How much would you need to deposit in an account now in order to have $6,000 in the account in 8 years? Assume the account earns 6% interest compounded monthly. (could anyone do this whole problem out?
Answer:
$3,717
Step-by-step explanation:
Hello, in 1 year there are 12 months.
Let's note I the Initial amount.
So, after 1 month we will get the following, because we compute the interest amount for one month only.
I * ( 1 + 6% * (1/12) )
And the next month, we will have interest of the amount available from previous month so it gives
[tex]I * ( 1+6\% * \dfrac{1}{12} ) * ( 1+6\% * \dfrac{1}{12} ) \\\\=I*(1+\dfrac{6}{12*100})^2\\\\=I*(1+\dfrac{1}{200})^2\\\\=I*(1.005)^2[/tex]
... and after n months ...
[tex]I*(1.005)^n[/tex]
8 years is 8*12 = 96 months. so we are looking for I such that
[tex]I*(1.005)^{96}=6000\\\\<=> I =\dfrac{6000}{1.005^{96}}\\\\=\boxed{3717.14345....}[/tex]
Thank you.
The cost of performance tickets and beverages for a family of four can be modeled using the equation 4x+12=48,where x represents the cost of a. Ticket.how much is one ticket
Answer:
x=9; one ticket is $9
Step-by-step explanation:
4x+12=48
4x=48-12
4x=36
x=36/4
x=9
please help
-3(-4x+4)=15+3x
Answer:
x=3
Step-by-step explanation:
● -3 (-4x+4) = 15 + 3x
Multiply -3 by (-4x+4) first
● (-3) × (-4x) + (-3)×(4) = 15 + 3x
● 12 x - 12 = 15 +3x
Add 12 to both sides
● 12x - 12 + 12 = 15 + 3x +12
● 12 x = 27 + 3x
Substract 3x from both sides
● 12x -3x = 27 + 3x - 3x
● 9x = 27
Dividr both sides by 9
● 9x/9 = 27/9
● x = 3
Which choice is equivalent to the expression below? √-12
A. 12i
B. -12i
C. -2√3
D. 2i √3
E. -2√3i
PLEASE DON’T GUESS
Answer:
D. 2i√3
Step-by-step explanation:
You have the expression √-12. You can divide the number in the radical sign into the numbers that make up the expression. After you do this, you will be able to take numbers out of the radical sign
√(-12)
√(-1 × 4 × 3)
√-1 = i
√4 = 2
√3 = √3
2i√3
The answer is D.
point estimate A sample of 81 observations is taken from a normal population with a standard deviation of 5. The sample mean is 40. Determine the 95% confidence interval for the population mean
Answer:
The 95 percent Confidence Interval is for the population is (38.911 , 41.089)
Step-by-step explanation:
To solve the above question, we would be making use of the confidence interval formula:
Confidence Interval = Mean ± z score × σ/√n
In the above question,
Mean = 40
σ = Standard deviation = 5
n = number of samples = 81
Confidence Interval = 95%
The z score for a 95% confidence interval = 1.96
Therefore, the confidence interval =
= 40 ± 1.96 (5/√81)
= 40 ± 1.96(5/9)
= 40 ± 1.0888888889
Confidence Interval
a)40 + 1.0888888889
= 41.0888888889
Approximately = 41.089
b ) 40 - 1.0888888889
= 38.911111111
Approximately = 38.911
Therefore, the 95 percent Confidence Interval is for the population is (38.911 , 41.089)
WHY CAN'T ANYONE HELP ME PLEASE?A 40% solution of fertilizer is to be mixed with a 80% solution of fertilizer in order to get 80 gallons of a 70% solution. How many gallons of the 40% solution and 80% solution should be mixed? 40% solution =? gallons, 80% solution =? gallons
Answer:
40% solution = 20 gallons
80% solution = 60 gallons
Step-by-step explanation:
x = gallons of 40% solution
y = gallons of 80% solution
Total volume is:
x + y = 80
Total amount of fertilizer is:
0.40 x + 0.80 y = 0.70 (80)
Solve by substitution.
