See the attached picture
[tex]\bold{\text{Answer:}\quad \dfrac{(x+4)^2}{81}+\dfrac{(y-5)^2}{25}=1}[/tex]
Step-by-step explanation:
A "horizontal" ellipse means that the x-radius is bigger than the y-radius. Thus, x is the major axis and y is the minor axis.
The equation of an ellipse is: [tex]\dfrac{(x-h)^2}{a^2}+\dfrac{(y-k)^2}{b^2}=1[/tex] where
(h, k) is the center of the ellipsea is the radius on the x-axisb is the radius on the y-axisIt is given that the center is at (-4, 5) --> h = -4, k = 5
It is given that the major axis has a length of 18 --> x-radius = 9
It is given that the minor axis has a length of 10 --> y-radius = 5
Input those values into the equation of an ellipse to get:
[tex]\dfrac{(x-(-4))^2}{9^2}+\dfrac{(y-5)^2}{5^2}=1[/tex]
Simplify to get:
[tex]\dfrac{(x+4)^2}{81}+\dfrac{(y-5)^2}{25}=1[/tex]
Using only four 4's and any operational sign find the value of 8
Answer:
The answer is 4 + 4 + 4 - 4 = 8
Step-by-step explanation:
The four fours problem is one of the problems given in the book "The Man Who Calculated" by Malba Tahan, a Brazilian-born professor of mathematical sciences.
There are many complicated problems in this book made with the intention of using logic to find a value.
The 4 fours problem is based on using these numbers and using any operation to result in the numbers 1 through 10.
Gulnaz plans to use less than 26 eggs while baking. She uses 5 eggs for each cake that she bakes, and 3 eggs for each quiche that she bakes.
Write an inequality that represents the number of cakes (C)left parenthesis, C, right parenthesis and quiches (Q)left parenthesis, Q, right parenthesis Gulnaz can bake according to her plan.
Answer:
5(x) +3(y)<26
Step-by-step explanation:
Let x represent the number of cakes she will bake and let you know represent the nymber of quiche she will bake.
She will use less than 26 eggs while baking and 5 eggs for each cake and 3 eggs for each quiche.
The inequality representing the above statement iz given below.
5(x) +3(y)<26
If the solutions for a quadratic equation are -2 and 5 what is the equation
Answer:
f(x) = x^2 - 3x -10
Step-by-step explanation:
If the solutions are {-2, 5}, the factors of the quadratic are (x + 2) and (x - 5).
The equation is f(x) = (x + 2)(x - 5) = x^2 - 3x -10
The perpendicular bisectors of ΔKLM intersect at point A. If AK = 25 and AM = 3n - 2, then what is the value of n?
Answer:
n = 9 is the answer.
Step-by-step explanation:
Given a Triangle [tex]\triangle KLM[/tex] with its perpendicular bisectors intersecting at a point A.
AK = 25 units and
AM = 3n -2
To find:
Value of n = ?
Solution:
First of all, let us learn about perpendicular bisectors and their intersection points.
Perpendicular bisector of a line PQ is the line which divides the line PQ into two equal halves and is makes an angle of [tex]\bold{90^\circ}[/tex] with the line PQ.
And in a triangle, the perpendicular bisectors of 3 sides meet at one point and that point is called Circumcenter of the triangle.
We can draw a circle from circumcenter so that the circle passes from the three vertices of the triangle.
i.e.
Circumcenter of a triangle is equidistant from all the three vertices of the triangle.
In the given statement, we are given that A is the circumcenter of the [tex]\triangle KLM[/tex].
Please refer to the attached image for the given triangle and sides.
The distance of A from all the three vertices will be same.
i.e. AK = AM
[tex]\Rightarrow 25 = 3n-2\\\Rightarrow 3n =25+2\\\Rightarrow 3n =27\\\Rightarrow \bold{n = 9}[/tex]
Therefore, n = 9 is the answer.
a vegetable garden and he's around the path of seemed like a square that together are 10 ft wide. The path is 2 feet wide. Find the total area of the vegetable garden and path
Answer:
Garden: 36 square feet
Path: 64 square feet
Step-by-step explanation:
Let's first find the total area. The total area will be 100 square feet since the side length is 10. Since the path is 2 feet wide and on all sides, that means that the inside square will have a side length of 6. That means that the vegetable garden is 36 square feet. The path will be 100 - (the garden), and the garden is 36 square feet, which means the outer path will be 64.
A hypothesis test is the following:
a. a descriptive technique that allows researchers to describe a population
b. an inferential technique that uses information about a population to make predictions about a sample
c. a descriptive technique that allows researchers to describe a sample
d. an inferential technique that uses the data from a sample to draw inferences about a population
Answer:
c
Step-by-step explanation:
c. a descriptive technique
Solve the equation for x by graphing.-4x-1 5x=4
Answer: Undefined
Step-by-step explanation:
slope is undefined
no y intercept
This line is vertical
For the following polynomial, find P(a), P(-x) and P(x + h).
