Answer:
After solving the power:
[tex]\bold{2(cos60^\circ+isin60^\circ)}[/tex]
Rectangular form:
[tex]\bold{1+i\sqrt3}[/tex]
Step-by-step explanation:
Given the complex number:
[tex]2(cos20^\circ+isin20^\circ)^3[/tex]
To find:
The indicated power by using De Moivre's theorem.
The complex number in rectangular form.
Rectangular form of a complex number is given as [tex]a+ib[/tex] where a and b are real numbers.
Solution:
First of all, let us have a look at the De Moivre's theorem:
[tex](cos\theta+isin\theta )^n=cos(n\theta)+isin(n\theta )[/tex]
First of all, let us solve:
[tex](cos20^\circ+isin20^\circ)^3[/tex]
Let us apply the De Moivre's Theorem:
Here, n = 3
[tex](cos20^\circ+isin20^\circ)^3 = cos(3 \times 20)^\circ+isin(3 \times 20)^\circ\\\Rightarrow cos60^\circ+isin60^\circ[/tex]
Now, the given complex number becomes:
[tex]2(cos60^\circ+isin60^\circ)[/tex]
Let us put the values of [tex]cos60^\circ = \frac{1}{2}[/tex] and [tex]sin60^\circ = \frac{\sqrt3}{2}[/tex]
[tex]2(\dfrac{1}{2}+i\dfrac{\sqrt3}2)\\\Rightarrow (2 \times \dfrac{1}{2}+i\dfrac{\sqrt3}2\times 2)\\\Rightarrow \bold{1 +i\sqrt3 }[/tex]
So, the rectangular form of the given complex number is:
[tex]\bold{1+i\sqrt3}[/tex]
If xy = 1 what is the arithmetic mean of x and y in terms of y? Please show work as detailed as possible
Answer:
(1+y^2) /2y
Step-by-step explanation:
arithmetic mean is the average of x and y
(x+y)/2
Using the equation
xy = 1
and solving for x
x = 1/y
Replacing x in the first equation
(1/y + y) /2
Multiply by y/y
(1/y + y) /2 * y/y
(1/y + y)*y /2y
(1+y^2) /2y
What is the name of a geometric figure that looks an orange
A. Cube
B. Sphere
C. Cylinder
D. Cone
Answer:
b . sphere
Step-by-step explanation:
The probability density function for random variable W is given as follows: Let x be the 100pth percentile of W and y be the 100(1 – p)th percentile of W, where 0
Answer:
Step-by-step explanation:
A probability density function (pdf) is used for continuous random variables. That is why p is between 0 and 1 (the two extremes - 0 and 1 - exclusive).
X = 100pth percentile of W
Y = 100(1-p)th percentile of W
Expressing Y as a function of X;
Y = 100(1-p)th = 100th - 100pth
Recall that 100pth is same as X, so substitute;
Y = 100th - X
where 100th = hundredth percentile of W and X = 100pth percentile of W
Find the Vertical asymptotes of the graph of f
[tex]f(x) = \frac{x + 2}{ {x}^{2} - 4}[/tex]
Answer:
x = 2 and x = -2
Step-by-step explanation:
To find the vertical asymptotes, set the denominator equal to zero and solve for x:
vertical asymptotes are x = 2 and x = -2
Megan has 12 pounds of cheesecake. On Monday, she and her friends eat 4 pounds. On Tuesday, she and her friends eat another 3 pounds. On Wednesday, her friend Mark gives her some more cheesecake so that she has 3 times as much as she had at the end of Tuesday. On Thursday, some of her cheesecake goes bad, so she has the amount that she had at the end of Wednesday, but divided by 5. On Friday, she gives 3 pounds to her dog. On Saturday, her mom gives her one more pound. On Sunday, how many pounds of cheesecake does Megan have left?
Answer:
Step-by-step explanation:
First we start with 12 pounds
On Monday, she and her friends eat 4 pounds. So we have 8 now.
On Tuesday, she and her friends eat another 3 pounds. So we gave 5 now.
