3. What conclusion can you make about the electric field strength between two parallel plates? Explain your answer referencing Photo 2.

Answers

Answer 1

Answer:

From the relation above we can conclude that the  as the distance between the two plate increases the electric field strength decreases

Explanation:

I cannot  find any attached photo, but we can proceed anyways theoretically.

The electric field strength (E) at any point in an electric field is the force experienced by a unit positive charge (Q) at that point

i.e

[tex]E=\frac{F}{Q}[/tex]

But the force F

[tex]F= \frac{kQ1Q2}{r^2}[/tex]

But the electric field intensity due to a point charge Q at a distance r meters away is given by

[tex]E= \frac{\frac{kQ1Q2}{r^2}}{Q} \\\\\E= \frac{Q1}{4\pi er^2 }[/tex]

From the relation above we can conclude that the  as the distance between the two plate increases the electric field strength decreases


Related Questions

Which examination technique is the visualization of body parts in motion by projecting x-ray images on a luminous fluorescent screen?

Answers

Answer:

Fluoroscopy

Explanation:

A Fluoroscopy is an imaging technique that uses X-rays to obtain real-time moving images of the interior of an object. In its primary application of medical imaging, a fluoroscope allows a physician to see the internal structure and function of a patient, so that the pumping action of the heart or the motion of swallowing, for example, can be watched.

A train on one track moves in the same direction as a second train on the adjacent track. The first train, which is ahead of the second train and moves with a speed of 36.4 m/s , blows a horn whose frequency is 123 Hz .what is its speed?

Answers

Answer:

51. 7m/s

Explanation:

Take speed of sound in air = 340 m/s

fp = fs (V + Vp)/(V + Vs)

128 = 123 (340 + Vp)/(340 + 36.4)

Vp = 51.7m/s

Explanation:

The roller coaster car reaches point A of the loop with speed of 20 m/s, which is increasing at the rate of 5 m/s2. Determine the magnitude of the acceleration at A if pA

Answers

Answer and Explanation:

Data provided as per the question is as follows

Speed at point A = 20 m/s

Acceleration at point C = [tex]5 m/s^2[/tex]

[tex]r_A = 25 m[/tex]

The calculation of the magnitude of the acceleration at A is shown below:-

Centripetal acceleration is

[tex]a_c = \frac{v^2}{r}[/tex]

now we will put the values into the above formula

= [tex]\frac{20^2}{25}[/tex]

After solving the above equation we will get

[tex]= 16 m/s^2[/tex]

Tangential acceleration is

[tex]= \sqrt{ac^2 + at^2} \\\\ = \sqrt{16^2 + 5^2}\\\\ = 16.703 m/s^2[/tex]

Three resistors, each having a resistance, R, are connected in parallel to a 1.50 V battery. If the resistors dissipate a total power of 3.00 W, what is the value of R

Answers

Answer:

The value of resistance of each resistor, R is 2.25 Ω

Explanation:

Given;

voltage across the three resistor, V = 1.5 V

power dissipated by the resistors, P = 3.00 W

the resistance of each resistor, = R

The effective resistance of the three resistors is given by;

R(effective) = R/3

Apply ohms law to determine the current delivered by the source;

V = IR

I = V/R

I = 3V/R

Also, power is calculated as;

P = IV

P = (3V/R) x V

P = 3V²/R

R = 3V² / P

R = (3 x 1.5²) / 3

R = 2.25 Ω

Therefore, the value of resistance of each resistor, R is 2.25 Ω

Consider two parallel plate capacitors. The plates on Capacitor B have half the area as the plates on Capacitor A, and the plates in Capacitor B are separated by twice the separation of the plates of Capacitor A. If Capacitor A has a capacitance of CA-17.8nF, what is the capacitance of Capacitor? .

Answers

Answer:

CB = 4.45 x 10⁻⁹ F = 4.45 nF

Explanation:

The capacitance of a parallel plate capacitor is given by the following formula:

C = ε₀A/d

where,

C = Capacitance

ε₀ = Permeability of free space

A = Area of plates

d = Distance between plates

FOR CAPACITOR A:

C = CA = 17.8 nF = 17.8 x 10⁻⁹ F

A = A₁

d = d₁

Therefore,

CA = ε₀A₁/d₁ = 17.8 x 10⁻⁹ F   ----------------- equation 1

FOR CAPACITOR B:

C = CB = ?