P(x) = 7x-6
Answer:
Step-by-step explanation:
Hello, please consider the following.
P(a) = 7 * a - 6
P(-x)= 7 *(-x) - 6 = -7x - 6
P(x+h) = 7 * (x+h) - 6 = 7x + 7h - 6
Hope this helps.
Thank you.
The values of the polynomial for the given expressions are:
P(a) = 7a - 6
P(-x) = -7x - 6
P(x + h) = 7x + 7h - 6
To find P(a), P(-x), and P(x + h) for the given polynomial P(x) = 7x - 6, we need to substitute the respective values of x into the polynomial expression.
1. P(a):
P(a) = 7a - 6
2. P(-x):
P(-x) = 7(-x) - 6
P(-x) = -7x - 6
3. P(x + h):
P(x + h) = 7(x + h) - 6
P(x + h) = 7x + 7h - 6
To know more about polynomial:
https://brainly.com/question/2928026
#SPJ2
What are the solutions of the equation 3x^2+6x-24=0
Answer:
x = - 4, x = 2
Step-by-step explanation:
Given
3x² + 6x - 24 = 0 ( divide through by 3 )
x² + 2x - 8 = 0 ← in standard form
(x + 4)(x - 2) = 0 ← in factored form
Equate each factor to zero and solve for x
x + 4 = 0 ⇒ x = - 4
x - 2 = 0 ⇒ x = 2
Listed below are systolic blood pressure measurements (mm Hg) taken from the right and left arms of the same woman. Assume that the paired sample data is a simple random sample and that the differences have a distribution that is approximately normal. Use a 0.05 significance level to test for a difference between the measurements from the two arms. What can be concluded?
Right_arm(mm_Hg) Left_arm(mm_Hg)
149 166
136 179
129 190
137 148
139 138
Data was entered in SPSS using the paired t-test approach!!
a. In this example, μd is the mean value of the differences d for the population of all pairs of data, where each individual difference d is defined as the measurement from the right arm minus the measurement from the left arm. What are the null and alternative hypotheses for the hypothesis test?
b.) Identify the test statistic.
c.) Identify the P-value.
d.) What is the conclusion based on the hypothesis test?
Answer:
There is a significant difference in the systolic blood pressure measurements between the two arms.
Step-by-step explanation:
The dependent t-test (also known as the paired t-test or paired samples t-test) compares the two means associated groups to conclude if there is a statistically significant difference amid these two means.
In this case a paired t-test is used to determine whether there is a difference in the systolic blood pressure measurements between the two arms.
The SPSS output is attached below.
(a)
The hypothesis for the test can be defined as follows:
H₀: There is no difference in the systolic blood pressure measurements between the two arms, i.e. d = 0.
Hₐ: There is a significant difference in the systolic blood pressure measurements between the two arms, i.e. d ≠ 0.
(b)
Consider the SPSS output.
The test statistic value is t = 0.871.
(c)
Consider the SPSS output.
The p-value of the test is:
p-value = 0.433.
(d)
The significance level of the test is, α = 0.05.
Decision rule:
If the p-value of the test is less than the significance level then the null hypothesis will be rejected and vice-versa.
p-value = 0.433 > α = 0.05
The null hypothesis will not be rejected at 5% level of significance.
Conclusion:
Thus, it can be concluded that there is a significant difference in the systolic blood pressure measurements between the two arms.
find the circle through (-4,sqrt(5) with center (0,0)
Answer:
Circle Equation : x² + y² = 21
Step-by-step explanation:
So we know that this circle goes through the point ( - 4, √5 ), with a center being the origin. Therefore, this makes the circle equation a bit simpler.
The first step in determining the circle equation is the length of the radius. Applying the distance formula, the radius would be the length between the given points. Another approach would be creating a right triangle such that the radius is the hypotenuse. Knowing the length of the legs as √5 and 4, we can calculate the radius,
( √5 )² + ( 4 )² = r²,
5 + 16 = r²,
r = √21
In general, a circle equation is represented by the formula ( x - a )² + ( y - b )² = r², with radius r centered at point ( a, b ). Therefore our circle equation will be represented by the following -
( x - 0 )² + ( y - 0 )² = (√21 )²
Circle Equation : x² + y² = 21
x+3y-Z=0
2x+y+Z=1
3X-y+Z=3
One more than three times a number is the same as four less than double a number
Answer:
3x + 1 = 2x - 4. x = -5
Step-by-step explanation:
John painted his most famous work, in his country, in 1930 on composition board with perimeter 101.14 in. If the rectangular painting is 5.43 in. taller than it is wide, find the dimensions of the painting.