0.40 x + 0.80 (80 − x) = 0.70 (80)
0.40 x + 64 − 0.80 x = 56
0.40 x = 8
x = 20
y = 60
For this year's fundraiser, students at a certain school who sell at least 75 magazine subscriptions win a prize. If the fourth grade students at this school sell an average (arithmetic mean) of 47 subscriptions per student, the sales are normally distributed, and have a standard deviation of 14, then approximately what percent of the fourth grade students receive a prize
Answer:
The percentage is k = 2.3%
Step-by-step explanation:
From the question we are told that
The population mean is [tex]\mu = 47[/tex]
The standard deviation is [tex]\sigma = 14[/tex]
Given that the sales are normally distributed and that students at a certain school who sell at least 75 magazine subscriptions win a prize then the percent of the fourth grade students receive a prize is mathematically represented as
[tex]P(X > 75) = P(\frac{X - \mu }{\sigma } > \frac{75 - \mu }{\sigma })[/tex]
Generally
[tex]\frac{X - \mu }{\sigma } = Z (The \ standardized \ value \ of \ X )[/tex]
So
[tex]P(X > 75) = P(Z > \frac{75 - 47 }{14 })[/tex]
[tex]P(X > 75) = P(Z > 2)[/tex]
From the standardized normal distribution table
[tex]P(Z > 2) =0.023[/tex]
=> [tex]P(X > 75) = 0.023[/tex]
The percentage of the fourth grade students receive a prize is
k = 0.023 * 100
k = 2.3%
use the product of powers property to simplify the numeric expression.
4 1/3 • 4 1/5 = _____
Answer:
The value of [tex]4^{\dfrac{1}{3}} {\cdot} 4^{\dfrac{1}{5}[/tex] is [tex]4^{\dfrac{8}{15}}[/tex] .
Step-by-step explanation:
We need to simplify the numeric expression using property. The expression is as follows :
[tex]4^{\dfrac{1}{3}} {\cdot} 4^{\dfrac{1}{5}[/tex]
The property to be used is : [tex]x^a{\cdot} x^b=x^{a+b}[/tex]
This property is valid if the base is same. Here, base is x.
In this given problem, x = 4, a = 1/3 and b = 1/5
So,
[tex]4^{\dfrac{1}{3}} {\cdot} 4^{\dfrac{1}{5}}=4^{\dfrac{1}{3}+\dfrac{1}{5}}\\\\=4^{\dfrac{5+3}{15}}\\\\=4^{\dfrac{8}{15}}[/tex]
So, the value of [tex]4^{\dfrac{1}{3}} {\cdot} 4^{\dfrac{1}{5}[/tex] is [tex]4^{\dfrac{8}{15}}[/tex] .
If the average fixed cost (AFC) of producing 5 bags of rice is $20.00, the average fixed cost of producing 10 bags will be
Answer:$40.00
Step-by-step explanation:first divide 20 by 5 and the answer will be 4. now multiply 10 into 4 and you'll get the answer $40.00
what are the next terms in the number pattern -11, -8, -5, -2, 1
Answer:
4, 7, 10, 13
Step-by-step explanation:
Hey there!
Well in the given pattern,
-11, -8, -5, -2, 1
we can conclude that the pattern is +3 every time.
-11 + 3 = -8
-8 + 3 = -5
-5 + 3 = -2
-2 + 3 = 1
And so on
4, 7, 10, 13Hope this helps :)
Evaluate
1+5.3
2
please answer quickly
Answer:
1+5.3=6.3
Step-by-step explanation:
not sure what your asking for with the 2
explain what your looking for with the 2 and maybe we can help you further
(I have to do it the way I did it because the 2 in the question is confusing)
Answer:
For expression 1 + 5.32: 6.32
For expression 1 + 5.3 × 2: 11.6
Step-by-step explanation:
If the expression is 1 + 5.32:
Add 1 to 5.32: 1 + 5.32 = 6.32If the expression is 1 + 5.3 × 2:
5.3 × 2 = 10.6Plug in 10.6: 1 + 10.61 + 10.6 = 11.6
a vegetable garden and he's around the path of seemed like a square that together are 10 ft wide. The path is 2 feet wide. Find the total area of the vegetable garden and path
Answer:
Garden: 36 square feet
Path: 64 square feet
Step-by-step explanation:
Let's first find the total area. The total area will be 100 square feet since the side length is 10. Since the path is 2 feet wide and on all sides, that means that the inside square will have a side length of 6. That means that the vegetable garden is 36 square feet. The path will be 100 - (the garden), and the garden is 36 square feet, which means the outer path will be 64.
