Answer:
The torque on the wrench is 4.188 Nm
Explanation:
Let r = xi + yj where is the distance of the applied force to the origin.
Since x = 18 cm = 0.18 cm and y = 5.5 cm = 0.055 cm,
r = 0.18i + 0.055j
The applied force f = 88i - 23j
The torque τ = r × F
So, τ = r × F = (0.18i + 0.055j) × (88i - 23j) = 0.18i × 88i + 0.18i × -23j + 0.055j × 88i + 0.055j × -23j
= (0.18 × 88)i × i + (0.18 × -23)i × j + (0.055 × 88)j × i + (0.055 × -22)j × j
= (0.18 × 88) × 0 + (0.18 × -23) × k + (0.055 × 88) × (-k) + (0.055 × -22) × 0 since i × i = 0, j × j = 0, i × j = k and j × i = -k
= 0 - 4.14k + 0.0484(-k) + 0
= -4.14k - 0.0484k
= -4.1884k Nm
≅ -4.188k Nm
So, the torque on the wrench is 4.188 Nm
The microwaves in a microwave oven are produced in a special tube called a magnetron. The electrons orbit the magnetic field at 2.4 GHz, and as they do so they emit 2.4 GHz electromagnetic waves. What is the strength of the magnetic field?
Answer:
The magnetic field is 0.0857 T.
Explanation:
The electrons orbit the magnetic field with a centripetal force equal to
F = [tex]\frac{mv^{2} }{r}[/tex]
also, the force on an electron in a magnetic field is gotten as
F = Bqv
equating this two equations give
[tex]\frac{mv^{2} }{r}[/tex] = Bqv
mv/r = Bq
where m is the mass of the electron = 9.11 x 10^-31 kg
v is the the linear speed of the electron
B is the magnetic field on the electron
r is the radius of the orbital movement
q is the charge on an electron = 1.602 x 10^-19 C
but, the linear speed v = ωr
where ω is the angular speed of the electron
substituting into equation above, we have
mωr/r = Bq
which reduces to
mω = Bq
finally, w know that the angular speed is related to the frequency of the electron by
ω = 2πf
we then finally have
2mπf = Bq
where f is the frequency emitted by the electron = 2.4 GHz = 2.4 x 10^9 Hz
substituting values into the equation, we have
2 x 9.11 x 10^-31 x 3.142 x 2.4 x 10^9 = B x 1.602 x 10^-19
B = (1.3734 x 10^-20)/(1.602 x 10^-19) = 0.0857 T
= 85.7 mT
A 1.25-kg ball begins rolling from rest with constant angular acceleration down a hill. If it takes 3.60 s for it to make the first complete revolution, how long will it take to make the next complete revolution?
Answer:
The time taken is [tex]\Delta t = 1.5 \ s[/tex]
Explanation:
From the question we are told that
The mass of the ball is [tex]m = 1.25 \ kg[/tex]
The time taken to make the first complete revolution is t= 3.60 s
The displacement of the first complete revolution is [tex]\theta = 1 rev = 2 \pi \ radian[/tex]
Generally the displacement for one complete revolution is mathematically represented as
[tex]\theta = w_i t + \frac{1}{2} * \alpha * t^2[/tex]
Now given that the stone started from rest [tex]w_i = 0 \ rad / s[/tex]
[tex]2 \pi =0 + 0.5* \alpha *(3.60)^2[/tex]
[tex]\alpha = 0.9698 \ s[/tex]
Now the displacement for two complete revolution is
[tex]\theta_2 = 2 * 2\pi[/tex]
[tex]\theta_2 = 4\pi[/tex]
Generally the displacement for two complete revolution is mathematically represented as
[tex]4 \pi = 0 + 0.5 * 0.9698 * t^2[/tex]
=> [tex]t^2 = 25.9187[/tex]
=> [tex]t= 5.1 \ s[/tex]
So
The time taken to complete the next oscillation is mathematically evaluated as
[tex]\Delta t = t_2 - t[/tex]
substituting values
[tex]\Delta t = 5.1 - 3.60[/tex]
[tex]\Delta t = 1.5 \ s[/tex]
The time for the ball to complete the next revolution is 1.5 s.