A = A₁/2

d = 2 d₁

Therefore,

CB = ε₀(A₁/2)/2d₁

CB = (1/4)(ε₀A₁/d₁)

using equation 1:

CB = (1/4)(17.8 X 10⁻⁹ F)

CB = 4.45 x 10⁻⁹ F = 4.45 nF

What is the direction of the net gravitational force on the mass at the origin due to the other two masses?

Answers

Answer:

genus yds it's the

Explanation:

xmgxfjxfjxgdfjusufzjyhmfndVFHggssjtjhryfjftjsrhrythhrsrhrhsfhsgdagdah vhj

A current of 5 A is flowing in a 20 mH inductor. The energy stored in the magnetic field of this inductor is:_______

a. 1J.
b. 0.50J.
c. 0.25J.
d. 0.
e. dependent upon the resistance of the inductor.

Answers

Answer:

C. 0.25J

Explanation:

Energy stored in the magnetic field of the inductor is expressed as E = 1/2LI² where;

L is the inductance

I is the current flowing in the inductor

Given parameters

L = 20mH = 20×10^-3H

I = 5A

Required

Energy stored in the magnetic field.

E = 1/2 × 20×10^-3 × 5²

E = 1/2 × 20×10^-3 × 25

E = 10×10^-3 × 25

E = 0.01 × 25

E = 0.25Joules.

Hence the energy stored in the magnetic field of this inductor is 0.25Joules

Suppose you drop paperclips into an open cart rolling along a straight horizontal track with negligible friction. As a result of the accumulating paper clips, explain whether the momentum and kinetic energy increase, decrease, or stay the same.

Answers

Answer:

Stay the same

Explanation:

Since, friction is negligible:

Initial Momentum = Final Momentum

Initial KE = Final KE

m1 * v1 = m2 * v2

When m increases v decreases.

The momentum and kinetic energy remain the same if you drop paper clips into an open cart rolling along a straight horizontal track with negligible friction.

What is friction?

Between two surfaces that are sliding or attempting to slide over one another, there is a force called friction. For instance, friction makes it challenging to push a book down the floor. Friction always moves an object in a direction that is counter to the direction that it is traveling or attempting to move.

Given:

The paperclips into an open cart rolling along a straight horizontal track with negligible friction,

Calculate the momentum, Since friction is negligible,

Initial Momentum = Final Momentum

Initial Kinetic Energy = Final Kinetic Energy

m₁ × v₁ = m₁  × v₂

When m increases, v decreases,

Thus, momentum will remain the same.

To know more about friction:

https://brainly.com/question/28356847

#SPJ5

A radar installation operates at 9000 MHz with an antenna (dish) that is 15 meters across. Determine the maximum distance (in kilometers) for which this system can distinguish two aircraft 100 meters apart.

Answers

Answer:

R = 36.885 km

Explanation:

In order to distinguish the two planes we must use the Rayleigh criterion that establishes two distinguishable objects if in their diffraction the central maximum of one coincides with the first minimum of the other

The diffraction equation for slits is

            a sin θ = m λ

the first minimum occurs for m = 1

             sin θ = λ a

as the diffraction experiments the angles are very small, we approximate

             sin θ = θ

 

             θ = λ / a

This expression is for a slit, in the case of circular objects, when solving the system in polar coordinates, a numerical constant appears, leaving the expression of the form

            θ = 1.22 λ / a

In this problem they give us the frequency, let's find the wavelength with the relation

           c = λ f

           λ = c / f

           θ = 1.22 c/ f a

since they ask us for the distance between the planes, we can use the definition of radians

          θ = s / R

if we assume that the distance is large, we can approximate the arc to the horizontal distance

          s = x

       

we substitute

             x / R = 1.22 c / fa

             R = x f a / 1.22c

Let's reduce the magnitudes to the SI system

            f = 9000 MHz = 9 109 Hz

            a = 15 m

           x = 100 m

let's calculate

            R = 100 10⁹ 15 / (1.22 3 108)

            R = 3.6885 10⁴ m

let's reduce to km

            R = 3.6885 10¹ km

            R = 36.885 km

An electron is accelerated from rest through a potential difference. After acceleration the electron has a de Broglie wavelength of 880 nm. What is the potential difference though which this electron was accelerated

Answers

Answer:

3x10⁴v

Explanation:

Using

Wavelength= h/ √(2m.Ke)

880nm = 6.6E-34/√ 2.9.1E-31 x me

Ke= 6.6E-34/880nm x 18.2E -31.

