Answer:
Option A
Step-by-step explanation:
If the quadrilateral ABCD is dilated by a scale factor 'k' to form quadrilateral A'B'C'D',
Scale factor = [tex]\frac{\text{Length of one side of the Image}}{\text{Length of one side of the original}}[/tex]
k = [tex]\frac{BA'}{BA}[/tex]
Distance between B(2, -5) and A(-1, -1) = [tex]\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
= [tex]\sqrt{(2+1)^2+(-5+1)^2}[/tex]
= 5 units
Distance between B(2, -5) and A'(-5.5, 5) = [tex]\sqrt{(-5.5-2)^2+(5+5)^2}[/tex]
= [tex]\sqrt{(-7.5)^2+(10)^2}[/tex]
= 12.5 units
Scale factor 'k' = [tex]\frac{12.5}{5}[/tex]
k = [tex]\frac{5}{2}[/tex]
Therefore, ABCD is dilated by a scale factor [tex]\frac{5}{2}[/tex] about point B.
BA and it's image BA' are on the same line and passes through center of dilation B.
Similarly, lines CD and C'D' will be parallel because they do not pass through center of dilation.
Therefore, Option (A) will be the correct option.
A box contains 5 white balls, 3 black balls, and 2 red balls.A-What is the probability of drawing a white ball?B- How many white balls must be added to the box so that the probability of drawing a white ball is 3/4?C-How many black balls must be added to the original assortment so that the probability of drawing a white ball is 1/4?
Answer:
[tex](a)\ P(White) = \frac{1}{2}[/tex]
(b) 10 additional white balls
(c) 10 additional black balls
Step-by-step explanation:
Given
[tex]White = 5[/tex]
[tex]Black =3[/tex]
[tex]Red = 2[/tex]
Solving (a): P(White)
This is calculated as:
[tex]P(White) = \frac{White}{Total}[/tex]
[tex]P(White) = \frac{5}{5+3+2}[/tex]
[tex]P(White) = \frac{5}{10}[/tex]
[tex]P(White) = \frac{1}{2}[/tex]
Solving (b): Additional white balls, if [tex]P(White) = \frac{3}{4}[/tex]
Let the additional white balls be x
So:
[tex]P(White) = \frac{White+x}{Total+x}[/tex]
This gives:
[tex]\frac{3}{4} = \frac{5+x}{10+x}[/tex]
Cross multiply
[tex]30+3x = 20 + 4x[/tex]
Collect like terms
[tex]4x - 3x = 30 - 20[/tex]
[tex]x = 10[/tex]
Hence, 10 additional white balls must be added
Solving (c): Additional black balls, if [tex]P(White) = \frac{1}{4}[/tex]
Let the additional black balls be x
So:
[tex]P(White) = \frac{White}{Total+x}[/tex]
So, we have:
[tex]\frac{1}{4} = \frac{5}{10+x}[/tex]
Cross multiply
[tex]10+x = 5 * 4[/tex]
[tex]10+x = 20[/tex]
Collect like terms
[tex]x = 20 -10[/tex]
[tex]x = 10[/tex]
Hence, 10 additional black balls must be added
Lendo 15 páginas por dia, Marcos leu um livro em
9 dias.
Para ler esse mesmo livro em 3 dias, quantas páginas
ele deveria ler por dia?
Answer:
Olha a foto.
Step-by-step explanation:
Kevin will start with the integers 1, 2, 3 and 4 each used exactly once and written in a row in any order. Then he will find the sum of the adjacent pairs of integers in each row to make a new row, until one integer is left. For example, if he starts with 3, 2, 1, 4, then he takes sums to get 5, 3, 5, followed by 8, 8, and he ends with the final sum 16. Including all of Kevin's possible starting arrangements of the integers 1, 2, 3 and 4, how many possible final sums are there?
Hello,
there are 5 differents sums:
16,18,20,22,24.
-------------------------------------------------------
Dim i As Integer, j As Integer, k As Integer, l As Integer, u As Integer, v As Integer, nb As Integer
Dim mat(4, 4) As Integer
nb = 0
For i = 1 To 4
For j = 1 To 4
If j <> i Then
For k = 1 To 4
If k <> j And k <> i Then
l = 10 - k - j - i
If l > 0 And l < 5 And l <> i And l <> j And l <> k Then
mat(1, 1) = i
mat(1, 2) = j
mat(1, 3) = k
mat(1, 4) = l
For u = 2 To 4
For v = 1 To 4 - u + 1
mat(u, v) = mat(u - 1, v) + mat(u - 1, v + 1)
Next v
Next u
'Call visu(mat())
nb = nb + 1
Print nb,
mat(4, 1)
End If
End If
Next k
End If
Next j
Next i
End
Sub visu (m() As Integer)
Dim i As Integer, j As Integer
For i = 1 To 4
For j = 1 To 4 - i + 1
Print m(i, j);
Next j
Next i
End Sub
Which table represents a linear function?