The given parameters;
mass of the ball, m = 1.25 kgtime of motion, t = 3.6 sone complete revolution, θ = 2πThe constant angular acceleration of the ball is calculated as follows;
[tex]\theta = \omega t \ + \ \frac{1}{2} \alpha t^2\\\\2\pi = 0 \ + \ 0.5(3.6)^2 \alpha\\\\2\pi = 6.48 \alpha \\\\\alpha = \frac{2 \pi }{6.48} \\\\\alpha = 0.97 \ rad/s^2[/tex]
The time to complete the next revolution is calculated as follows;
[tex]4\pi = 0 + \frac{1}{2} (0.97)t^2\\\\8\pi = 0.97t^2\\\\t^2 = \frac{8\pi }{0.97} \\\\t^2 = 25.91\\\\t = \sqrt{ 25.91} \\\\t = 5.1 \ s[/tex]
[tex]\Delta t = 5.1 \ s \ - \ 3.6 \ s \\\\\Delta t = 1.5 \ s[/tex]
Thus, the time for the ball to complete the next revolution is 1.5 s.
Learn more here:https://brainly.com/question/20738528
Please help!
Much appreciated!
Answer:
your question answer is 22°
c) If the ice block (no penguins) is pressed down even with the surface and then released, it will bounce up and down, until friction causes it to settle back to the equilibrium position. Ignoring friction, what maximum height will it reach above the surface
Answer:
y = 20.99 V / A
there is no friction y = 20.99 h
Explanation:
Let's solve this exercise in parts: first find the thrust on the block when it is submerged and then use the conservation of energy
when the block of ice is submerged it is subjected to two forces its weight hydrostatic thrust
F_net= ∑F = B-W
the expression stop pushing is
B = ρ_water g V_ice
where rho_water is the density of pure water that we take as 1 10³ kg / m³ and V is the volume d of the submerged ice
We can write the weight of the body as a function of its density rho_hielo = 0.913 10³ kg / m³
W = ρ-ice g V
F_net = (ρ_water - ρ_ ice) g V
this is the net force directed upwards, we can find the potential energy with the expression
F = -dU / dy
ΔU = - ∫ F dy
ΔU = - (ρ_water - ρ_ ice) g ∫ (A dy) dy
ΔU = - (ρ_water - ρ_ ice) g A y² / 2
we evaluate between the limits y = 0, U = 0, that is, the potential energy is zero at the surface
U_ice = (ρ_water - ρ_ ice) g A y² / 2
now we can use the conservation of mechanical energy
starting point. Ice depth point
Em₀ = U_ice = (ρ_water - ρ_ ice) g A y² / 2
final point. Highest point of the block
[tex]Em_{f}[/tex] = U = m g y
as there is no friction, energy is conserved
Em₀ = Em_{f}
(ρ_water - ρ_ ice) g A y² / 2 = mg y
let's write the weight of the block as a function of its density
ρ_ice = m / V
m = ρ_ice V
we substitute
(ρ_water - ρ_ ice) g A y² / 2 = ρ_ice V g y
y = ρ_ice / (ρ_water - ρ_ ice) 2 V / A
let's substitute the values
y = 0.913 / (1 - 0.913) 2 V / A
y = 20.99 V / A
This is the height that the lower part of the block rises in the air, we see that it depends on the relationship between volume and area, which gives great influence if there is friction, as in this case it is indicated that there is no friction
V / A = h
where h is the height of the block
y = 20.99 h
Light of wavelength 476.1 nm falls on two slits spaced 0.29 mm apart. What is the required distance from the slits to the screen if the spacing between the first and second dark fringes is to be 4.2 mm?