Answer:
22.57 x 28
Step-by-step explanation:
10.86 + 4x = 101.14
-10.86 -10.86
4x = 90.28
/4 /4
x = 22.57
5.43 + 22.57 = 28
22.57
Use the Midpoint Rule with n = 10 to approximate the length of c(t) = (5 + sin(4t), 6 + sin(7t)) for 0 ≤ t ≤ 2π. (Round your answer to two decimal places.)
Answer:
34.43
Step-by-step explanation:
A differential of length in terms of t will be ...
dL(t) = √(x'(t)^2 +y'(t)^2)
where ...
x'(t) = 4cos(4t)
y'(t) = 7cos(7t)
The length of c(t) will be the integral of this differential on the interval [0, 2π].
Dividing that interval into 10 equal pieces means each one has a width of (2π)/10 = π/5. The midpoint of pieces numbered 1 to 10 will be ...
(π/5)(n -1/2), so the area of the piece will be ...
sub-interval area ≈ (π/5)·dL((π/5)(n -1/2))
It is convenient to let a spreadsheet or graphing calculator do the function evaluation and summing of areas.
__
The attachment shows the curve c(t) whose length we are estimating (red), and the differential length function (blue) we are integrating. We use the function p(n) to compute the midpoint of the sub-interval. The sum of sub-interval areas is shown as 34.43.
The length of the curve is estimated to be 34.43.
I cant seem to get the second one right...
Rx=1 means to reflect the given point on the line of x= 1
The mapping for the reflection on line x is x = k
(-2,7) = (-2(1) - -2,7) = (4,7)
The missing value is 7
State the value of the expression (4.1x10^2)(2.4x10^3) over (1.5x10^7) in scientific notation?
Answer:
[tex]6.56 * 10^{-2}[/tex]
Step-by-step explanation:
:| I would just start bashing this one.
[tex]((4.1 * 10^2 ) (2.4 * 10^3))/(1/5 * 10^7) =[/tex]
[tex]((410)(2400))/(15000000) =[/tex]
[tex]984000/15000000 =[/tex]
[tex]984/15000 =[/tex]
[tex]123/1875 =[/tex]
[tex]0.0656 =[/tex]
[tex]6.56 * 10^{-2}[/tex]
Please help me with this ,
Answer:
(a) -2.3°/min
(b) -2.9°/min
Step-by-step explanation:
The average rate of change is the ratio of the difference in R values to the difference in the corresponding t values.
(a) m = (157.6 -226.6)/(30 -0) = -69/30 = -2.3 . . . degrees per minute
__
(b) m = (61.6 -119.6)/(70 -50) = -58/20 = -2.9 . . . degrees per minute
Question:
A school's band members raised money by selling magazine subscriptions and shirts. Their profit from selling shirts was per shirt minus a one-time set-up fee. Their profit from selling magazine subscriptions was per subscription. They made exactly the same profit from shirts as they did from magazines. They also sold the same number of shirts as magazine subscriptions. How many shirts did they sell?
Jamie has a jar of coins containing the same number of nickels, dimes and quarters. The total value of the coins in the jar is 13.20. How many nickels does Jamie have?
The gasoline gauge on a van initially read ⅛ full. When 15 gallons of gasoline were added to the tank, the gauge then read ¾ full. How many more gallons would be needed to fill the tank?
Answer:
Question 1: 40 shirts and 40 magizines
Question 2: $4.4
Question 3: 6 gallons
Answer:
hello
Step-by-step explanation:
The height of the plant is given by the equation h = 0.5d + 4. Rewrite this as a function rule where f(x) is the height, in centimeters, and x is the time, in days. Use the rule to complete the table, and then use the drawing tools to create the graph representing this relationship.
Answer:
Here's what I get
Step-by-step explanation:
h = 0.5d + 4
A function rule tells you how to convert an input value (x) into an output value (y).
Your function rule is
ƒ(x) = 0.5x + 4
An easy way to represent your function is to make a graph.
The easiest way to make a graph is to make a table containing some inputs and their corresponding outputs.
Here's a typical table.
[tex]\begin{array}{cc}\textbf{x} &\textbf{y} \\0 & 4 \\2 & 5 \\4 & 6 \\6 & 7\\6 & 8 \\\end{array}[/tex]
The graph is like the one below.
Help me please thank y’all
x= 30 degrees
Step-by-step explanation:
there's 180 degrees in a triangle. You can see 60 degrees right there. Theres a 90 degree angle right next to it. 180-150=30
Which choice is equivalent to the expression below? √-12
A. 12i
B. -12i
C. -2√3
D. 2i √3
E. -2√3i
PLEASE DON’T GUESS
Answer:
D. 2i√3
Step-by-step explanation:
You have the expression √-12. You can divide the number in the radical sign into the numbers that make up the expression. After you do this, you will be able to take numbers out of the radical sign
√(-12)
√(-1 × 4 × 3)
√-1 = i
√4 = 2
√3 = √3
2i√3
The answer is D.
Solve for x in the equation below. Round your answer to the nearest hundredth. Do not round any intermediate computations. 12-8x=5
Answer:
x = 0.88Step-by-step explanation:
[tex]12-8x=5\\\\Collect\:like\:terms\\\\-8x =5-12\\\\-8x = -7\\\\Divide\:both\:sides\:by -8\\\frac{-8x}{-8} \\=\frac{-7}{-8} \\\\x = 0.875\\\\x = 0.88[/tex]
What is the quotient of 35,423 ÷ 15?
Answer: 2361.53
Step-by-step explanation:
Use long division and round.
(The 3 is repeated)
AB is dilated from the origin to create A'B' at A' (0, 8) and B' (8, 12). What scale factor was AB dilated by?
Answer:
4
Step-by-step explanation:
Original coordinates:
A (0, 2)
B (2, 3)
The scale is what number the original coordinates was multiplied by to reach the new coordinates
1. Divide
(0, 8) ÷ (0, 2) = 4
(8, 12) ÷ (2, 3) = 4
AB was dilated by a scale factor of 4.
find the h.c.f of 186,310,434
186|2
93|3
31|31
1
310|2
155|5
31|31
1
434|2
217|7
31|31
1
[tex]186=2\cdot3\cdot31\\310=2\cdot5\cdot31\\434=2\cdot7\cdot31\\\\\text{hcf}(186,310,434)=2\cdot31=62[/tex]
Find the area of the shape shown below.
2
2
4
Hurry and answer plz!!!!
1
Answer:
7 square units
Step-by-step explanation:
We can break down this complex shape into smaller shapes.
I've broken it down into a rectangle, a square, and a triangle (See attached picture)
Let's first find the area of the triangle. To do this we use the formula [tex]\frac{bh}{2}[/tex]. The base is 1 (because the top is 2, and 1 is already used on the triangle - 2-1 = 1.) and the height is 2 (because 4 is already used on the left, and 2 was used on the right so 4-2=2).
[tex]\frac{2\cdot1}{2} = \frac{2}{2} = 1[/tex].
Now let's find the area of the top square - we can just square 2 which is 4.
To find the area of the bottom rectangle, we can multiply it's two side lengths of 2 and 1 = 2.
Adding these all together gets us 4+2+1 = 7.
Hope this helped!
please help
-3(-4x+4)=15+3x
Answer:
x=3
Step-by-step explanation:
● -3 (-4x+4) = 15 + 3x
Multiply -3 by (-4x+4) first
● (-3) × (-4x) + (-3)×(4) = 15 + 3x
● 12 x - 12 = 15 +3x
Add 12 to both sides
● 12x - 12 + 12 = 15 + 3x +12
● 12 x = 27 + 3x
Substract 3x from both sides
● 12x -3x = 27 + 3x - 3x
● 9x = 27
Dividr both sides by 9
● 9x/9 = 27/9
● x = 3
Find the 14th term in the sequence 1, 1/3, 1/9, … Find the sum of the first 10 terms of the sequence above.
Answer:
This is a geometric progresion that begins with 1 and each term is 1/3 the preceeding term
Let Pn represent the nth term in the sequence
Then Pn = (1/3)^n-1
From this P14 = (1/3)^13 = 1/1594323
5. The sum of the first n terms of a GP beginning a with ratio r is given by
Sn = a* (r^n+1 - 1)/(r - 1)
With n = 10, a = 1 and r = 1/3, S10 = ((1/3)^11 - 1)/(1/3 - 1) = 1.500
4. Solve the system of equations. (6 points) Part I: Explain the steps you would take to solve the system by eliminating the x-terms. (1 point) Part II: Explain the steps you would take to solve the system by eliminating the y-terms. (2 points) Part III: Choose either of the methods described in parts I or II to solve the system of equations. Write your answer as an ordered pair. Show your work. (3 points)
Answer:
The system of equations you want to be solved is not given. I would however give an example with which the method of elimination will be shown, and can be used in solving problems of the nature.
Step-by-step explanation:
Consider the system of equations:
x + y = 7 ................................(1)
2x - y = 8 ..............................(2)
To eliminate x:
First multiply (1) by 2 to have
2x + 2y = 14 ...........................(3)
Next, subtract (2) from (3) to have
3y = 6
y = 6/3 = 2
To eliminate y:
Add (1) and (2) to have
3x = 15
x = 15/3 = 5
Therefore, (x, y) = (5, 2).