=-50N
So the force acting on the block is -50N, where the negative sign simply tells us that the force is opposite to the direction of movement.
A single-slit diffraction pattern is formed on a distant screen. Assuming the angles involved are small, by what factor will the width of the central bright spot on the screen change if the slit width is doubled
Answer:
y ’= y / 2
thus when the slit width is doubled the pattern width is halved
Explanation:
The diffraction of a slit is given by the expressions
a sin θ = m λ
where a is the width of the slit, λ is the wavelength and m is an integer that determines the order of diffraction.
sin θ = m λ / a
If this equation
a ’= 2 a
we substitute
2 a sin θ'= m λ
sin θ'= (m λ / a) 1/2
sin θ ’= sin θ / 2
We can use trigonometry to find the width
tan θ = y / L
as the angle is small
tan θ = sin θ / cos θ = sin θ
sin θ = y / L
we substitute
y ’/ L = y/L 1/2
y ’= y / 2
thus when the slit width is doubled the pattern width is halved
With the same block-spring system from above, imagine doubling the displacement of the block to start the motion. By what factor would the following change?
A. Kinetic energy when passing through the equilibrium position.
B. Speed when passing through the equilibrium position.
Answer:
A) K / K₀ = 4 b) v / v₀ = 4
Explanation:
A) For this exercise we can use the conservation of mechanical energy
in the problem it indicates that the displacement was doubled (x = 2xo)
starting point. At the position of maximum displacement
Em₀ = Ke = ½ k (2x₀)²
final point. In the equilibrium position
[tex]Em_{f}[/tex] = K = ½ m v²
Em₀ = Em_{f}
½ k 4 x₀² = K
(½ K x₀²) = K₀
K = 4 K₀
K / K₀ = 4
B) the speed value
½ k 4 x₀² = ½ m v²
v = 4 (k / m) x₀
if we call
v₀ = k / m x₀
v = 4 v₀
v / v₀ = 4
Which is produced around a wire when an electrical current is in the wire? magnetic field solenoid electron flow electromagnet
Answer:
A. magnetic field
Explanation:
The magnetic field is produced around a wire when an electrical current is in the wire because of the magnetic effect of the electric current therefore the correct answer is option A .
What is a magnetic field ?A magnetic field could be understood as an area around a magnet, magnetic material, or an electric charge in which magnetic force is exerted.
As given in the problem statement we have to find out what is produced around a wire when an electrical current is in the wire.
The magnetic field is produced as a result when an electrical current is passed through the conducting wire .
Option A is the appropriate response because a wire's magnetic field is created when an electrical current flows through it due to the magnetic influence of the electric current .
Learn more about the magnetic fields here, refer to the link given below;
brainly.com/question/23096032
#SPJ6
Please help!
Much appreciated!
Answer:
your question answer is 22°
A car moving east at 45 km/h turns and travels west at 30 km/h. What is the
magnitude and direction of the change in velocity?
mahalle 1.11
Explanation:
Change in Velocity = final velocity - initial velocity
Change in velocity = 30km/h - (- 45km/h )
= 75 km/h due west
The ceiling of your lecture hall is probably covered with acoustic tile, which has small holes separated by about 6.1 mm. Using light with a wavelength of 578 nm, how far could you be from this tile and still resolve these holes
Answer:
8.65x10^3m
Explanation:
See attached file
A flat loop of wire consisting of a single turn of cross-sectional area 7.30 cm2 is perpendicular to a magnetic field that increases uniformly in magnitude from 0.500 T to 3.50 T in 1.00 s. What is the resulting induced current if the loop has a resistance of 2.60
Answer:
-0.73mA
Explanation:
Using amphere's Law
ε =−dΦB/ dt
=−(2.6T)·(7.30·10−4 m2)/ 1.00 s
=−1.9 mV
Using ohms law
ε=V =IR
I = ε/ R =−1.9mV/ 2.60Ω =−0.73mA
A rectangular coil lies flat on a horizontal surface. A bar magnet is held above the center of the coil with its north pole pointing down. What is the direction of the induced current in the coil?
Answer:
There is no induced current on the coil.