Answer:
The distance is [tex]D = 2.6 \ m[/tex]
Explanation:
From the question we are told that
The wavelength of the light is [tex]\lambda = 476.1 \ nm = 476.1 *10^{-9} \ m[/tex]
The distance between the slit is [tex]d = 0.29 \ mm = 0.29 *10^{-3} \ m[/tex]
The between the first and second dark fringes is [tex]y = 4.2 \ mm = 4.2 *10^{-3} \ m[/tex]
Generally fringe width is mathematically represented as
[tex]y = \frac{\lambda * D }{d}[/tex]
Where D is the distance of the slit to the screen
Hence
[tex]D = \frac{y * d}{\lambda }[/tex]
substituting values
[tex]D = \frac{ 4.2 *10^{-3} * 0.29 *10^{-3}}{ 476.1 *10^{-9} }[/tex]
[tex]D = 2.6 \ m[/tex]
An LR circuit consists of a 35-mH inductor, ac resistance of 12 ohms, an 18-V battery, and a switch. What is the current 5.0 ms after the switch is closed
Answer:
I = 1.23 A
Explanation:
In an RL circuit current passing is described by
I = E / R (1 - [tex]e^{-Rt/L}[/tex])
Let's reduce the magnitudes to the SI system
L = 35 mH = 35 10⁻³ H
t = 5.0 ms = 5.0 10⁻³ s
let's calculate
I = 18/12 (1 - [tex]e^{-12 .. 5 {10}^{-3}/35 .. {10}^{-3} }[/tex]e (- 5 10-3 12/35 10-3))
I = 1.5 (1- [tex]e^{-1.715}[/tex])
I = 1.23 A
What is the wavelength of electromagnetic radiation which has a frequency of 3.818 x 10^14 Hz?
Answer:
7.86×10⁻⁷ m
Explanation:
Using,
v = λf.................. Equation 1
Where v = velocity of electromagnetic wave, λ = wave length, f = frequency.
make λ the subject of the equation
λ = v/f............... Equation 2
Note: All electromagnetic wave have the same speed which is 3×10⁸ m/s.
Given: f = 3.818×10¹⁴ Hz
Constant: v = 3×10⁸ m/s
Substitute these values into equation 2
λ = 3×10⁸/3.818×10¹⁴
λ = 7.86×10⁻⁷ m
Hence the wavelength of the electromagnetic radiation is 7.86×10⁻⁷ m
The wavelength of this electromagnetic radiation is equal to [tex]7.86 \times 10^{-7} \;meters[/tex]
Given the following data:
Frequency = [tex]3.818\times 10^{14}\;Hz[/tex]Scientific data:
Velocity of an electromagnetic radiation = [tex]3 \times 10^8\;m/s[/tex]
To determine the wavelength of this electromagnetic radiation:
Mathematically, the wavelength of an electromagnetic radiation is calculated by using the formula;
[tex]Wavelength = \frac{Speed }{frequency}[/tex]
Substituting the given parameters into the formula, we have;
[tex]Wavelength = \frac{3 \times 10^8}{3.818\times 10^{14}}[/tex]
Wavelength = [tex]7.86 \times 10^{-7} \;meters[/tex]
Read more wavelength on here: https://brainly.com/question/6352445
A long straight solenoid has 800 turns. When the current in the solenoid is 2.90 amperes the average flux through each turn is 3.25×10−3Wb.
A. What is the inductance of the coil?
B. What must be the magnitude fo the rate of change of the current (di/dt) in order for the self-induced emf to equal 7.50 mV?
Answer:
Explanation:
Relation between flux and inductance is as follows
φ = Li
where φ is flux associated with induction of inductance L when a current i flows through it
putting the values
3.25 x 10⁻³ x 800 = L x 2.9
L = .9 H
for induced emf in an induction , the relation is
emf induced = L di / dt
Putting the values
7.5 x 10⁻³ = .9 x di / dt
di / dt = 8.33 x 10⁻³ A / s
(a) The self inductance of the solenoid is 0.897 H.
(b) The magnitude of the rate of change of the current is 0.00836 A/s.