5.6E-27/18.2E-31

= 3 x 10⁴ Volts

A plastic dowel has a Young's Modulus of 1.50 ✕ 1010 N/m2. Assume the dowel will break if more than 1.50 ✕ 108 N/m2 is exerted.
(a) What is the maximum force (in kN) that can be applied to the dowel assuming a diameter of 2.40 cm?
______Kn
(b) If a force of this magnitude is applied compressively, by how much (in mm) does the 26.0 cm long dowel shorten? (Enter the magnitude.)
mm

Answers

Answer:

a

   [tex]F = 67867.2 \ N[/tex]

b

  [tex]\Delta L = 2.6 \ mm[/tex]

Explanation:

From the question we are told that

      The Young modulus is  [tex]Y = 1.50 *10^{10} \ N/m^2[/tex]

      The stress is  [tex]\sigma = 1.50 *10^{8} \ N/m^2[/tex]

      The  diameter is  [tex]d = 2.40 \ cm = 0.024 \ m[/tex]

The radius is mathematically represented as

       [tex]r =\frac{d}{2} = \frac{0.024}{2} = 0.012 \ m[/tex]

The cross-sectional area is  mathematically evaluated as

        [tex]A = \pi r^2[/tex]

         [tex]A = 3.142 * (0.012)^2[/tex]

        [tex]A = 0.000452\ m^2[/tex]

Generally the stress is mathematically represented as

        [tex]\sigma = \frac{F}{A}[/tex]

=>     [tex]F = \sigma * A[/tex]

=>    [tex]F = 1.50 *10^{8} * 0.000452[/tex]

=>    [tex]F = 67867.2 \ N[/tex]

Considering part b

      The length is given as [tex]L = 26.0 \ cm = 0.26 \ m[/tex]

Generally Young modulus is mathematically represented as

           [tex]E = \frac{ \sigma}{ strain }[/tex]

Here strain is mathematically represented as

         [tex]strain = \frac{ \Delta L }{L}[/tex]

So    

       [tex]E = \frac{ \sigma}{\frac{\Delta L }{L} }[/tex]

        [tex]E = \frac{\sigma }{1} * \frac{ L}{\Delta L }[/tex]

=>     [tex]\Delta L = \frac{\sigma * L }{E}[/tex]

substituting values

       [tex]\Delta L = \frac{ 1.50*10^{8} * 0.26 }{ 1.50 *10^{10 }}[/tex]

       [tex]\Delta L = 0.0026[/tex]

Converting to mm

      [tex]\Delta L = 0.0026 *1000[/tex]

      [tex]\Delta L = 2.6 \ mm[/tex]

CAN SOMEONE HELP ME PLEASE ITS INTEGRATED SCIENCE AND I AM STUCK

Answers

Answer:

[tex]\huge \boxed{\mathrm{Option \ D}}[/tex]

Explanation:

Two forces are acting on the object.

Subtracting 2 N from both forces.

2 N → Object ← 5 N

- 2 N                 - 2N

0 N → Object ← 3 N

The force 3 N is pushing the object to the left side.

The mass of the object is 10 kg.

Applying formula for acceleration (Newton’s Second Law of Motion).

a = F/m

a = 3/10

a = 0.3

You add 500 mL of water at 10°C to 100 mL of water at 70°C. What is the
most likely final temperature of the mixture?
O A. 80°C
OB. 10-C
OC. 20°C
O D. 60°C

Answers

Answer:

Option (c) : 20°C

Explanation:

[tex]t(final) = \frac{w1 \times t1 + w2 \times t2}{w1 + w2} [/tex]

T(final) = 500* 10 + 100*70/600 = 20°C

A 1.2-m length of wire centered on the origin carries a 20-A current directed in the positive y direction. Determine the magnetic field at the point x= 5.0m on x-axis.

a. 1.6 nt in the negative z direction
b. 1.6 nt in the positive z direction
c. 2.4 T in the positive z direction
d. 2.4 nt in the negative z direction
e. None of the above

Answers

Answer:

None of the above

Explanation:

The formula of the magnetic field of a point next to a wire with current is:

B = 2×10^(-7) × ( I /d)

I is the intensity of the current.

d is the distance between the wire and the point.

● B = 2*10^(-7) × (20/5) = 8 ×10^(-7) T

Please help!
Much appreciated!​

Answers

Answer:

F = 2.7×10¯⁶ N.

Explanation:

From the question given:

F = (9×10⁹ Nm/C²) (3.2×10¯⁹ C × 9.6×10¯⁹ C) /(0.32)²

Thus we can obtain the value value of F by carrying the operation as follow:

F = (9×10⁹) (3.2×10¯⁹ × 9.6×10¯⁹) /(0.32)²

F = 2.7648×10¯⁷ / 0.1024

F = 2.7×10¯⁶ N.

Therefore, the value of F is 2.7×10¯⁶ N.

A Galilean telescope adjusted for a relaxed eye is 36.2 cm long. If the objective lens has a focal length of 39.5 cm , what is the magnification

Answers

Answer:

The magnification is  [tex]m = 12[/tex]

Explanation:

From the question  we are told that

   The object distance is [tex]u = 36.2 \ cm[/tex]

     The focal length is  [tex]v = 39.5 \ cm[/tex]

From the lens equation we have that

         [tex]\frac{1}{f} = \frac{1}{u} + \frac{1}{v}[/tex]

=>     [tex]\frac{1}{v} = \frac{1}{f} - \frac{1}{u}[/tex]

substituting values

       [tex]\frac{1}{v} = \frac{1}{39.5} - \frac{1}{36.2}[/tex]

       [tex]\frac{1}{v} = -0.0023[/tex]

=>   [tex]v = \frac{1}{0.0023}[/tex]

=>   [tex]v =-433.3 \ cm[/tex]

The magnification is mathematically represented as

         [tex]m =- \frac{v}{u}[/tex]

substituting values

        [tex]m =- \frac{-433.3}{36.2}[/tex]

         [tex]m = 12[/tex]

         

Proposed Exercises: Strength and Acceleration in Circular Movement In the situation illustrated below, a 7kg sphere is connected to a rope so that it can rotate in a vertical plane around an O axis perpendicular to the plane of the figure. When the sphere is in position A, it has a speed of 3m/s. Determine for this position the modulus of tension on the string and the rate at which the tangential velocity is increased.

Answers

Answer:

81 N

7.1 m/s²

Explanation:

Draw a free body diagram of the sphere.  There are two forces:

Weight force mg pulling straight down,

and tension force T pulling up along the rope.

Sum of forces in the centripetal direction:

∑F = ma

T − mg sin 45° = m v² / r

T = m (g sin 45° + v² / r)

T = (7 kg) (10 m/s² sin 45° + (3 m/s)² / 2 m)

T = 81 N

Sum of forces in the tangential direction:

mg cos 45° = ma

a = g cos 45°

a = (10 m/s²) cos 45°

a = 7.1 m/s²

Expectant mothers many times see their unborn child for the first time during an ultrasonic examination. In ultrasonic imaging, the blood flow and heartbeat of the child can be measured using an echolocation technique similar to that used by bats. For the purposes of these questions, please use 1500 m/s as the speed of sound in tissue. I need help with part B and C
To clearly see an image, the wavelength used must be at most 1/4 of the size of the object that is to be imaged. What frequency is needed to image a fetus at 8 weeks of gestation that is 1.6 cm long?
A. 380 kHz
B. 3.8 kHz
C. 85 kHz
D. 3.8 MHz

Answers

Answer:

380 kHz

Explanation:

The speed of sound is taken as 1500 m/s

The length of the fetus is 1.6 cm long

The condition is that the wavelength used must be at most 1/4 of the size of the object that is to be imaged.

For this 1.6 cm baby, the wavelength must not exceed

λ = [tex]\frac{1}{4}[/tex] of 1.6 cm = [tex]\frac{1}{4}[/tex] x 1.6 cm = 0.4 cm =

0.4 cm = 0.004 m   this is the wavelength of the required ultrasonic sound.

we know that

v = λf

where v is the speed of a wave

λ is the wavelength of the wave

f is the frequency of the wave

f = v/λ

substituting values, we have

f = 1500/0.004 = 375000 Hz

==> 375000/1000 = 375 kHz ≅ 380 kHz

If mirror M2 in a Michelson interferometer is moved through 0.233 mm, a shift of 792 bright fringes occurs. What is the wavelength of the light producing the fringe pattern?

Answers

Answer:

The wavelength is  [tex]\lambda = 589 nm[/tex]

Explanation:

From the question we are told that

    The  distance of the mirror shift  is  [tex]k = 0.233 \ mm = 0.233*10^{-3} \ m[/tex]

      The number of fringe shift is  n =  792

       

Generally the wavelength producing this fringes is mathematically represented as

               [tex]\lambda = \frac{ 2 * k }{ n }[/tex]

substituting values

              [tex]\lambda = \frac{ 2 * 0.233*10^{-3} }{ 792 }[/tex]

             [tex]\lambda = 5.885 *10^{-7} \ m[/tex]

            [tex]\lambda = 589 nm[/tex]

At what temperature (degrees Fahrenheit) is the Fahrenheit scale reading equal to:_____
(a) 3 times that of the Celsius and
(b) 1/5 times that of the Celsius

Answers

Answer:

C = 26.67° and F = 80°C = -20° and F = -4°

Explanation:

Find:

3 times that of the Celsius and 1/5 times that of the Celsius

Computation:

F = (9/5)C + 32

3 times that of the Celsius

If C = x

So F = 3x

So,

3x = (9/5)x + 32

15x = 9x +160

6x = 160

x = 26.67

So, C = 26.67° and F = 80°

1/5 times that of the Celsius

If C = x

So F = x/5

So,

x/5 = (9/5)x + 32

x = 9x + 160

x = -20

So, C = -20° and F = -4°

A 28.0 kg child plays on a swing having support ropes that are 2.30 m long. A friend pulls her back until the ropes are 45.0 ∘ from the vertical and releases her from rest.
A: What is the potential energy for the child just as she is released, compared with the potential energy at the bottom of the swing?
B: How fast will she be moving at the bottom of the swing?
C: How much work does the tension in the ropes do as the child swings from the initial position to the bottom?

Answers

Answer

A)184.9J

B)=3.63m/s

C) Zero

Explanation:

A)potential energy of the child at the initial position, measured relative the her potential energy at the bottom of the motion, is

U=Mgh

Where m=28kg

g= 9.8m/s

h= difference in height between the initial position and the bottom position

We are told that the rope is L = 2.30 m long and inclined at 45.0° from the vertical

h=L-Lcos(x)= L(1-cosx)=2.30(1-cos45)

=0.674m

Her Potential Energy will now

= 28× 9.8×0.674

=184.9J

B)we can see that at the bottom of the motion, all the initial potential energy of the child has been converted into kinetic energy:

E= 0.5mv^2

where

m = 28.0 kg is the mass of the child

v is the speed of the child at the bottom position

Solving the equation for v, we find

V=√2k/m

V=√(2×184.9/28

=3.63m/s

C)we can find work done by the tension in the rope is given using expresion below

W= Tdcosx

where W= work done

T is the tension

d = displacement of the child

x= angle between the directions of T and d

In this situation, we have that the tension in the rope, T, is always perpendicular to the displacement of the child, d. x= 90∘ and cos90∘=0 hence, the work done is zero.

Which scientist proposed a mathematical solution for the wave nature of light?

Answers

Answer:

Explanation:

Christian Huygens

Light Is a Wave!

Then, in 1678, Dutch physicist Christian Huygens (1629 to 1695) established the wave theory of light and announced the Huygens' principle.

Two ice skaters, Paula and Ricardo, initially at rest, push off from each other. Ricardo weighs more than Paula.
A. Which skater, if either, has the greater momentum after the push-off? Explain.
B. Which skater, if either, has the greater speed after the push-off? Explain.

Answers

Answer:

the two ice skater have the same momentum but the are in different directions.

Paula will have a greater speed than Ricardo after the push-off.

Explanation:

Given that:

Two ice skaters, Paula and Ricardo, initially at rest, push off from each other. Ricardo weighs more than Paula.

A. Which skater, if either, has the greater momentum after the push-off? Explain.

The law of conservation of can be applied here in order to determine the skater that possess a greater momentum after the push -off

The law of conservation of momentum states that the total momentum of two  or more objects acting upon one another will not change, provided there are no external forces acting on them.

So if two objects in motion collide, their total momentum before the collision will be the same as the total momentum after the collision.

Momentum is the product of mass and velocity.

SO, from the information given:

Let represent the mass of Paula with [tex]m_{Pa}[/tex] and its initial velocity with [tex]u_{Pa}[/tex]

Let represent the mass of Ricardo with [tex]m_{Ri}[/tex] and its initial velocity with [tex]u_{Ri}[/tex]

At rest ;

their velocities will be zero, i.e

[tex]u_{Pa}[/tex] = [tex]u_{Ri}[/tex] = 0

The initial momentum for this process can be represented as :

[tex]m_{Pa}[/tex][tex]u_{Pa}[/tex] +  [tex]m_{Ri}[/tex][tex]u_{Ri}[/tex] = 0

after push off from each other then their final velocity will be [tex]v_{Pa}[/tex] and [tex]v_{Ri}[/tex]

The we can say their final momentum is:

[tex]m_{Pa}[/tex][tex]v_{Pa}[/tex] +   [tex]m_{Ri}[/tex][tex]v_{Ri}[/tex] = 0

Using the law of conservation of momentum as states earlier.

Initial momentum = final momentum = 0

[tex]m_{Pa}[/tex][tex]u_{Pa}[/tex] +  [tex]m_{Ri}[/tex][tex]u_{Ri}[/tex] =  [tex]m_{Pa}[/tex][tex]v_{Pa}[/tex] +   [tex]m_{Ri}[/tex][tex]v_{Ri}[/tex]

Since the initial velocities are stating at rest then ; u = 0

[tex]m_{Pa}[/tex](0) + [tex]m_{Pa}[/tex](0) = [tex]m_{Pa}[/tex][tex]v_{Pa}[/tex] +   [tex]m_{Ri}[/tex][tex]v_{Ri}[/tex]

[tex]m_{Pa}[/tex][tex]v_{Pa}[/tex] +   [tex]m_{Ri}[/tex][tex]v_{Ri}[/tex]  = 0

[tex]m_{Pa}[/tex][tex]v_{Pa}[/tex] = - [tex]m_{Ri}[/tex][tex]v_{Ri}[/tex]

Hence, we can conclude that the two ice skater have the same momentum but the are in different directions.

 B. Which skater, if either, has the greater speed after the push-off? Explain.

Given that Ricardo weighs more than Paula

So [tex]m_{Ri} > m_{Pa}[/tex] ;

Then [tex]\mathsf{\dfrac{{m_{Ri}}}{m_{Pa} }= 1}[/tex]

The magnitude of their momentum which is a product of mass and velocity can now be expressed as:

[tex]m_{Pa}[/tex][tex]v_{Pa}[/tex] =  [tex]m_{Ri}[/tex][tex]v_{Ri}[/tex]

The ratio is

[tex]\dfrac{v_{Pa}}{v_{Ri}} =\dfrac{m_{Ri}}{m_{Pa}} = 1[/tex]

[tex]v_{Pa} >v_{Ri}[/tex]

Therefore, Paula will have a greater speed than Ricardo after the push-off.

(A) Both the skaters have the same magnitude of momentum.

(B) Paula has greater speed after push-off.

Conservation of momentum:

Given that two skaters Paula and Ricardo are initially at rest.

Ricardo weighs more than Paula.

Let us assume that the mass of Ricardo is M, and the mass of Paula is m.

Let their final velocities be V and v respectively.

(A) Initially, both are at rest.

So the initial momentum of Paula and Ricardo is zero.

According to the law of conservation of momentum, the final momentum of the system must be equal to the initial momentum of the system.

Initial momentum = final momentum

0 = MV + mv

MV = -mv

So, both of them have the same magnitude of momentum, but in opposite directions.

(B) If we compare the magnitude of the momentum of Paula and Ricardo, then:

MV = mv

M/m = v/V

Now, we know that M>m

so, M/m > 1

therefore:

v/V > 1

v > V

So, Paula has greater speed.

Learn more about conservation of momentum:

https://brainly.com/question/2141713?referrer=searchResults

Calculate the density of the following material.

1 kg helium with a volume of 5.587 m³
700 kg/m³
5.587 kg/m³
0.179 kg/m³

Answers

Answer:

[tex]density \: = \frac{mass}{volume} [/tex]

1 / 5.587 is equal to 0.179 kg/m³

Hope it helps:)

Answer:

The answer is

0.179 kg/m³

Explanation:

Density of a substance is given by

[tex]Density \: = \frac{mass}{volume} [/tex]

From the

mass = 1 kg

volume = 5.583 m³

Substitute the values into the above formula

We have

[tex]Density \: = \frac{1 \: kg}{5.583 \: {m}^{3} } [/tex]

We have the final answer as

Density = 0.179 kg/m³

Hope this helps you

An aluminum rod 17.400 cm long at 20°C is heated to 100°C. What is its new length? Aluminum has a linear expansion coefficient of 25 × 10-6 C-1.

Answers

Answer:

the new length is 17.435cm

Explanation:

the new length is 17.435cm

pls give brainliest

The new length of aluminum rod is 17.435 cm.

The linear expansion coefficient is given as,

                      [tex]\alpha=\frac{L_{1}-L_{0}}{L_{0}(T_{1}-T_{0})}[/tex]

Given that, An aluminum rod 17.400 cm long at 20°C is heated to 100°C.

and linear expansion coefficient is [tex]25*10^{-6}C^{-1}[/tex]

Substitute,  [tex]L_{0}=17.400cm,T_{1}=100,T_{0}=20,\alpha=25*10^{-6}C^{-1}[/tex]

                   [tex]25*10^{-6}C^{-1} =\frac{L_{1}-17.400}{17.400(100-20)}\\\\25*10^{-6}C^{-1} = \frac{L_{1}-17.400}{1392} \\\\L_{1}=[25*10^{-6}C^{-1} *1392}]+17.400\\\\L_{1}=17.435cm[/tex]

Hence, The new length of aluminum rod is 17.435 cm.

Learn more:

https://brainly.com/question/19495810

The frequency of light emitted from hydrogen present in the Andromeda galaxy has been found to be 0.10% higher than that from hydrogen measured on Earth.
Is this galaxy approaching or receding from the Earth, and at what speed?

Answers

Answer:

3x10^5m/s

Explanation:

See attached file

Explanation:

The speed of the light emitted from the earth is approaching the galaxy at [tex]3\times 10^5\;\rm m/s[/tex].

Doppler's Effect

According to the Doppler effect, the difference between the frequency at which light wave leave a source and reaches an observer is caused by the relative motion of the observer and the wave source.

Given that the difference in the frequency is 0.10 %. The speed of light emitted from the galaxy can be calculated by the Doppler effect.

[tex]\dfrac {\Delta f}{f} = \dfrac {v}{c}[/tex]

Where f is the frequency of the light, v is the speed of light emitted from the galaxy and c is the speed of light emitted from the earth.

[tex]\dfrac {0.10 f}{100 f} = \dfrac {v}{3\times 10^8}[/tex]

[tex]v = 3\times 10^5\;\rm m/s[/tex]

Hence we can conclude that the speed of the light emitted from the earth is approaching the galaxy at [tex]3\times 10^5\;\rm m/s[/tex].

To know more about the doppler effect, follow the link given below.

https://brainly.com/question/1330077.

A long solenoid consists of 1700 turns and has a length of 0.75 m.The current in the wire is 0.48 A. What is the magnitude of the magnetic field inside the solenoid

Answers

Answer:

1.37 ×10^-3 T

Explanation:

From;

B= μnI

μ = 4π x 10-7 N/A2

n= number of turns /length of wire = 1700/0.75 = 2266.67

I= 0.48 A

Hence;

B= 4π x 10^-7 × 2266.67 ×0.48

B= 1.37 ×10^-3 T

Which notation is better to use? (Choose between 4,000,000,000,000,000 m and 4.0 × 1015 m)

Answers

Answer:

4 x 10¹⁵

Explanation:

What is the separation in meters between two slits for which 594 nm orange light has its first maximum at an angle of 32.8°?

Answers

Answer:

1.1micro meter

Explanation:

Given that

Constructive interference is

ma = alpha x sin theta

Alpha = 1 x 594 x10^ -9/ sin 32.8°

= 1.1 x 10^ -6m

Explanation:

"A light beam incident on a diffraction grating consists of waves with two different wavelengths. The separation of the two first order lines is great if"

Answers

Answer:

A light beam incident on a diffraction grating consists of waves with two different wavelengths. The separation of the two first order lines is great if

the dispersion is great

Other Questions
what makes''emerging technologies'' happen and what impact will they have on individuals,society,and environment What is the main difference between simplifying and solving? Which one gives you a value for a variable? How do you know the difference? What does y equal -3=15+4y Which of these conditions would likely cause the tectonic plates of Earth to stop moving? What complications might arise from genetic screens targeting an organ that differentiates late in development? W is the work done on the system, and K, U, and Eth are the kinetic, potential, and thermal energies of the system, respectively. Any energy not mentioned in the transformation is assumed to remain constant; if work is not mentioned, it is assumed to be zero.1. Give a specific example of a system with the energy transformation shown.WEth2. Give a specific example of a system with the energy transformation shown.a. Rolling a ball up a hill.b. Moving a block of wood across a horizontal rough surface at constant speed.c. A block sliding on level ground, to which a cord you are holding on to is attached .d. Dropping a ball from a height. A bin contains seven red chips, nine green chips, three yellow chips, and six blue chips. Find each probability. drawing a yellow chip, replacing it, and choosing a blue chip. Use distributive property to evaluate the expression 5(4/1/5) What is the probability of rolling a number less than three on a six-sided die? Please Help me with this math question Why HPE education is made compulsory in the secondary level of education in nepal?Give reason. The basic unit in which data are stored in an accounting system is called an __________. These storage units should be so constructed as to readily receive money measurements of the __________ or ___________ in the items for which they are established. How has your learning inside and outside of the classroom changed your perspective about experiences you have in school and life in general Calculate the concentration of H3O+ in a solution that contains 5.5 10-5 M OH- at 25C. Identify the solution as acidic, basic, or neutral. On February 3, 1969, New York lawyer and businessman _______________ was appointed the Beatles' business manager, as John was impressed by what the man had done financially for the Rolling Stones. Please help me with this!!! In response to the financial crisis, the Fed and the U.S. Treasury took all of the following policy actions except _______.a. lowering tax rates on commercial bank profitsb. The Troubled Asset Relief Program Read the passage and answer the question: Leonard Zachary Bartholomew is the greatest cat who ever lived. When he lounges on the windowsill and watches birds and joggers, the entire neighborhood is filled with his benevolent presence. Which term best describes the passage? A. Situational irony B. Hyperbole C. Understatement D. Imagery Which of the following is NOT a product of the electrolysis of NaCl? A. Chlorine gas B. None of these C. Hydrogen gas D. Oxygen gas A newly licensed nurse is attending the hospital orientation training class. Which statement made by the newly licensed nurse indicates understanding of the term "point of care"?a. "Point of care refers to interventions or testing that takes place using a transportable, portable, or a handheld device near or at the bedside of the client."b. "Point of care refers to the name of the handheld device."c. "Point of care interventions and testing do not include any type of specimen testing."d. "Point of care refers only to testing that takes place using a handheld device near the client."