Х
1
2
3
4
y
3
6
12
24
х
1
2
3
4
у
2.
5
9
14
х
1
2
3
4
у
-3
-5
-7
-9
х
1
2
3
4
у
-2
-4
-2
0
Answer:
3
Step-by-step explanation:
x 1,2,3,4
y-3,-5,-7,-9
[tex]y = - 3 - (x - 1) \times 2[/tex]
The linear function is given by y = 7x - 4
A linear function is in the form:
y = mx + b
where y, x are variables, m is the rate of change and b is the y intercept
From the table, using the points (1, 3) and (4, 24):
[tex]y-y_1=\frac{y_2-y_1}{x_2-x_1} (x-x_1)\\\\y-3=\frac{24-3}{4-1}(x-1)\\\\ y=7x-4[/tex]
The linear function is given by y = 7x - 4.
Find out more on linear function at: https://brainly.com/question/4025726
the perimeter of a rectangle garden is 330 feet. If the length of the garden is 94 feet , what is its width ?
Answer:
71 feet
Step-by-step explanation:
94×2=188
330-188=142
142÷2=71
How many outcomes (sample points) for a deal of two cards from a 52-card deck are possible? Report your answer as an integer.
Answer:
1326
Step-by-step explanation:
[tex]{52\choose2}=\frac{52!}{(52-2)!2!}=\frac{52!}{50!*2!}=1326[/tex]
What is the average (with 0 decimal places) across all schools for the total score? Group of answer choices 1287 1215 1221 1229
Answer:
See explanation
Step-by-step explanation:
Required
The average
The data whose average is to be calculated are not given.
However, the formula to calculate the average is:
[tex]\bar x = \frac{\sum x}{n}[/tex]
Assume the data is:
[tex]1287\ 1215\ 1221\ 1229[/tex]
This means that the number of schools is 4
So:
[tex]\bar x = \frac{1287+ 1215+ 1221+ 1229}{4}[/tex]
[tex]\bar x = \frac{4952}{4}[/tex]
[tex]\bar x = 1238[/tex]
The average of the assumed data is 1238
Tim did a survey at a large shopping centre. He asked 400 visitors to the centre to choose the main reason for their visit. The reasons were shops, free parking, food court and location.
From the people taking part in the survey, one person is chosen at random to get a prize. Find the probability a female who chose location gets the prize.
shops free park. food location total
male 88 24 40 21 173
female 110 38 56 23 227
total 198 62 96 44 400
Answer:
23 / 400 = 0.0575
Step-by-step explanation:
Given the distribution :
_____shops__ free park. food _: location total
male 88 24 40 21 173
female 110 38 56 23 227
total 198 62 96 44 400
From the table of the distribution Given, we obtain :
n(Female n location) = 23
n(Total) = 400
Hence, the probability that a female who chose location gets the prize will be ;
n(Female n location) / n(Total) = 23 / 400 = 0.0575
For any number n>1, is
|(.5 +.2i)^n|
A. greater than 1?
B. less than 1?
C. equal to 1?
PLZ HELP
Answer:
B. Less than 1
Step-by-step explanation:
You could plug in values of n greater than 1 and see what happens....
Example n=2 gives |(.5+.2i)^2|
Simplifying inside gives |(.5)^2+2(.5)(.2i)+(.2i)^2|
=|.25+.2i+.04i^2|=|.25+.2i-.04|=|.21+.2i|.
Applying the absolute value part gives sqrt(.21^2+.2^2)=sqrt(.0441+.04)=sqrt(.0841)=.29
This value is less than 1.
We should also be able to do the absolute value first then the power.
|.5+.2i|=sqrt(.25+.04)=sqrt(.29)
So |.5+.2i|^2=.29 which is what we got long way around.
Anyways (sqrt(.29))^n where n is greater than 1 will result in a number greater than 0 but less than 1.
Question 19 of 30
An angle is formed by two rays or segments that share a(n).
A. Vertex
B. Side
Ο Ο Ο Ο
O C. Endpoint
OD. Ray
Answer:
A a vertex
Step-by-step explanation:
When rays meet they form a point is formed known as the vertex.
An electronic system contains three cooling components that operate independently. The probability of each component's failure is 0.05. The system will overheat if and only if at least two components fail. Calculate the probability that the system will overheat.
Answer:
[tex]Pr= 0.00725[/tex]
Step-by-step explanation:
Given
[tex]p = 0.05[/tex] ---- probability that each component fails
[tex]n = 3[/tex]
Required
[tex]P(System\ Overheats)[/tex]
We understand that the system will overheat if at least 2 component fails; Assume the components are: x, y and z
The events that the system will overheat are: xyz', xy'z, x'yz and xyz
Where ' means that the component did not fail, and the probability is 1 - p (i.e. complement rule)
So, we have:
[tex]xyz' \to 0.05 * 0.05 * (1 - 0.05) = 0.002375[/tex]
[tex]xy'z \to 0.05 * (1 - 0.05)* 0.05 = 0.002375[/tex]
[tex]x'yz \to (1 - 0.05)* 0.05 * 0.05 = 0.002375[/tex]
[tex]xyz \to 0.05 * 0.05 * 0.05 =0.000125[/tex]
So, the required probability is:
[tex]Pr= 0.002375 +0.002375 +0.002375 + 0.000125[/tex]
[tex]Pr= 0.00725[/tex]
100 POINTS!!
Directions: Respond to this question to demonstrate your understanding of the topic/content. Be sure to provide adequate and relevant details learned in the module to support your response. Pay close attention to organizing your response so it makes sense and uses correct grammar. Your response should be at least 5-7 sentences at a minimum.
Question: Your friend claims that the only solution to the equation sin(x)=1 is x=90 degrees. Is your friend correct? If there are more solutions, explain how to determine additional solutions.
......hope it helps......
Answer:
yes,.to obtain sinx as 1 the angle must be 90degrees
so the answer is correct
but there are more solutions like when the cosine angle is 45 the answer is 1
and when x is 450 still sinx = 1..that is to say sin450= 1
Solve for the following equation for x. l x/4 + 3 l < 6
Answer:
this is the answer I got! i don't know if it helps, but I hope it does
6. Convert 3−i into polar form and hence evaluate
[tex] {(3 - i)}^{7} [/tex]
9514 1404 393
Answer:
≈ 1000√10∠-129.04464° = -1992 -2456i
Step-by-step explanation:
3 -i = √(3³+(-1)²)∠arctan(-1/3) ≈ √10∠-18.4349°
Then (3-i)^7 = 10^(7/2)∠(7×-18.4349°) = 1000√10∠-129.04464°
= 1000√10(cos(-129.04464°) +i·sin(-129.04464°))
= -1992 -2456i
Find the missing term in the following pattern.
320, 160, 80 blank space then, 20, 10
40
Step-by-step explanation:
Each number is followed by a number that is half its value, so the sequence goes like
320, 160, 80, 40, 20, 10.
A rectangular vegetable garden will have a width that is 3 feet less than the length, and an area of 54square feet. If x represents the length, then the length can be found by solving the equation: x(x-3)=54 What is the length, x, of the garden? The length is blank feet.
Answer: 9 feet
Step-by-step explanation:
From the information given, we have already been given the equation which is x(x-3)=54. Therefore we will find the value of x which will be:
x(x-3)=54
x² - 3x - 54
x² - 9x + 6x - 54
x(x - 9) + 6(x - 9)
Therefore,
(x - 9) = 0
x = 0 + 9
x = 9
The length is 9 feet
The width will be:
x - 3 = 9 - 3 = 6 feet
3x+7>10
Solve for x.
Answer: x>1
Step-by-step explanation:
To solve for x, we want to isolate x.
3x+7>10 [subtract both sides by 7]
3x>3 [divide both sides by 3]
x>1
Therefore, we know that x>1.
Answer:
Step-by-step explanation:
3x + 7 > 10
3x > 10 - 7
3x > 3
x > 1
x ∈ ( 1, ∞ )
It says I need too put 20 characters in too ask the question so ignore this part
I need help with three
Answer:
A and F
Step-by-step explanation:
A and F both represent instances of division of 14/5
B represent multiplication
C represent the reciprocal of the problem, 5/14
D represent addition
need help now!!! Please and thanks
Answer:
the answer of r is 8 i hope it will help
find a number such that when it is multiplied by 7 and 17 is subtracted from the product the result is the same as when it is multiplied by 3 and 19 added to the product .
Answer:
9
Step-by-step explanation:
Let the number be X
From the problem we have the following equation:
7x - 17 = 3x + 19
-> 4x = 36
-> x = 9
Answer:
9
Step-by-step explanation:
that is the procedure above
the value of (-15/23)+(+30/-46) is ---------.
[tex] \frac{ - 15}{23} + \frac{30}{ - 46} \\ = \frac{ - 15}{23} + \frac{(2) \times (15)}{(2) \times ( - 23)} \\ = \frac{ - 15}{23} + \frac{15}{ - 23} \\ = \frac{ - 15}{23} - \frac{15}{23} \\ = \frac{ -3 0}{23} \\ = - 1.3[/tex]
In a mixture of 240 gallons, the ratio of ethanol and gasoline is 3:1. If the ratio is to be 1:3, then find the quantity of gasoline that is to be added.
Answer:
480 gallons.
Step-by-step explanation:
Given that in a mixture of 240 gallons, the ratio of ethanol and gasoline is 3: 1, if the ratio is to be 1: 3, to find the quantity of gasoline that is to be added the following calculation must be performed:
240/4 x 3 = Ethanol
240/4 = Gasoline
180 = Ethanol
60 = Gasoline
0.25 = 180
1 = X
180 / 0.25 = X
720 = X
720 - 180 - 60 = X
480 = X
Therefore, 480 gallons of gasoline must be added if the ratio is to be 1: 3.
Find the product (-3/5) (-2/9)
Answer:
2/15
Step-by-step explanation:
(-3/5) (-2/9)
Rewriting
-3/9 * -2/5
-1/3 * -2/5
A negative times a negative is a positive.
2/15
During a recent election, 54 of every 100 registered voters in a certain city voted. If there were 157,400 registered voters in that city, how many people voted?
y’all what are the answers
Answer:
Step-by-step explanation:
Plz help I’ll mark you
Answer:
A 1/2
Step-by-step explanation:
Ratio of short length to hypotenuse
= cos60
= 1/2
Consider the following game: You reach into a jar of money, and select a single bill at random to keep. There are 9 five-dollar bills, 5 ten-dollar bills, and 3 twenty-dollar bills in the jar. What should the cost of this game be in order for the game to be fair
Answer:
[tex]E(x)=\$9.118[/tex]
Step-by-step explanation:
From the question we are told that:
Available bills
[tex]\$5=N0 9\\\\\$10=N0 5[/tex]
[tex]\$20=N0 3[/tex]
Therefore
Total Bills
[tex]n=5+9+3[/tex]
[tex]n=17[/tex]
Probability of selecting each bill
[tex]For\$5[/tex]
[tex]P(\$5)=\frac{9}{17}[/tex]
[tex]For\$10[/tex]
[tex]P(\$10)=\frac{5}{17}[/tex]
[tex]For\$20[/tex]
[tex]P(\$20)=\frac{3}{17}[/tex]
Generally the equation for Expected winning is mathematically given by
[tex]E(x)=\sum(X)*P(X)[/tex]
[tex]E(x)=5*\frac{9}{17}+10*\frac{5}{17}+20*\frac{3}{17}[/tex]
[tex]E(x)=\$9.118[/tex]
Find the value of x. What is the value of x?
Answer:
x = 16
Step-by-step explanation:
The product of the lengths theorem is a property that can be sued to describe the relationships of the sides between the tangents and secants in a circle. One of these products states the following;
The distance between the point of tangency and its intersection point with the exterior secant squared is equal to the product of the exterior secant times the interior secant.
This essentially means the following equation can be formed;
[tex](AB)^2=(DC)(CB)[/tex]
Substitute,
[tex]12^2=x*9[/tex]
Simplify,
[tex]144=9x[/tex]
Inverse operations,
[tex]\frac{144}{9}=x\\\\16=x[/tex]
Answer:
[tex]\boxed{\sf x=7}[/tex]
Step-by-step explanation:
By Targent-secant theorem...
[tex]\sf 9(x + 9) = {12}^{2} [/tex]
Use the distributive property to multiply 9 by x+9.
[tex]\sf 9x+81= {12}^{2} [/tex]
Now, let calculate 12 to the power of 2 and get 144.
[tex]\sf 9x+81=144[/tex]
Subtract 81 from both sides.
[tex]\sf 9x=63[/tex]
Divide both sides by 9.
[tex] \sf \cfrac{ 9x}{9} = \cfrac{63}{9} [/tex]
[tex]\sf x=7[/tex]
A Sociology instructor gives students points for each discussion-board post and points for each reply to a post. Ana wrote 6 posts and 8 replies and received 114 points. Jae wrote 5 posts and 4 replies and received 79 points. Determine how many points a discussion post is worth and how many points a reply is worth?
Answer:
5 points per post and 2 points per replies