The given parameters;
number of turns, N = 800 turnscurrent in the solenoid, I = 2.9 flux through the solenoid, Ф = 3.25 x 10⁻³ WbThe self inductance of the solenoid is calculated as follows;
[tex]emf = \frac{d\phi}{dt}\\\\emf = \frac{Ldi}{dt} \\\\d\phi = Ldi\\\\\phi = BA\\\\NBA = LI\\\\L = \frac{NBA}{I} \\\\L = \frac{N\phi}{I} \\\\L = \frac{800 \times 3.25\times 10^{-3}}{2.9} \\\\L = 0.897 \ H\\\\[/tex]
The magnitude of the rate of change of the current is calculated as follows;
[tex]emf = L \frac{di}{dt} \\\\\frac{di}{dt} \ = \frac{emf}{L} \\\\\frac{di}{dt} = \frac{7.5 \times 10^{-3}}{0.897} \\\\\frac{di}{dt} = 0.00836 \ A/s[/tex]
Learn more here:https://brainly.com/question/17086348
A ferry boat sails east across a lake at 10 km/h. A woman is walking east on
the boat at 1.5 km/h. What is her speed relative to the boat?
A. 8.5 km/h west
B. 8.5 km/h east
C. 1.5 km/h east
O D. 1.5 km/h west
Answer:
B
8.5 km/h east
Explanation:
Relative velocity= Va -Vb
=10-1.5
=8.5 km/h east
The concept relative speed is used when two or more bodies moving with some speed are considered. The relative speed of woman to the boat is 8.5 km/h east. The correct option is B.
What is relative speed?The relative speed of two bodies is defined as the sum of their speeds if they are moving in the opposite direction and it is the difference of their speeds if they are moving in the same direction.
The speed of the moving body with respect to the stationary body is known as the relative speed. The term relative means in comparison to. The relative speed is a scalar quantity.
Here both the boat and women are travelling in the same direction. So the relative speed is given as:
Relative speed = 10 - 1.5 = 8.5 km / h
Therefore the relative speed is 8.5 km/h east.
Thus the correct option is B.
To know more about relative speed, visit;
https://brainly.com/question/11476119
#SPJ7
A rectangular coil lies flat on a horizontal surface. A bar magnet is held above the center of the coil with its north pole pointing down. What is the direction of the induced current in the coil?
Answer:
There is no induced current on the coil.
Explanation:
Current is induced in a coil or a circuit, when there is a break of flux linkage. A break in flux linkage is caused by a changing magnetic field, and must be achieved by a relative motion between the coil and the magnet. Holding the magnet above the center of the coil will cause no changing magnetic filed since there is no relative motion between the coil and the magnet.
________ is a thermodynamic function that increases with the number of energetically equivalent ways to arrange components of a system to achieve a particular state.
Answer:
entropy
Explanation:
Two parallel metal plates, each of area A, are separatedby a distance 3d. Both are connected to ground and each plate carries no charge. A third plate carrying charge Qis inserted between the two plates, located a distance dfrom the upper plate. As a result, negative charge is induced on each of the two original plates. a) In terms of Q, find the amount of charge on the upper plate, Q1, and the lower plate, Q2. (Hint: it must be true that Q
Answer:
Upper plate Q/3
Lower plate 2Q/3
Explanation:
See attached file
There is a hydraulic system that by means of a 5 cm diameter plunger to which a 5 N force is applied and that force is transmitted by means of a fluid to a 1 meter diameter plunger. Determine how much force can be lifted by the 1 m diameter plunger,
1) - 234 N
2) - 800 N
3) - 636 N
4) - 600 N
Explanation:
Pressure is the same for both plungers.
P = P
F / A = F / A
F / (¼ π d²) = F / (¼ π d²)
F / d² = F / d²
5 N / (0.05 m)² = F / (1 m)²
F = 2000 N
None of the options are correct.
During the first part of this lab, we want to determine how the object distance is related to what two quantities
Answer and Explanation:
The computation of the object distance related to two quantities is shown below:
It could find out by using the lens formula which is shown below:
[tex]\frac{1}{v} - \frac{1}{u} = \frac{1}{f}[/tex]
where,
v = image distance
u = object distance
f = focal length
It could be found by applying the above formula i.e considering the image distance, object distance and the focal length
A fireperson is 50 m from a burning building and directs a stream of water from a fire hose at an angle of 300 above the horizontal. If the initial speed of the stream is 40 m/s the height that the stream of water will strike the building is
Answer:
We can think the water stream as a solid object that is fired.