On Wednesday, her friend Mark gives her some more cheesecake so that she has 3 times as much as she had at the end of Tuesday. 5 * 3 = 15
On Thursday, some of her cheesecake goes bad, so she has the amount that she had at the end of Wednesday, but divided by 5. She had 15 at the end of Wednesday. 15/5 = 3.
On Friday, she gives 3 pounds to her dog. 5 - 3 = 2.
On Saturday, her mom gives her one more pound. 2 + 1 = 3.
On Sunday, she finally has 3 pounds.
Answer:
nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Step-by-step explanation:
PLEASE HELP!!!
Evaluate the expression when b=4 and y= -3
-b+2y
Answer: -10
Step-by-step explanation: All you have to do is plug the values into the equation. -4+2(-3). Then you solve the equation using PEDMAS.
1. -4+2(-3)
2. -4+(-6)
3.-4-6
4.-10
Answer:
8
Step-by-step explanation:
-b + 2y
if
b = 4
and
y = 3
then:
-b + 2y = -4 + 2*6 = -4 + 12
= 8
Which geometric sequence has a first term equal to 55 and a common ratio of -5? {-55, 11, -2.2, 0.44, …} {55; 275; 1,375; 6,875; …} {55, 11, 2.2, 0.44, …} {55; -275; 1,375; -6,875; …}
Answer:
The answer is 55, -275, 1375, -6875......
Step-by-step explanation:
6(x + 2) = 30Solve the following linear equation
Answer:
[tex]\huge \boxed{x=3}[/tex]
Step-by-step explanation:
[tex]6(x+2)=30[/tex]
[tex]\sf Divide \ both \ sides \ by \ 6.[/tex]
[tex]x+2=5[/tex]
[tex]\sf Subtract \ 2 \ from \ both \ sides.[/tex]
[tex]x=3[/tex]
Answer:
3
Step-by-step explanation:
30 = 6(x+2)
30/6 = 5
5 = x+2
5-2 = 3
3=x
This is a pretty simple question and I tried to make it as simple as possible when explaining it.
Gina, Sam, and Robby all rented movies from the same video store. They each rented some dramas, comedies, and documentaries. Gina rented 11 movies total. Sam rented twice as many dramas, three times as many comedies, and twice as many documentaries as Gina. He rented 27 movies total. If Robby rented 19 movies total with the same number of dramas, twice as many comedies, and twice as many documentaries as Gina, how many movies of each type did Gina rent?
Hi there! :)
Answer:
Gina rented 3 dramas, 5 comedies, and 3 documentaries.
Step-by-step explanation:
To solve, we will need to set up a system of equations:
Let x = # of dramas, y = # of comedies, and z = # of documentaries:
Write equations to represent each person:
Gina:
x + y + z = 11
Sam:
2x + 3y + 2z = 27
Robby:
x + 2y + 2z = 19
Write the system:
x + y + z = 11
2x + 3y + 2z = 27
x + 2y + 2z = 19
Begin by subtracting the third equation from the second:
2x + 3y + 2z = 27
x + 2y + 2z = 19
-----------------------
x + y = 8
If x + y = 8, plug this into the first equation:
(8) + z = 11
z = 11 - 8
z = 3
We found the # of documentaries Gina rented, now we must solve for the other variables:
Subtract the top equation from the third. Substitute in the value of z we solved for:
x + 2y + 2(3) = 19
x + y + (3) = 11
-------------------------
y + 3 = 8
y = 5
Substitute in the values for y and z to solve for x:
x + 5 + 3 = 11
x + 8 = 11
x = 11 - 8
x = 3.
Therefore, Gina rented 3 dramas, 5 comedies, and 3 documentaries.
Answer:
B- x + y + z = 11
2x + 3y + 2z = 27
x + 2y + 2z = 19
Step-by-step explanation:
I took the quiz
how do you figure out ratios? the problem is 12 quarters to 34 dollars. thanks
Step-by-step explanation:
When you have a ratio, you put one number as the numerator and than one number as the denominator.
so it would be (12/34)=(x/68)
In this example I made the ratio you are comparing it to have 68 dollars, so when you solve for the amount of quarters you need it should be 24, since all of the numbers in this example are just being doubled.