Explanation:
Current is induced in a coil or a circuit, when there is a break of flux linkage. A break in flux linkage is caused by a changing magnetic field, and must be achieved by a relative motion between the coil and the magnet. Holding the magnet above the center of the coil will cause no changing magnetic filed since there is no relative motion between the coil and the magnet.
What is the wavelength of electromagnetic radiation which has a frequency of 3.818 x 10^14 Hz?
Answer:
7.86×10⁻⁷ m
Explanation:
Using,
v = λf.................. Equation 1
Where v = velocity of electromagnetic wave, λ = wave length, f = frequency.
make λ the subject of the equation
λ = v/f............... Equation 2
Note: All electromagnetic wave have the same speed which is 3×10⁸ m/s.
Given: f = 3.818×10¹⁴ Hz
Constant: v = 3×10⁸ m/s
Substitute these values into equation 2
λ = 3×10⁸/3.818×10¹⁴
λ = 7.86×10⁻⁷ m
Hence the wavelength of the electromagnetic radiation is 7.86×10⁻⁷ m
The wavelength of this electromagnetic radiation is equal to [tex]7.86 \times 10^{-7} \;meters[/tex]
Given the following data:
Frequency = [tex]3.818\times 10^{14}\;Hz[/tex]Scientific data:
Velocity of an electromagnetic radiation = [tex]3 \times 10^8\;m/s[/tex]
To determine the wavelength of this electromagnetic radiation:
Mathematically, the wavelength of an electromagnetic radiation is calculated by using the formula;
[tex]Wavelength = \frac{Speed }{frequency}[/tex]
Substituting the given parameters into the formula, we have;
[tex]Wavelength = \frac{3 \times 10^8}{3.818\times 10^{14}}[/tex]
Wavelength = [tex]7.86 \times 10^{-7} \;meters[/tex]
Read more wavelength on here: https://brainly.com/question/6352445
5. The speed of a transverse wave on a string is 170 m/s when the string tension is 120 ????. To what value must the tension be changed to raise the wave speed to 180 m/s?
Answer:
The tension on string when the speed was raised is 134.53 N
Explanation:
Given;
Tension on the string, T = 120 N
initial speed of the transverse wave, v₁ = 170 m/s
final speed of the transverse wave, v₂ = 180 m/s
The speed of the wave is given as;
[tex]v = \sqrt{\frac{T}{\mu} }[/tex]
where;
μ is mass per unit length
[tex]v^2 = \frac{T}{\mu} \\\\\mu = \frac{T}{v^2} \\\\\frac{T_1}{v_1^2} = \frac{T_2}{v_2^2}[/tex]
The final tension T₂ will be calculated as;
[tex]T_2 = \frac{T_1 v_2^2}{v_1^2} \\\\T_2 = \frac{120*180^2}{170^2} \\\\T_2 = 134.53 \ N[/tex]
Therefore, the tension on string when the speed was raised is 134.53 N
A 1.25-kg ball begins rolling from rest with constant angular acceleration down a hill. If it takes 3.60 s for it to make the first complete revolution, how long will it take to make the next complete revolution?
Answer:
The time taken is [tex]\Delta t = 1.5 \ s[/tex]
Explanation:
From the question we are told that
The mass of the ball is [tex]m = 1.25 \ kg[/tex]
The time taken to make the first complete revolution is t= 3.60 s
The displacement of the first complete revolution is [tex]\theta = 1 rev = 2 \pi \ radian[/tex]
Generally the displacement for one complete revolution is mathematically represented as
[tex]\theta = w_i t + \frac{1}{2} * \alpha * t^2[/tex]
Now given that the stone started from rest [tex]w_i = 0 \ rad / s[/tex]
[tex]2 \pi =0 + 0.5* \alpha *(3.60)^2[/tex]
[tex]\alpha = 0.9698 \ s[/tex]
Now the displacement for two complete revolution is
[tex]\theta_2 = 2 * 2\pi[/tex]
[tex]\theta_2 = 4\pi[/tex]
Generally the displacement for two complete revolution is mathematically represented as
[tex]4 \pi = 0 + 0.5 * 0.9698 * t^2[/tex]
=> [tex]t^2 = 25.9187[/tex]
=> [tex]t= 5.1 \ s[/tex]
So
The time taken to complete the next oscillation is mathematically evaluated as
[tex]\Delta t = t_2 - t[/tex]
substituting values
[tex]\Delta t = 5.1 - 3.60[/tex]
[tex]\Delta t = 1.5 \ s[/tex]
The time for the ball to complete the next revolution is 1.5 s.
The given parameters;
mass of the ball, m = 1.25 kgtime of motion, t = 3.6 sone complete revolution, θ = 2πThe constant angular acceleration of the ball is calculated as follows;
[tex]\theta = \omega t \ + \ \frac{1}{2} \alpha t^2\\\\2\pi = 0 \ + \ 0.5(3.6)^2 \alpha\\\\2\pi = 6.48 \alpha \\\\\alpha = \frac{2 \pi }{6.48} \\\\\alpha = 0.97 \ rad/s^2[/tex]
The time to complete the next revolution is calculated as follows;
[tex]4\pi = 0 + \frac{1}{2} (0.97)t^2\\\\8\pi = 0.97t^2\\\\t^2 = \frac{8\pi }{0.97} \\\\t^2 = 25.91\\\\t = \sqrt{ 25.91} \\\\t = 5.1 \ s[/tex]
[tex]\Delta t = 5.1 \ s \ - \ 3.6 \ s \\\\\Delta t = 1.5 \ s[/tex]
Thus, the time for the ball to complete the next revolution is 1.5 s.
Learn more here:https://brainly.com/question/20738528
what effect does decreasing the field current below its nominal value have on the speed versus voltage characteristic of a separately excited dc motor
Answer
The effect is that it Decreases the field current IF and increases slope K1
The metal wire in an incandescent lightbulb glows when the light is switched on and stops glowing when it is switched off. This simple
process is which kind of a change?
OA a physical change
OB. a chemical change
OC. a nuclear change
OD
an ionic change
B. A chemical change
Explanation:
I'm guessing ?
A bar magnet is dropped from above and falls through the loop of wire. The north pole of the bar magnet points downward towards the page as it falls. Which statement is correct?a. The current in the loop always flows in a clockwise direction. b·The current in the loop always flows in a counterclockwise direction. c. The current in the loop flows first in a clockwise, then in a counterclockwise direction. d. The current in the loop flows first in a counterclockwise, then in a clockwise direction. e. No current flows in the loop because both ends of the magnet move through the loop.
Answer:
b. The current in the loop always flows in a counterclockwise direction.
Explanation:
When a magnet falls through a loop of wire, it induces an induced current on the loop of wire. This induced current is due to the motion of the magnet through the loop, which cause a change in the flux linkage of the magnet. According to Lenz law, the induced current acts in such a way as to repel the force or action that produces it. For this magnet, the only opposition possible is to stop its fall by inducing a like pole on the wire loop to repel its motion down. An induced current that flows counterclockwise in the wire loop has a polarity that is equivalent to a north pole on a magnet, and this will try to repel the motion of the magnet through the coil. Also, when the magnet goes pass the wire loop, this induced north pole will try to attract the south end of the magnet, all in a bid to stop its motion downwards.
The current in the loop always flows in a counterclockwise direction. Hence, option (b) is correct.
The given problem is based on the concept and fundamentals of magnetic bars. When a magnet falls through a loop of wire, it induces an induced current on the loop of wire. There is some magnitude of current induced in the wire.
This induced current is due to the motion of the magnet through the loop, which cause a change in the flux linkage of the magnet. According to Lenz law, the induced current acts in such a way as to repel the force or action that produces it. For this magnet, the only opposition possible is to stop its fall by inducing a like pole on the wire loop to repel its motion down. An induced current that flows counterclockwise in the wire loop has a polarity that is equivalent to a north pole on a magnet, and this will try to repel the motion of the magnet through the coil. Also, when the magnet goes pass the wire loop, this induced north pole will try to attract the south end of the magnet, all in a bid to stop its motion downwards.Thus, we can say that the current in the loop always flows in a counterclockwise direction. Hence, option (b) is correct.
Learn more about the magnetic field here:
https://brainly.com/question/14848188
what is the average flow rate in of gasoline to the engine of a plane flying at 700 km/h if it averages 100.0 km/l
Answer:
1.94cm³/s
Explanation:
1L = 1000cm³
Ihr = 3600s
So
Using
Average flow rate
Fr= 1L/100Km x 700Km/1hr x 1hr/3600s x 1000cm³/ 1L
= 1.94cm³/s
You want the current amplitude through a 0.450 mH inductor (part of the circuitry for a radio receiver) to be 1.50 mA when a sinusoidal voltage with an amplitude of 13.0 V is applied across the inductor. What frequency is required?
Answer:
3.067MHzExplanation:
The formula for calculating the voltage across an inductor is expressed as
[tex]V_l = IX_l\\\\Since\ X_l = 2\pi fL\\V_l = I(2\pi fL)[/tex]
Given parameters
current amplitude I = 1.50mA = 1.5*10⁻³A
inductance L = 0.450mH = 0.450*10⁻³H
Voltage across the inductor [tex]V_l[/tex] = 13.0V
Required
frequency f
Substituting the given parametres into the formula, we have;
[tex]V_l = I(2\pi fL)\\\\13 = 1.50*10^{-3}(2*3.14*f*0.450*10^{-3})\\\\13 = 4.239*10^{-6}f\\\\f = \frac{13}{4.239*10^{-6}} \\\\f = 3,066,761 Hertz\\\\f = 3.067MHz[/tex]
Hence, the frequency required is 3.067MHz
Two parallel metal plates, each of area A, are separatedby a distance 3d. Both are connected to ground and each plate carries no charge. A third plate carrying charge Qis inserted between the two plates, located a distance dfrom the upper plate. As a result, negative charge is induced on each of the two original plates. a) In terms of Q, find the amount of charge on the upper plate, Q1, and the lower plate, Q2. (Hint: it must be true that Q
Answer:
Upper plate Q/3
Lower plate 2Q/3
Explanation:
See attached file
If R = 20 Ω, what is the equivalent resistance between points A and B in the figure?
Answer:
c. 70 Ω
Explanation:
The R and R resistors are in parallel. The 2R and 2R resistors are in parallel. The 4R and 4R resistors are in parallel. Each parallel combination is in series with each other. Therefore, the equivalent resistance is:
Req = 1/(1/R + 1/R) + 1/(1/2R + 1/2R) + 1/(1/4R + 1/4R)
Req = R/2 + 2R/2 + 4R/2
Req = 3.5R
Req = 70Ω
W is the work done on the system, and K, U, and Eth are the kinetic, potential, and thermal energies of the system, respectively. Any energy not mentioned in the transformation is assumed to remain constant; if work is not mentioned, it is assumed to be zero.
1. Give a specific example of a system with the energy transformation shown.
W→ΔEth
2. Give a specific example of a system with the energy transformation shown.
a. Rolling a ball up a hill.
b. Moving a block of wood across a horizontal rough surface at constant speed.
c. A block sliding on level ground, to which a cord you are holding on to is attached .
d. Dropping a ball from a height.
Answer:
1) a block going down a slope
2) a) W = ΔU + ΔK + ΔE, b) W = ΔE, c) W = ΔK, d) ΔU = ΔK
Explanation:
In this exercise you are asked to give an example of various types of systems
1) a system where work is transformed into internal energy is a system with friction, for example a block going down a slope in this case work is done during the descent, which is transformed in part kinetic energy, in part power energy and partly internal energy that is represented by an increase in the temperature of the block.
2)
a) rolling a ball uphill
In this case we have an increase in potential energy, if there is a change in speed, the kinetic energy also increases, if the change in speed is zero, there is no change in kinetic energy and there is a change in internal energy due to the stationary rec in the point of contact
W = ΔU + ΔK + ΔE
b) in this system work is transformed into internal energy
W = ΔE
c) There is no friction here, therefore the work is transformed into kinetic energy
W = ΔK
d) if you assume that there is no friction with the air, the potential energy is transformed into kinetic energy
ΔU = ΔK