The distance between the fireperson and the building is 50m. (i consider that the position of the fireperson is our position = 0)
The angle is 30 above the horizontal. (yo wrote 300, but this has no sense because 300° implies that he is pointing to the ground).
The initial speed of the stream is 40m/s.
First, using the fact that:
x = R*cos(θ)
y = R*sin(θ)
in this case R = 40m/s and θ = 30°
We can use the above relation to find the components of the velocity:
Vx = 40m/s*cos(30°) = 34.64m/s
Vy = 20m/s.
First step:
We want to find the time needed to the stream to hit the buildin.
The horizontal speed is 34.64m/s and the distance to the wall is 50m
So we want that:
34.64m/s*t = 50m
t = 50m/(34.64m/s) = 1.44 seconds.
Now we need to calculate the height of the stream at t = 1.44s
Second step:
The only force acting on the water is the gravitational one, so the acceleration of the stream is:
a(t) = -g.
g = -9.8m/s^2
For the speed, we integrate over time and we get:
v(t) = -g*t + v0
where v0 is the initial speed: v0 = 20m/s.
The velocity equation is:
v(t) = -g*t + 20m/s.
For the position, we integrate again over time:
p(t) = -(1/2)*g*t^2 + 20m/s*t + p0
p0 is the initial height of the stream, this data is not known.
Now, the height at the time t = 1.44s is
p(1.44s) = -5.9m/s^2*(1.44s)^2 + 20m/s*1.44s + po
= 16.57m + p0
So the height at wich the stream hits the building is 16.57 meters above the initial height of the fire hose.
A flat loop of wire consisting of a single turn of cross-sectional area 7.30 cm2 is perpendicular to a magnetic field that increases uniformly in magnitude from 0.500 T to 3.50 T in 1.00 s. What is the resulting induced current if the loop has a resistance of 2.60
Answer:
-0.73mA
Explanation:
Using amphere's Law
ε =−dΦB/ dt
=−(2.6T)·(7.30·10−4 m2)/ 1.00 s
=−1.9 mV
Using ohms law
ε=V =IR
I = ε/ R =−1.9mV/ 2.60Ω =−0.73mA
A plane electromagnetic wave travels northward. At one instant, its electric field has a magnitude of 9.6 V/m and points eastward. What are the magnitude (in T) and direction of the magnetic field at this instant?
Answer:
The values is [tex]B = 3.2 *10^{-8} \ T[/tex]
The direction is out of the plane
Explanation:
From the question we are told that
The magnitude of the electric field is [tex]E = 9.6 \ V/m[/tex]
The magnitude of the magnetic field is mathematically represented as
[tex]B = \frac{E}{c}[/tex]
where c is the speed of light with value
[tex]B = \frac{ 9.6}{3.0 *10^{8}}[/tex]
[tex]B = 3.2 *10^{-8} \ T[/tex]
Given that the direction off the electromagnetic wave( c ) is northward(y-plane ) and the electric field(E) is eastward(x-plane ) then the magnetic field will be acting in the out of the page (z-plane )
Find the current through a person and identify the likely effect on her if she touches a 120 V AC source in the following circumstances. (Note that currents above 10 mA lead to involuntarily muscle contraction.)
(a) if she is standing on a rubber mat and offers a total resistance of 300kΩ
(b) if she is standing barefoot on wet grass and has a resistance of only 4000kΩ
Answer:
A) 0.4 mA
B) 0.03 mA
Explanation:
Given that
voltage source, V = 120 V
to solve this question, we would be using the very basic Ohms Law, that voltage is proportional to the current and the resistance passing through the circuit, if temperature is constant.
mathematically, Ohms Law, V = IR
V = Voltage
I = Current
R = Resistance
from question a, we were given 300kΩ, substituting this value of resistance in the equation, we have
120 = I * 300*10^3 Ω
making I the subject of the formula,
I = 120 / 300000
I = 0.0004 A
I = 0.4 mA
Question said, currents above 10 mA causes involuntary muscle contraction, this current is way below 10 mA, so nothing happens.