The base of a triangle is 4 cm greater than the
height. The area is 30 cm. Find the height and
the length of the base
h
The height of the triangle is
The base of the triangle is
Answer:
Step-by-step explanation:
Formula for area of a triangle:
Height x Base /2
Base (b) = h +4
Height = h
h + 4 x h /2 = 30cm
=> h +4 x h = 60
=> h+4h =60
=> 5h = 60
=> h = 12
Height = 12
Base = 12 +4 = 16
Use the Pythagorean theorem to find the length of the hypotenuse in the triangle shown below.4,3
Answer:
5
Step-by-step explanation:
a^2 + b^2 = c^2
4^2 + 3^2 = c^2
16 + 9 = c^2
25 = c^2
c = 5
Answer:
5Step-by-step explanation:
[tex]Hypotenuse = ?\\Opposite = 4\\Adjacent = 3\\\\Pythagoras \: Theorem ;\\\\Hypotenuse^2 =Opposite^2+Adjacent ^2\\\\Hypotenuse^2 = 4^2 +3^2\\\\Hypotenuse^2 = 16+9\\\\Hypotenuse^2 = 25\\\\\sqrt{Hypotenuse^2}=\sqrt{25} \\Hypotenuse = 5[/tex]
If Company X has 1600 employees and 80% of those employees have attended the warehouse training course how many employees have yet to attend?
Answer:
320
Step-by-step explanation:
Total no of employees = 1600
% of employees attended the training = 80%
no. of employee who attended the training = 80/100* 1600 = 1280
No. of employees who are yet to attend the training = Total no of employees - no. of employee who attended the training = 1600-1280 = 320
Thus, 320 employees have yet to attend the training
A buoy floating in the sea is bobbing in simple harmonic motion with amplitude 13 in and period 0.25 seconds. Its displacement d from sea level at time t=0 seconds is 0in, and initially it moves downward. (Note that downward is the negative direction.)Required:Give the equation modeling the displacement d as a function of time t.
Answer:
The equation is [tex]x(t) = -13 cos (8 \pi t )[/tex]
Step-by-step explanation:
From the question we are told that
The amplitude is [tex]A = 13 \ in[/tex]
The period is [tex]T = 0.25[/tex]
Generally the displacement function for a simple harmonic motion is mathematically represented as
[tex]x(t) = A cos (wt )[/tex]
Here [tex]w[/tex] is the angular frequency which is mathematically represented as
[tex]w = \frac{2 \pi }{T}[/tex]
substituting values
[tex]w = \frac{2 \pi }{ 0.25}[/tex]
[tex]w = 8\pi[/tex]
Given that at t = 0 the displacement is equal to 0 it means that there is no phase shift and also we are told that it is initially moving downward which implies that its Amplitude is [tex]A = -13\ in[/tex]
So the equation modeling the displacement d as a function of time t is mathematically represented as
[tex]x(t) = -13 cos (8 \pi t )[/tex]
Jesse bought 3 T-shirts for $6 each and 4 T-shirts for $5 each. What expression can you use to describe what Jesse bought?
On a coordinate plane, a line goes through (negative 3, 3) and (negative 2, 1). A point is at (4, 1). What is the equation, in point-slope form, of the line that is parallel to the given line and passes through the point (4, 1)? y − 1 = −2(x − 4) y – 1 = Negative one-half(x – 4) y – 1 = One-half(x – 4) y − 1 = 2(x − 4)
Answer:
y - 1 = -2(x - 4).
Step-by-step explanation:
First, we need to find the slope. Two sets of coordinates are (-3, 3), and (-2, 1).
(3 - 1) / (-3 - -2) = 2 / (-3 + 2) = 2 / (-1) = -2.
The line will be parallel to the given line, so the slope is the same.
Now that we have a point and the slope, we can construct an equation in point-slope form.
y1 = 1, x1 = 4, and m = -2.
y - 1 = -2(x - 4).
Hope this helps!
The slope of the line passing parallel to the given line and passes through the point (4, 1) is y = -2x + 9
The equation of a straight line is given by:
y = mx + b
where y, x are variables, m is the slope of the line and b is the y intercept.
The slope of the line passing through the points (-3,3) and (-2,1) is:
[tex]m=\frac{y_2-y_1}{x_2-x_1} \\\\m=\frac{1-3}{-2-(-3)} \\\\m=-2[/tex]
Since both lines are parallel, hence they have the same slope (-2). The line passes through (4,1). The equation is:
[tex]y-y_1=m(x-x_1)\\\\y-1=-2(x-4)\\\\y=-2x+9[/tex]
Find out more at: https://brainly.com/question/18880408
Can somebody explain how trigonometric form polar equations are divided/multiplied?
Answer:
Attachment 1 : Option C
Attachment 2 : Option A
Step-by-step explanation:
( 1 ) Expressing the product of z1 and z2 would be as follows,
[tex]14\left[\cos \left(\frac{\pi \:}{5}\right)+i\sin \left(\frac{\pi \:\:}{5}\right)\right]\cdot \:2\sqrt{2}\left[\cos \left(\frac{3\pi \:}{2}\right)+i\sin \left(\frac{3\pi \:\:}{2}\right)\right][/tex]
Now to solve such problems, you will need to know what cos(π / 5) is, sin(π / 5) etc. If you don't know their exact value, I would recommend you use a calculator,
cos(π / 5) = [tex]\frac{\sqrt{5}+1}{4}[/tex],
sin(π / 5) = [tex]\frac{\sqrt{2}\sqrt{5-\sqrt{5}}}{4}[/tex]
cos(3π / 2) = 0,
sin(3π / 2) = - 1
Let's substitute those values in our expression,
[tex]14\left[\frac{\sqrt{5}+1}{4}+i\frac{\sqrt{2}\sqrt{5-\sqrt{5}}}{4}\right]\cdot \:2\sqrt{2}\left[0-i\right][/tex]
And now simplify the expression,
[tex]14\sqrt{5-\sqrt{5}}+i\left(-7\sqrt{10}-7\sqrt{2}\right)[/tex]
The exact value of [tex]14\sqrt{5-\sqrt{5}}[/tex] = [tex]23.27510\dots[/tex] and [tex](-7\sqrt{10}-7\sqrt{2}\right))[/tex] = [tex]-32.03543\dots[/tex] Therefore we have the expression [tex]23.27510 - 32.03543i[/tex], which is close to option c. As you can see they approximated the solution.
( 2 ) Here we will apply the following trivial identities,
cos(π / 3) = [tex]\frac{1}{2}[/tex],
sin(π / 3) = [tex]\frac{\sqrt{3}}{2}[/tex],
cos(- π / 6) = [tex]\frac{\sqrt{3}}{2}[/tex],
sin(- π / 6) = [tex]-\frac{1}{2}[/tex]
Substitute into the following expression, representing the quotient of the given values of z1 and z2,
[tex]15\left[cos\left(\frac{\pi \:}{3}\right)+isin\left(\frac{\pi \:\:}{3}\right)\right] \div \:3\sqrt{2}\left[cos\left(\frac{-\pi \:}{6}\right)+isin\left(\frac{-\pi \:\:}{6}\right)\right][/tex] ⇒
[tex]15\left[\frac{1}{2}+\frac{\sqrt{3}}{2}\right]\div \:3\sqrt{2}\left[\frac{\sqrt{3}}{2}+-\frac{1}{2}\right][/tex]
The simplified expression will be the following,
[tex]i\frac{5\sqrt{2}}{2}[/tex] or in other words [tex]\frac{5\sqrt{2}}{2}i[/tex] or [tex]\frac{5i\sqrt{2}}{2}[/tex]
The solution will be option a, as you can see.
Determine the value(s) for which the rational expression 2x^2/6x is undefined. If there's more than one value, list them separated by a comma, e.g. x=2,3.
Answer:
0
Step-by-step explanation:
Hello, dividing by 0 is not defined. so
[tex]\dfrac{2x^2}{6x}[/tex]
is defined for x different from 0
This being said, we can simplify by 2x
[tex]\dfrac{2x^2}{6x}=\dfrac{2x*x}{3*2x}=\dfrac{1}{3}x[/tex]
and this last expression is defined for any real number x.
Thank you
The domain of the following relation has how many elements?
[(1/2, 3.14/6), (1/2, 3.14/4), (1/2, 3.14/3), (1/2,3.14/2)]
a. 0
b. 1
c. 4
Answer:
b. 1
Step-by-step explanation:
All first coordinates are 1/2.
Answer: b. 1
Find the volume of the cylinder. Round your answer to the nearest tenth.
Answer:
716.75 m^3
Step-by-step explanation:
Volume of a cylinder:
=> PI x R^2 x H
H = Height
R = Radius
=> PI x 3.9^2 x 15
=> PI x 15.21 x 15
=> PI x 228.15
=> 228.15 PI
or
=> 228.15 x 3.14159
=> 716.75 m^3
Which expression is equal to 7 times the sum of a number and 4
Answer:
7(n + 4)
Step-by-step explanation:
Represent the number by n. Then the verbal expression becomes
7(n + 4).
) A random sample of size 36 is selected from a normally distributed population with a mean of 16 and a standard deviation of 3. What is the probability that the sample mean is somewhere between 15.8 and 16.2
Answer:
The probability is 0.31084
Step-by-step explanation:
We can calculate this probability using the z-score route.
Mathematically;
z = (x-mean)/SD/√n
Where the mean = 16, SD = 3 and n = 36
For 15.8, we have;
z = (15.8-16)/3/√36 = -0.2/3/6 = -0.2/0.5 = -0.4
For 16.2, we have
z = (16.2-16)/3/√36 = 0.2/3/6 = 0.2/0.5 = 0.4
So the probability we want to calculate is;
P(-0.4<z<0.4)
We can get this using the standard normal distribution table;
So we have;
P(-0.4 <z<0.4) = P(z<-0.4) - P(z<0.4)
= 0.31084
write 32 1/2 in radical form
Answer:
Nothing further, the simplest answer is 32 1/2
Step-by-step explanation:
What is the quotient of 35,423 ÷ 15?
Answer: 2361.53
Step-by-step explanation:
Use long division and round.
(The 3 is repeated)
Question:
A school's band members raised money by selling magazine subscriptions and shirts. Their profit from selling shirts was per shirt minus a one-time set-up fee. Their profit from selling magazine subscriptions was per subscription. They made exactly the same profit from shirts as they did from magazines. They also sold the same number of shirts as magazine subscriptions. How many shirts did they sell?
Jamie has a jar of coins containing the same number of nickels, dimes and quarters. The total value of the coins in the jar is 13.20. How many nickels does Jamie have?
The gasoline gauge on a van initially read ⅛ full. When 15 gallons of gasoline were added to the tank, the gauge then read ¾ full. How many more gallons would be needed to fill the tank?
Answer:
Question 1: 40 shirts and 40 magizines
Question 2: $4.4
Question 3: 6 gallons
Answer:
hello
Step-by-step explanation:
the product of two consecutive positive integer is 306
Answer:
[tex]\Large \boxed{\sf 17 \ and \ 18}[/tex]
Step-by-step explanation:
The product means multiplication.
There are two positive consecutive integers.
Let the first positive consecutive integer be x.
Let the second positive consecutive integer be x+1.
[tex](x) \times (x+1) =306[/tex]
Solve for x.
Expand brackets.
[tex]x^2 +x =306[/tex]
Subtract 306 from both sides.
[tex]x^2 +x -306=306-306[/tex]
[tex]x^2 +x -306=0[/tex]
Factor left side of the equation.
[tex](x-17)(x+18)=0[/tex]
Set factors equal to 0.
[tex]x-17=0[/tex]
[tex]x=17[/tex]
[tex]x+18=0[/tex]
[tex]x=-18[/tex]
The value of x cannot be negative.
Substitute x=17 for the second consecutive positive integer.
[tex](17)+1[/tex]
[tex]18[/tex]
The two integers are 17 and 18.
The product of two consecutive positive integers is 306.
We need to find the integers
solution : Let two consecutive numbers are x and (x + 1)
A/C to question,
product of x and (x + 1) = 306
⇒x(x + 1) = 306
⇒x² + x - 306 = 0
⇒ x² + 18x - 17x - 306 = 0
⇒x(x + 18) - 17(x + 18) = 0
⇒(x + 18)(x - 17) = 0⇒ x = 17 and -18
so x = 17 and (x +1) = 18
Therefore the numbers are 17 and 18.
Hope it helped u if yes mark me BRAINLIEST
TYSM!
the length of a mathematical text book the is approximately 18.34cm and its width is 11.75 calculate ?
the approximate perimeter of the front cover?
the approximate area of the front cover of the book?
Answer:
Perimeter=60.18cm
Area=215.495cm^2
Step-by-step explanation:
Given:
Length of book=18.34cm
Breadth=11.75cm
Solution:
Perimeter=2(l +b)
P=2(18.34+11.75)
P=2 x 30.09
P=60.18cm
Area=l x b
A=18.34 x 11.75
A=215.495 cm^2
Thank you!
Question 36 of 40
The distance of a line bound by two points is defined as
L?
O A. a line segment
B. a ray
O
c. a plane
O D. a vertex
SUBMI
Answer:
A. a line segment
Step-by-step explanation:
a ray is directing in one dxn, and has no end pointa plane is a closed, so more than 2 points a vertex is a single point itself