To solve for x, you multiply 68 on both sides of the equation, 68×(12/34)=x
24=x
So this proves that this is how ratios, are used. It also does not matter what number you place on the numerator or denominator.
Last Sunday, the average temperature was 8\%8%8, percent higher than the average temperature two Sundays ago. The average temperature two Sundays ago was TTT degrees Celsius. Which of the following expressions could represent the average temperature last Sunday?
Work Shown:
T = average Celsius temperature two Sundays ago
8% = 8/100 = 0.08
8% of T = 0.08T
L = average Celsius temperature last sunday
L = 8% higher than T
L = T + (8% of T)
L = T + 0.08T
L = 1.00T + 0.08T
L = (1.00 + 0.08)T
L = 1.08T
The 1.08 refers to the idea that L is 108% of T
Answer:
b and d
Step-by-step explanation:
khan
Find the value of x. A: 15 B: 12 C: 10 D: 8
Answer:
[tex]\boxed{\sf C. \ 10}[/tex]
Step-by-step explanation:
[tex]\sf The \ intersecting \ chord \ theorem \ states \ that \ the \ products[/tex]
[tex]\sf of \ the \ lengths \ of \ the \ line \ segments \ on \ each \ chord \ are \ equal.[/tex]
[tex]NH \times HT = MH \times HY[/tex]
[tex](x+20) \times 8=12 \times 20[/tex]
[tex]\sf Expand \ brackets \ and \ multiply.[/tex]
[tex]8x+160=240[/tex]
[tex]\sf Subtract \ 160 \ from \ both \ sides.[/tex]
[tex]8x+160-160=240-160[/tex]
[tex]8x=80[/tex]
[tex]\sf Divide \ both \ sides \ by \ 8.[/tex]
[tex]\displaystyle \frac{8x}{8} =\frac{80}{8}[/tex]
[tex]x=10[/tex]
The value of x is 10.
We have a circle and inside it two chords MY and NT intersect at point H.
We have to find the value of x in the figure.
What is intersecting chord theorem?According to the intersecting chord theorem, when two chords say AB and CD intersect at point O, then
AO x OB = CO x OD
Applying the chord intersecting theorem to the figure in the question, we get -
MH x HY = NH x HT
12 x 20 = (x+20) x 8
240 = 8x + 160
8x = 80
x = 10
Hence the value of x is 10.
To solve more questions on Circles and chords, visit the link below -
https://brainly.com/question/15568573
#SPJ5
Sherina wrote and solved the equation. x minus 56 = 230. x minus 56 minus 56 = 230 minus 56. x = 174. What was Sherina’s error?
Answer:
subtracting 56 instead of adding (or adding wrong)
Step-by-step explanation:
She wrote ...
x - 56 = 230
x - 56 - 56 = 230 -56 . . . . correct application of the addition property*
x = 230 -56 . . . . . . . . . . . . incorrect simplification
Correctly done, the third line would be ...
x -112 = 174
This would have made Sherina realize that the error was in subtracting 56 instead of adding it. The correct solution would be ...
x - 56 + 56 = 230 + 56 . . . using the addition property of equality
x = 286 . . . . . . . . . . . . . . . . correct simplification on both sides
__
There were two errors:
1) incorrect strategy --- subtracting 56 instead of adding
2) incorrect simplification --- simplifying -56 -56 to zero instead of -112
We don't know whether you want to count the error in thinking as the first error, or the error in execution where the mechanics of addition were incorrectly done.
_____
* The addition property of equality requires the same number be added to both sides of the equation. Sherina did that correctly. However, the number chosen to be added was the opposite of the number that would usefully work toward a solution.
Answer:
D: Sherina should have added 56 to both sides of the equation.
Step-by-step explanation:
I got a 100% on my test.
I hope this helps.
For lunch, Kile can eat a sandwich with either ham or a bologna and with or without cheese. Kile also has the choice of drinking water or juice with his sandwich. The total number of lunches Kile can choose is
Answer:
8
Step-by-step explanation:
Ham with or without cheese-2 choices
Bologna with or without cheese-2 choices
Bologna with cheese with water or juice-2 choices
Bologna without cheese with juice or water-2 choices
Ham with cheese with juice or water -2 choices
Ham without cheese with juice or water -2 choices
2+2+2+2=8
Kile has 8 choices for lunch
what number must be added to the sequence of 7,13 and 10 to get an average of 13
Answer:
22
Step-by-step explanation:
We can write an equation:
(7+13+10+x)/4=13
x represents the number that needs to be added to get an average of
(7+13+10+x)/4=13
(30+x)/4=13
30+x=52
x=22
The number is 22
Hope this helps! Have a wonderful day :)
The chief business officer of a construction equipment company arranges a loan of $9,300, at 12 1 /8 % interest for 37.5 months. Find the amount of interest. (Round to the nearest cent)
a. $2,761.21
b. $3,583.83
c. $3,523.83
d. $3,722.47
Answer:
C). $3523.83
Step-by-step explanation:
loan of principles p= $9,300,
at rate R= 12 1 /8 % interest
Rate R = 12.125%
for duration year T = 37.5 months
T= 37.5/12 = 3.125 years
Interest I=PRT/100
Interest I =( 9300*12.125*3.125)/100
Interest I = (352382.8125)/100
Interest I = 3523.83
Interest I= $3523.83
Find the missing side or angle.
Round to the nearest tenth.
Answer:
b=2.7
Step-by-step explanation:
using sine rule,,,
Step-by-step explanation:
So for this problem, we need the missing angle A. From there, we can use the law of sines to compute length of b.
So the sum of the interior angles of a triangle is 180. With that in mind, we can make an equation to fine the measure of angle A.
53 + 80 + A = 180
133 + A = 180
A = 47
Now that we have the angle of A, we can use the law of sines to fine the length of b.
b / sin(B) = a / sin(A)
b = sin(B) * a / sin(A)
b = sin(80) * 2 / sin(47)
b = 2.693
Now round that to the nearest tenth to get
b = 2.7
Cheers.
Consider the following ordered data. 6 9 9 10 11 11 12 13 14 (a) Find the low, Q1, median, Q3, and high. low Q1 median Q3 high (b) Find the interquartile range.
Answer:
Low Q1 Median Q3 High
6 9 11 12.5 14
The interquartile range = 3.5
Step-by-step explanation:
Given that:
Consider the following ordered data. 6 9 9 10 11 11 12 13 14
From the above dataset, the highest value = 14 and the lowest value = 6
The median is the middle number = 11
For Q1, i.e the median of the lower half
we have the ordered data = 6, 9, 9, 10
here , we have to values as the middle number , n order to determine the median, the mean will be the mean average of the two middle numbers.
i.e
median = [tex]\dfrac{9+9}{2}[/tex]
median = [tex]\dfrac{18}{2}[/tex]
median = 9
Q3, i.e median of the upper half
we have the ordered data = 11 12 13 14
The same use case is applicable here.
Median = [tex]\dfrac{12+13}{2}[/tex]
Median = [tex]\dfrac{25}{2}[/tex]
Median = 12.5
Low Q1 Median Q3 High
6 9 11 12.5 14
The interquartile range = Q3 - Q1
The interquartile range = 12.5 - 9
The interquartile range = 3.5
An evergreen nursery usually sells a certain shrub after 9 years of growth and shaping. The growth rate during those 9 years is approximated by
dh/dt = 1.8t + 3,
where t is the time (in years) and h is the height (in centimeters). The seedlings are 10 centimeters tall when planted (t = 0).
(a) Find the height after t years.
h(t) =
(b) How tall are the shrubs when they are sold?
cm
Answer:
(a) After t years, the height is
18t² + 3t + 10
(b) The shrubs are847 cm tall when they are sold.
Step-by-step explanation:
Given growth rate
dh/dt = 1.8t + 3
dh = (18t + 3)dt
Integrating this, we have
h = 18t² + 3t + C
When t = 0, h = 10cm
Then
10 = C
So
(a) h = 18t² + 3t + 10
(b) Because they are sold after every 9 years, then at t = 9
h = 18(9)² + 3(9) + 10
= 810 + 27 + 10
= 847 cm
PLS HELP:Find all the missing elements:
Answer:
b = 9.5 , c = 15Step-by-step explanation:
For b
To find side b we use the sine rule
[tex] \frac{ |a| }{ \sin(A) } = \frac{ |b| }{ \sin(B) } [/tex]a = 7
A = 23°
B = 32°
b = ?
Substitute the values into the above formula
That's
[tex] \frac{7}{ \sin(23) } = \frac{ |b| }{ \sin(32) } [/tex][tex] |b| \sin(23) = 7 \sin(32) [/tex]Divide both sides by sin 23°
[tex] |b| = \frac{7 \sin(32) }{ \sin(23) } [/tex]b = 9.493573
b = 9.5 to the nearest tenthFor cTo find side c we use sine rule
[tex] \frac{ |a| }{ \sin(A) } = \frac{ |c| }{ \sin(C) } [/tex]C = 125°
So we have
[tex] \frac{7}{ \sin(23) } = \frac{ |c| }{ \sin(125) } [/tex][tex] |c| \sin(23) = 7 \sin(125) [/tex]Divide both sides by sin 23°
[tex] |c| = \frac{7 \sin(125) }{ \sin(23) } [/tex]c = 14.67521
c = 15.0 to the nearest tenthHope this helps you
is this a function {(-2, 6), (-3, 7), (-4, 8), (-3, 10)}
No, that is not a function.
To be a function, each different input (x) needs a different output (y)
In the given function there are two -3’s as inputs and they have different y values, so it can’t be a function.
Answer: no
Step-by-step explanation: To determine if a relation is a function, take a look at the x–coordinate of each ordered pair. If the x–coordinate is different in each ordered pair, then the relation is a function.
Note that the only exception to this would be that if the x-coordinate pairs up with the same y-coordinate in a relation more than once, it's still classified ad a function.
Ask yourself, do any of the ordered pairs
in this relation have the same x-coordinate?
Well by looking at this relation, we can see that two
of the ordered pairs have the same x-coordinate.
In this case, the x-coordinate of 3 appears twice.
So no, this relation is not a function.
Use the order of operations to simplify this expression 1.2x3.5x4.1= What
[tex] 1.2\times3.5\times4.1=[(1+0.2)(3+0.5)](4+0.1)[/tex]
$=[1\times3+1\times0.5+0.2\times3+0.2\times0.5](4+0.1)$
$=(3+0.5+0.6+0.1)(4+0.1)$
$=(4.2)(4+0.1)=(4+0.2)(4+0.1)$
$=4\times4+4\times0.1+0.2\times4+0.2\times0.1$
$=16+0.4+0.8+0.02=17.22$
ASAP Which graph has a correlation coefficient, r, closest to 0.75?
Answer:
C. Graph C
Step-by-step explanation:
In a scatter plot, a positive correlation coefficient suggests that as one variable increases the other increases as well, or as one decreases, the other decreases.
Also, the more clustered the data points are along the line of best fit, the higher the value of the coefficient, whether positive or negative.
Graph C shows a positive correlation because as the variable on the x-axis increases, the variable on the y-axis also increases. The data points are more clustered along the line if best fit, if we draw one. This suggest a positive correlation coefficient (r) as strong as 0.75.
Graph C has a correlation coefficient, r, that is closer to 0.75.
Answer: graph A ‼️
Step-by-step explanation:
A rotating light is located 16 feet from a wall. The light completes one rotation every 2 seconds. Find the rate at which the light projected onto the wall is moving along the wall when the light's angle is 20 degrees from perpendicular to the wall.
Answer:
a
Step-by-step explanation:
answer is a on edg
A box contains 40 identical discs which are either red or white if probably picking a red disc is 1/4. Calculate the number of;
1. White disc.
2. red disc that should be added such that the probability of picking a red disc will be 1/4