B, we have Resistance, R = 4000kΩ
Substituting like in part A, we have
120 = I * 4000*10^3 Ω
I = 120 / 4000000
I = 0.00003 A
I = 0.03 mA
This also means nothing happens, because 0.03 mA is very much lesser compared to in the 10 mA
The current through a person will be:
a) 0.4 mA
b) 0.03 mA
Given:
Voltage, V = 120 V
Ohm's Law:It states that the voltage or potential difference between two points is directly proportional to the current or electricity passing through the resistance, and directly proportional to the resistance of the circuit.
Ohms Law, V = I*R
where,
V = Voltage
I = Current
R = Resistance
a)
Given: Resistance= 300kΩ
[tex]120 = I * 300*10^3 ohm\\\\I = 120 / 300000\\\\I = 0.0004 A[/tex]
Thus, current will be, I = 0.4 mA
b)
Given: R = 4000kΩ
[tex]120 = I * 4000*10^3 ohm\\\\I = 120 / 4000000\\\\I = 0.00003 A[/tex]
Thus, current will be, I = 0.03 mA
From calculations, we observe that nothing happens, because 0.03 mA is very much lesser compared to in the 10 mA.
Find more information about Current here:
brainly.com/question/24858512
An electron moving at 3.94 103 m/s in a 1.23 T magnetic field experiences a magnetic force of 1.40 10-16 N. What angle does the velocity of the electron make with the magnetic field? There are two answers between 0° and 180°. (Enter your answers from smallest to largest.)
Answer:
10.4⁰ and 169.6⁰Explanation:
The force experienced by the moving electron in the magnetic field is expressed as F = qvBsinθ where;
q is the charge on the electron
v is the velocity of the electron
B is the magnetic field strength
θ is the angle that the velocity of the electron make with the magnetic field.
Given parameters
F = 1.40*10⁻¹⁶ N
q = 1.6*10⁻¹⁹C
v = 3.94*10³m/s
B = 1.23T
Required
Angle that the velocity of the electron make with the magnetic field
Substituting the given parameters into the formula:
1.40*10⁻¹⁶ = 1.6*10⁻¹⁹ * 3.94*10³ * 1.23 * sinθ
1.40*10⁻¹⁶ = 7.75392 * 10⁻¹⁹⁺³sinθ
1.40*10⁻¹⁶ = 7.75392 * 10⁻¹⁶sinθ
sinθ = 1.40*10⁻¹⁶/7.75392 * 10⁻¹⁶
sinθ = 1.40/7.75392
sinθ = 0.1806
θ = sin⁻¹0.1806
θ₁ = 10.4⁰
Since sinθ is positive in the 1st and 2nd quadrant, θ₂ = 180-θ₁
θ₂ = 180-10.4
θ₂ = 169.6⁰
Hence, the angle that the velocity of the electron make with the magnetic field are 10.4⁰ and 169.6⁰
You want to create a spotlight that will shine a bright beam of light with all of the light rays parallel to each other. You have a large concave spherical mirror and a small lightbulb. Where should you place the lightbulb?
a. at the point, because all rays bouncing off the mirror will be parallel.
b. at the focal point of the mirror
c. at the radius of curvature of the mirror
d. none of the above, you cant make parallel rays wilth a concave mirror
Answer:
Explanation:
Concave mirrors is otherwise known as converging mirrors: These are mirrors that are caved inwards (reflecting surface is on the outside curved part). It is called a converging mirror due to the fact that light converges to a point when it strikes and reflects from the surface of the mirror. This type of mirror is used to focus light; parallel rays that are directed towards it will be concentrated to a point.
For a concave mirror to reflect light with properties that are the same as a spotlight (directed light rays parallel to each other), one has to consider its property to gather light to a point after reflecting. Meaning that, we can achieve the spotlight by locatng the point where the rays will be parallel, this point is called the focal point.
Therefore, the light bulb should be placed at the focal point of the mirror.
The two metallic strips that constitute some thermostats must differ in:_______
A. length
B. thickness
C. mass
D. rate at which they conduct heat
E. coefficient of linear expansion
Answer:
E. Coefficient of linear expansion
Calculate the electromotive force produced by each of the battery combinations shown in the figure, if the emf of each is 1.5 V.
Answer:
A) 1.5 V
B) 4.5 V
Explanation:
A) Batteries in parallel have the same voltage as an individual battery.
V = 1.5 V
B) Batteries in series have a voltage equal to the sum of the individual batteries.
V = 1.5 V + 1.5 V + 1.5 V
V = 4.5 V
In a velocity selector having electric field E and magnetic field B, the velocity selected for positively charged particles is v= E/B. The formula is the same for a negatively charged particles.
a. True
b. False
Answer:
True or False
Explanation:
Because.....
easy 50% chance you are right
W is the work done on the system, and K, U, and Eth are the kinetic, potential, and thermal energies of the system, respectively. Any energy not mentioned in the transformation is assumed to remain constant; if work is not mentioned, it is assumed to be zero.
1. Give a specific example of a system with the energy transformation shown.
W→ΔEth
2. Give a specific example of a system with the energy transformation shown.
a. Rolling a ball up a hill.
b. Moving a block of wood across a horizontal rough surface at constant speed.
c. A block sliding on level ground, to which a cord you are holding on to is attached .
d. Dropping a ball from a height.
Answer:
1) a block going down a slope
2) a) W = ΔU + ΔK + ΔE, b) W = ΔE, c) W = ΔK, d) ΔU = ΔK
Explanation:
In this exercise you are asked to give an example of various types of systems
1) a system where work is transformed into internal energy is a system with friction, for example a block going down a slope in this case work is done during the descent, which is transformed in part kinetic energy, in part power energy and partly internal energy that is represented by an increase in the temperature of the block.
2)
a) rolling a ball uphill
In this case we have an increase in potential energy, if there is a change in speed, the kinetic energy also increases, if the change in speed is zero, there is no change in kinetic energy and there is a change in internal energy due to the stationary rec in the point of contact
W = ΔU + ΔK + ΔE
b) in this system work is transformed into internal energy
W = ΔE
c) There is no friction here, therefore the work is transformed into kinetic energy
W = ΔK
d) if you assume that there is no friction with the air, the potential energy is transformed into kinetic energy
ΔU = ΔK
A particle moves along line segments from the origin to the points (2, 0, 0), (2, 3, 1), (0, 3, 1), and back to the origin under the influence of the force field F(x, y, z).
Required:
Find the work done.
Answer:
the net work is zero
Explanation:
Work is defined by the expression
W = F. ds
Bold type indicates vectors
In this problem, the friction force does not decrease, therefore it will be zero.
Consequently for work on a closed path it is zero.
The work in going from the initial point (0, 0, 0) to the end of each segment is positive and when it returns from the point of origin the angle is 180º, therefore the work is negative, consequently the net work is zero
Describe how, using a positively-charged rod and two neutral metal spheres, we canmake one sphere positive without touching it to the rod. You might want to draw adiagram to help you.
Answer:
se the principle of induction.
place the two metallic spheres together, now we bring the positively charged bar closer to the first sphere.
The charge that was induced in the sphere is distributed as infirm as possible,
At this time I separate the spheres and move the bar away, by separating the spheres the excess positive
Explanation:
For this exercise we will use that the electric charge is not created, it is not destroyed and charges of the same sign repel.
Let's use the principle of induction. We place the two metallic spheres together, one in front of the other, now we bring the positively charged bar closer to the first sphere.
Here the positive charge of the bar repels the positive charge of the sphere, but as this is mocil it moves as far away as possible, until the negative charge that remains neutralizes the positive charge of the bar.
The charge that was induced in the sphere is distributed as infirm as possible, most of it in the furthest sphere, since the Coulomb force decreases.
At this time I separate the spheres and move the bar away, by separating the spheres the excess positive charge in the last sphere cannot be neutralized, therefore this sphere remains with a positive charge.
If R = 20 Ω, what is the equivalent resistance between points A and B in the figure?
Answer:
c. 70 Ω
Explanation:
The R and R resistors are in parallel. The 2R and 2R resistors are in parallel. The 4R and 4R resistors are in parallel. Each parallel combination is in series with each other. Therefore, the equivalent resistance is:
Req = 1/(1/R + 1/R) + 1/(1/2R + 1/2R) + 1/(1/4R + 1/4R)
Req = R/2 + 2R/2 + 4R/2
Req = 3.5R
Req = 70Ω
An array of solar panels produces 9.35 A of direct current at a potential difference of 195 V. The current flows into an inverter that produces a 60 Hz alternating current with Vmax = 166V and Imax = 19.5A.
A) What rms power is produced by the inverter?
B) Use the rms values to find the power efficiency Pout/Pin of the inverter.
Answer:
(A). 1620 watt.
(B).0.8885.
Explanation:
So, we are given the following data or parameters or information which is going to assist or help us in solving this particular Question or problem. So, we have;
Current = 9.35A, direct current at a potential difference of 195 V, frequency of the inverter = 60 Hz alternating current, alternating current with Vmax = 166V and Imax = 19.5A.
(A). The rms power is produced by the inverter = (19.5 /2 ) × 166 = 1620 watt(approximately).
(B). the rms values to find the power efficiency Pout/Pin of the inverter.
P(in) = 195 × 9.35 = 1823.3 watt.
Thus, the rms values to find the power efficiency Pout/Pin of the inverter = 1620/1823.3 = 0.88852324146441793 = 0.8885.
how does a system naturally change over time
Answer:
The movement of energy and matter in a system differs from one system to another. On the other hand, in open system both the matter and energy move into and out of the system. Therefore, matter and energy in a system naturally change over time will decrease in entropy.
Explanation:
Answer:
Decrease in entropy
Explanation:
Various systems which exist in nature possess energy and matter that move through these system continuously. The movement of energy and matter in a system differs from one system to another.
In a closed system for example, only energy flows in and out of the system while matter does not enter or leave the system.
On the other hand, in open system both the matter and energy move into and out of the system.
A loop of wire is at the edge of a region of space containing a uniform magnetic field B. The plane of the loop is perpendicular to the magnetic field. Now the loop is pulled out of this region in such a way that the area A of the coil inside the magnetic field region is decreasing at the constant rate c. That is, dA/dt=−c, with c>0.Required:a. The induced emf in the loop is measuredto be V. What is the magnitude B of the magnetic field that the loop was in?b. For the case of a square loop of sidelength L being pulled out of the magneticfield with constant speed v, What is the rate of change of area c= -dA/dt
Answer:
The question is not clear enough. So i have attached a copy of the correct question.
A) B = V/c
B) c = Lv
Explanation:
A) we know that formula for magnetic flux is;
Φ = BA
Where B is magnetic field and A is area
Now,
Let's differentiate with B being a constant;
dΦ/dt = B•dA/dt
From faradays law, the EMF induced is given as;
E = -dΦ/dt
However, we want to express it in terms of V and E.M.F is also known as potential difference or Voltage.
Thus, V = -dΦ/dt
Thus, we can now say that;
-V = B•dA/dt
Now from the question, we are told that dA/dt = - c
Thus;
-V = B•-c
So, V = Bc
Thus, B = V/c
B) according to Faraday's Law or Lorentz Force Law, an electromotive force, emf, will be induced between the two ends of the sidelength:
Thus;
E =LvB or can be written as; V = LvB
Where;
V is EMF
L is length of bar
v is velocity
From the first solution, we saw that;
V = Bc
Thus, equating both of the equations, we have;
Bc = LvB
B will cancel out to give;
c = Lv
Explanation: