There is a hydraulic system that by means of a 5 cm diameter plunger to which a 5 N force is applied and that force is transmitted by means of a fluid to a 1 meter diameter plunger. Determine how much force can be lifted by the 1 m diameter plunger,

1) - 234 N
2) - 800 N
3) - 636 N
4) - 600 N

Answers

Answer 1

Explanation:

Pressure is the same for both plungers.

P = P

F / A = F / A

F / (¼ π d²) = F / (¼ π d²)

F / d² = F / d²

5 N / (0.05 m)² = F / (1 m)²

F = 2000 N

None of the options are correct.


Related Questions

A viewing screen is separated from a double slit by 5.20 m. The distance between the two slits is 0.0300 mm. Monochromatic light is directed toward the double slit and forms an interference pattern on the screen. The first dark fringe is 3.70 cm from the center line on the screen.

Required:
a. Determine the wavelength of light.
b. Calculate the distance between the adjacent bright fringes.

Answers

Answer:

The wavelength of this light is approximately [tex]427\; \rm nm[/tex] ([tex]4.27\times 10^{-7}\; \rm m[/tex].)The distance between the first and central maxima is approximately [tex]7.40\; \rm cm[/tex] (about twice the distance between the first dark fringe and the central maximum.)  

Explanation:

Wavelength

Convert all lengths to meters:

Separation of the two slits: [tex]0.0300\; \rm mm = 3.00\times 10^{-5}\; \rm m[/tex].Distance between the first dark fringe and the center of the screen: [tex]3.70\; \rm cm = 3.70\times 10^{-2}\; \rm m[/tex].

Refer to the diagram attached (not to scale.) Assuming that the screen is parallel to the line joining the two slits. The following two angles are alternate interior angles and should be equal to each other:

The angle between the filter and the beam of light from the lower slit, andThe angle between the screen and that same beam of light.

These two angles are marked with two grey sectors on the attached diagram. Let the value of these two angles be [tex]\theta[/tex].

The path difference between the two beams is approximately equal to the length of the segment highlighted in green. In order to produce the first dark fringe from the center of the screen (the first minimum,) the length of that segment should be [tex]\lambda / 2[/tex] (one-half the wavelength of the light.)

Therefore:

[tex]\displaystyle \cos \theta \approx \frac{\text{Path difference}}{\text{Slit separation}} = \frac{\lambda / 2}{3.00\times 10^{-5}\; \rm m}[/tex].

On the other hand:

[tex]\begin{aligned} \cot \theta &\approx \frac{\text{Distance between central peak and first minimum}}{\text{Distance between the screen and the slits}} \\ &= \frac{3.70\times 10^{-2}\; \rm m}{5.20\; \rm m} \approx 0.00711538\end{aligned}[/tex].

Because the cotangent of [tex]\theta[/tex] is very close to zero,

[tex]\cos \theta \approx \cot \theta \approx 0.00711538[/tex].

[tex]\displaystyle \frac{\lambda /2}{3.00\times 10^{-5}\; \rm m} \approx \cos\theta\approx 0.00711538[/tex].

[tex]\begin{aligned}\lambda &\approx 2\times 0.00711538 \times \left(3.00\times 10^{-5}\; \rm m\right) \\ &\approx 4.26 \times 10^{-7}\; \rm m = 426\; \rm nm\end{aligned}[/tex].

Distance between two adjacent maxima

If the path difference is increased by one wavelength, then the intersection of the two beams would move from one bright fringe to the next one.

The path difference required for the central maximum is [tex]0[/tex].The path difference required for the first maximum is [tex]\lambda[/tex].The path difference required for the second maximum is [tex]2\,\lambda[/tex].

On the other hand, if the distance between the maximum and the center of the screen is much smaller than the distance between the screen and the filter, then:

[tex]\begin{aligned}&\frac{\text{Distance between image and center of screen}}{\text{Distance between the screen and the slits}} \\ &\approx \cot \theta \\ &\approx \cos \theta \\ &\approx \frac{\text{Path difference}}{\text{Slit separation}}\end{aligned}[/tex].

Under that assumption, the distance between the maximum and the center of the screen is approximately proportional to the path difference. The distance between the image (the first minimum) and the center of the screen is [tex]3.70\; \rm cm[/tex] when the path difference is [tex]\lambda / 2[/tex]. The path difference required for the first maximum is twice as much as that. Therefore, the distance between the first maximum and the center of the screen would be twice the difference between the first minimum and the center of the screen: [tex]2 \times 3.70\; \rm cm = 7.40\; \rm cm[/tex].

A 590-turn solenoid is 12 cm long. The current in it is 36 A . A straight wire cuts through the center of the solenoid, along a 4.5-cm diameter. This wire carries a 27-A current downward (and is connected by other wires that don't concern us).
What is the magnitude of the force on this wire assuming the solenoid's field points due east?

Answers

Complete Question

A 590-turn solenoid is 12 cm long. The  current in it is 36 A . A 2 cm straight wire cuts through the center of the solenoid, along a 4.5-cm diameter. This wire carries a 27-A current downward (and is connected by other wires that don't concern us).

What is the magnitude of the force on this wire assuming the solenoid's field points due east?

Answer:

The force is  [tex]F = 0.1602 \ N[/tex]

Explanation:

From the question we are told that

   The number of turns is  [tex]N = 590 \ turns[/tex]

   The  length of the solenoid is  [tex]L = 12 \ cm = 0.12 \ m[/tex]

   The current is  [tex]I = 36 \ A[/tex]

   The  diameter is  [tex]D = 4.5 \ cm = 0.045 \ m[/tex]

   The  current carried by the wire is  [tex]I = 27 \ A[/tex]

    The  length of the wire is  [tex]l = 2 cm = 0.02 \ m[/tex]

Generally the magnitude of the force  on this wire assuming the solenoid's field points due east is mathematically represented as

           [tex]F = B * I * l[/tex]

Here  B  is the magnetic field which is mathematically represented as

          [tex]B = \frac{\mu_o * N * I }{L}[/tex]

Here   [tex]\mu _o[/tex] is permeability of free space with value  [tex]\mu_ o = 4\pi *10^{-7} \ N/A^2[/tex]

substituting values

         [tex]B = \frac{4 \pi *10^{-7} * 590 * 36 }{ 0.12}[/tex]

           [tex]B = 0.2225 \ T[/tex]

So

      [tex]F = 0.2225 * 36 * 0.02[/tex]

      [tex]F = 0.1602 \ N[/tex]

A deep-space vehicle moves away from the Earth with a speed of 0.870c. An astronaut on the vehicle measures a time interval of 3.10 s to rotate her body through 1.00 rev as she floats in the vehicle. What time interval is required for this rotation according to an observer on the Earth

Answers

Answer:

t₀ = 1.55 s

Explanation:

According to Einstein's Theory of Relativity, when an object moves with a speed comparable to speed of light, the time interval measured for the event, by an observer in  motion relative to the event is not the same as measured by an observer at rest.

It is given as:

t = t₀/[√(1 - v²/c²)]

where,

t = time measured by astronaut in motion = 3.1 s

t₀ = time required according to observer on earth = ?

v = relative velocity = 0.87 c

c = speed of light

3.1 s = t₀/[√(1 - 0.87²c²/c²)]

(3.1 s)(0.5) = t₀

t₀ = 1.55 s

Answer:

The time interval required for this rotation according to an observer on the Earth = [tex]6.29sec[/tex]

Explanation:

Time interval required for this rotation according to an observer on the Earth is given as [tex]\delta t[/tex]

where,

[tex]t_o = 3.1\\\\v = 0.87[/tex]

[tex]\delta t = \frac{t_o}{\sqrt{1-\frac{v^2}{c^2}}}\\\\\delta t = \frac{3.1}{\sqrt{1-(\frac{0.87c}{c})^2}}\\\\\delta t = 6.29sec[/tex]

For more information visit

To get an idea of the order of magnitude of inductance, calculate the self-inductance in henries for a solenoid with 1500 loops of wire wound on a rod 13 cm long with radius 2 cm

Answers

Answer:

The self-inductance in henries for the solenoid is 0.0274 H.

Explanation:

Given;

number of turns, N = 1500 turns

length of the solenoid, L = 13 cm = 0.13 m

radius of the wire, r = 2 cm = 0.02 m

The self-inductance in henries for a solenoid is given by;

[tex]L = \frac{\mu_oN^2A}{l}[/tex]

where;

[tex]\mu_o[/tex] is permeability of free space = [tex]4\pi*10^{-7} \ H/m[/tex]

A is the area of the solenoid = πr² = π(0.02)² = 0.00126 m²

[tex]L = \frac{4\pi *10^{-7}(1500)^2*(0.00126)}{0.13} \\\\L = 0.0274 \ H[/tex]

Therefore, the self-inductance in henries for the solenoid is 0.0274 H.

How much work is needed to pump all the water out of a cylindrical tank with a height of 10 m and a radius of 5 m

Answers

Answer:

Explanation:

volume of water being lifted

= π r² h , where r is radius of cylinder and h is height of cylinder

= 3.14 x5² x 10

= 785 m³

mass of water = 785 x 10³ kg

mass of this much of water is lifted so that its centre of mass is lifted by height

10 / 2 = 5m .

So work done = mgh , m is mass of water , h is displacement of centre of mass and g is acceleration due to gravity

= 785 x 10³ x 9.8 x 5

= 38.465 x 10⁶ J  

A nearsighted person has a far point that is 4.2 m from his eyes. What focal length lenses in diopters he must use in his contacts to allow him to focus on distant objects?

Answers

Answer:

-0.24diopters

Explanation:

The lens is intended that makes an object at infinity appear to be 4.2 m away, so do=infinity, dI = - 4.2m (minus sign because image is on same side of lens as object)

So 1/do +1/di = 1/f

1/infinity + 1/-4.2 = 1/f

1/f = 1/-4.2 = -0.24diopters

10. How far does a transverse pulse travel in 1.23 ms on a string with a density of 5.47 × 10−3 kg/m under tension of 47.8 ????? How far will this pulse travel in the same time if the tension is doubled?

Answers

Answer: Tension = 47.8N, Δx = 11.5×[tex]10^{-6}[/tex] m.

              Tension = 95.6N, Δx = 15.4×[tex]10^{-5}[/tex] m

Explanation: A speed of wave on a string under a tension force can be calculated as:

[tex]|v| = \sqrt{\frac{F_{T}}{\mu} }[/tex]

[tex]F_{T}[/tex] is tension force (N)

μ is linear density (kg/m)

Determining velocity:

[tex]|v| = \sqrt{\frac{47.8}{5.47.10^{-3}} }[/tex]

[tex]|v| = \sqrt{0.00874 }[/tex]

[tex]|v| =[/tex] 0.0935 m/s

The displacement a pulse traveled in 1.23ms:

[tex]\Delta x = |v|.t[/tex]

[tex]\Delta x = 9.35.10^{-2}*1.23.10^{-3}[/tex]

Δx = 11.5×[tex]10^{-6}[/tex]

With tension of 47.8N, a pulse will travel Δx = 11.5×[tex]10^{-6}[/tex]  m.

Doubling Tension:

[tex]|v| = \sqrt{\frac{2*47.8}{5.47.10^{-3}} }[/tex]

[tex]|v| = \sqrt{2.0.00874 }[/tex]

[tex]|v| = \sqrt{0.01568}[/tex]

|v| = 0.1252 m/s

Displacement for same time:

[tex]\Delta x = |v|.t[/tex]

[tex]\Delta x = 12.52.10^{-2}*1.23.10^{-3}[/tex]

[tex]\Delta x =[/tex] 15.4×[tex]10^{-5}[/tex]

With doubled tension, it travels [tex]\Delta x =[/tex] 15.4×[tex]10^{-5}[/tex] m

The sun generates both mechanical and electromagnetic waves. Which statement about those waves is true?
OA. The mechanical waves reach Earth, while the electromagnetic waves do not.
OB. The electromagnetic waves reach Earth, while the mechanical waves do not.
OC. Both the mechanical waves and the electromagnetic waves reach Earth.
OD. Neither the mechanical waves nor the electromagnetic waves reach Earth.

Answers

Answer: The correct answer for this question is letter (B) The electromagnetic waves reach Earth, while the mechanical waves do not. The sun generates both mechanical and electromagnetic waves. Space, between the sun and the earth is a nearly vacuum. So mechanical wave can not spread out in the vacuum.

Hope this helps!

Answer:

The electromagnetic waves reach Earth, while the mechanical waves do not

A high school physics student claims her muscle car can achieve a constant acceleration of 10 ft/s/s. Her friend develops an accelerometer to confirm the feat. The accelerometer consists of a 1 ft long rod (mass=4 kg) with one end attached to the ceiling of the car, but free to rotate. During acceleration, the rod rotates. What will be the angle of rotation of the rod during this acceleration? Assume the road is flat and straight.

Answers

Answer: Ф = 17.2657 ≈ 17°

Explanation:

we simply apply ET =0 about the ending of the rod

so In.g.L/2sinФ - In.a.L/2cosФ = 0

g.sinФ - a.cosФ = 0

g.sinФ = a.cosФ

∴ tanФ = a/g

Ф =  tan⁻¹ a / g

Ф = tan⁻¹ ( 10 / 32.17405)

Ф = tan⁻¹ 0.31080948777

Ф = 17.2657 ≈ 17°

Therefore the angle of rotation of the rod during this acceleration is 17.2657 ≈ 17°

An air-filled capacitor consists of two parallel plates, each with an area of 7.60 cm^2, separated by a distance of 1.70 mm. A 25.0-V potential difference is applied to these plates. Calculate: a. the electric field between the plates b. the surface charge density c. the capacitance d. the charge on each plate.

Answers

Answer:

(a) 1.47 x 10⁴ V/m

(b) 1.28 x 10⁻⁷C/m²

(c) 3.9 x 10⁻¹²F

(d) 9.75 x 10⁻¹¹C

Explanation:

(a) For a parallel plate capacitor, the electric field E between the plates is given by;

E = V / d               -----------(i)

Where;

V = potential difference applied to the plates

d = distance between these plates

From the question;

V = 25.0V

d = 1.70mm = 0.0017m

Substitute these values into equation (i) as follows;

E = 25.0 / 0.0017

E = 1.47 x 10⁴ V/m

(c) The capacitance of the capacitor is given by

C = Aε₀ / d

Where

C = capacitance

A = Area of the plates = 7.60cm² = 0.00076m²

ε₀ = permittivity of free space =  8.85 x 10⁻¹²F/m

d = 1.70mm = 0.0017m

C = 0.00076 x  8.85 x 10⁻¹² / 0.0017

C = 3.9 x 10⁻¹²F

(d) The charge, Q, on each plate can be found as follows;

Q = C V

Q =  3.9 x 10⁻¹² x 25.0

Q = 9.75 x 10⁻¹¹C

Now since we have found other quantities, it is way easier to find the surface charge density.

(b) The surface charge density, σ, is the ratio of the charge Q on each plate to the area A of the plates. i.e

σ = Q / A

σ = 9.75 x 10⁻¹¹ /  0.00076

σ = 1.28 x 10⁻⁷C/m²

Matter's resistance to a change in motion is called _____ and is directly proportional to the mass of an object

Answers

Answer:

Matter's resistance to a change in motion is called INERTIA and is directly proportional to the mass of an object.

Explanation:

Suppose you exert a force of 185 N tangential to the outer edge of a 1.73-m radius 76-kg grindstone (which is a solid disk).

Required:
a. What torque is exerted?
b. What is the angular acceleration assuming negligible opposing friction?
c. What is the angular acceleration if there is an opposing frictional force of 20.0 N exerted 1.50 cm from the axis?

Answers

Answer:

a. 320.06 Nm b. 2.814 rad/s² c. 2.811 rad/s².

Explanation:

a. The torque exerted τ = Frsinθ where F = tangential force exerted = 185 N, r = radius of grindstone = 1.73 m and θ = 90° since the force is tangential to the grindstone.

τ = Frsinθ

= 185 N × 1.73 m × sin90°

= 320.05 Nm

So, the torque τ = 320.05 Nm

b. Since torque τ = Iα where I = moment of inertia of grindstone = 1/2MR² where M = mass of grindstone = 76 kg and R = radius of grindstone = 1.73 m

α = angular acceleration of grindstone

τ = Iα

α = τ/I = τ/(MR²/2) = 2τ/MR²

substituting the values of the variables, we have

α = 2τ/MR²

= 2 × 320.05 Nm/[76 kg × (1.73 m)²]

= 640.1 Nm/227.4604 kgm²

= 2.814 rad/s²

So, the angular acceleration α = 2.814 rad/s²

c. The opposing frictional force produces a torque τ' = F'r' where F' = frictional force = 20.0 N and r' = distance of frictional force from axis = 1.50 cm = 0.015 m.

So  τ' = F'r' = 20.0 N × 0.015 m = 0.3 Nm

The net torque on the grindstone is thus τ'' = τ - τ' = 320.05 Nm - 0.3 Nm = 319.75 Nm

Since τ'' = Iα

α' = τ''/I where α' = its new angular acceleration

α' = 2τ/MR²

= 2 × 319.75 Nm/[76 kg × (1.73 m)²]

= 639.5 Nm/227.4604 kgm²

= 2.811 rad/s²

So, the angular acceleration α' = 2.811 rad/s²

A resistor made of Nichrome wire is used in an application where its resistance cannot change more than 1.35% from its value at 20.0°C. Over what temperature range can it be used (in °C)?

Answers

Answer:

Pls seeattached file

Explanation:

A resistor made of Ni chrome wire is used in an application where its resistance cannot be more than 1.35 % so its temperature range will be from 33.75 to -33.75 °C.

What is Resistance?

Electrical resistance, or resistance to electricity, is a force that opposes the flow of current. Ohms are used to expressing resistance values.

When there is an electron difference between two terminals, electricity will flow from high to low. In opposition to that flow is resistance. As resistance rises, the current declines. On the other side, when the resistance falls, the current rises.

According to the question,

R = R₀ (1 + α ΔT)

(1 + 0.0135)R₀ = R₀(1 + α ΔT)

ΔT = (1 + 0.0135) / α

= 0.0135 / 0.0004

= 33.75 °C.

ΔT = [(1 - 0.0135) -1]/0.004

= -33.75 °C

To get more information about Resistance :

https://brainly.com/question/11431009

#SPJ5

A car travels at 45 km/h. If the driver breaks 0.65 seconds after seeing the traffic light turn yellow, how far will the car continue to travel before it begins to slow?

Answers

Answer:

8.1 m

Explanation:

Convert km/h to m/s.

45 km/h × (1000 m/km) × (1 h / 3600 s) = 12.5 m/s

Distance = speed × time

d = (12.5 m/s) (0.65 s)

d = 8.125 m

3. What are the first steps that you should take if you are unable to get onto the Internet? (1 point)
O Check your router connections then restart your router.
O Plug the CPU to a power source and reboot the computer.
O Adjust the display properties and check the resolution.
Use the Control Panel to adjust the router settings.​

Answers

Answer:

Check your router connections then restart your router.

Explanation:

Answer:

Check your router connections then restart your router.

Explanation:

Most internet access comes from routers so the problem is most likely the router.

Adjust the mass of the refrigerator by stacking different objects on top of it. If the mass of the refrigerator is increased (with the Applied Force held constant), what happens to the acceleration

Answers

Answer:

The acceleration of the refrigerator together with the objects decreases.

Explanation:

If the mass of the refrigerator is increased by stacking more masses (objects) on it,

and the force applied remains constant, then we know from

F = ma

where

F is the applied force

m is the total mass of the refrigerator and the objects

a is the acceleration of the masses.

If F is constant, and m is increased, the acceleration will decrease

Answer:

The acceleration decreases.

Explanation:

its right

Exercise 2.4.5: Suppose we add possible friction to Exercise 2.4.4. Further, suppose you do not know the spring constant, but you have two reference weights 1 kg and 2 kg to calibrate your setup. You put each in motion on your spring and measure the frequency. For the 1 kg weight you measured 1.1 Hz, for the 2 kg weight you measured 0.8 Hz. a) Find k (spring constant) and c (damping constant). Find a formula for the mass in terms of the frequency in Hz. Note that there may be more than one possible mass for a given frequency. b) For an unknown object you measured 0.2 Hz, what is the mass of the object? Suppose that you know that the mass of the unknown object is more than a kilogram.

Answers

Answer:

a) k = 95.54 N / m,   c =   19.55 , b)      m₃ = 0.9078 kg

Explanation:

In a simple harmonic movement with friction, we can assume that this is provided by the speed

          fr = -c v

when solving the system the angular value remains

          w² = w₀² + (c / 2m)²

They give two conditions

1) m₁ = 1 kg

     f₁ = 1.1 Hz

the angular velocity is related to frequency

         w = 2π f₁

Let's find the angular velocity without friction is

         w₂ = k / m₁

we substitute

        (2π f₁)² = k / m₁ + (c / 2m₁)²

2) m₂ = 2 kg

    f₂ = 0.8 Hz

        (2π f₂)² = k / m₂ + (c / 2m₂)²

we have a system of two equations with two unknowns, so we can solve it

we solve (c / 2m)² is we equalize the expression

           (2π f₁)² - k / m₁ = (2π f₂²) 2 - k / m₁

           k (1 / m₂ - 1 / m₁) = 4π² (f₂² - f₁²)

           k = 4π² (f₂² -f₁²) / (1 / m₂ - 1 / m₁)

a) Let's calculate

           k = 4 π² (0.8² -1.1²) / (½ -1/1)

           k = 39.4784 (1.21) / (-0.5)

           k = 95.54 N / m

now we can find the constant of friction

              (2π f₁) 2 = k / m₁ + (c / 2m₁)²

           c2 = ((2π f₁)² - k / m₁) 4m₁²

           c2 = (4ππ² f₁² - k / m₁) 4 m₁²

let's calculate

           c² = (4π² 1,1² - 95,54 / 1) 4 1²

           c² = (47.768885 - 95.54) 8

           c² = -382.1689

           c =   19.55    

b) f₃ = 0.2 Hz

   m₃ =?

              (2πf₃)² = k / m₃ + (c / 2m₃) 2

we substitute the values

              (4π² 0.2²) = 95.54 / m₃ + 382.1689 2/4 m₃²

              1.579 = 95.54 / m₃ + 95.542225 / m₃²

let's call

              x = 1 / m₃

              x² = 1 / m₃²

- 1.579 + 95.54 x + 95.542225 x² = 0

              60.5080 x² + 60.5080 x -1 = 0

                x² + x - 1.65 10⁻² = 0

                  x = [1 ±√ (1- 4 (-1.65 10⁻²)] / 2

                  x = [1 ± 1.03] / 2

                  x₁ = 1.015 kg

                  x₂ = -0.015 kg

Since the mass must be positive we eliminate the second results

                  x₁ = 1 / m₃

                 m₃ = 1 / x₁

                  m₃ = 1 / 1.1015

             

A long bar slides on two contact points and is in motion with velocity ν. A steady, uniform, magnetic field B is present. The induced current through resistor R is:

Answers

Answer:

The induced current in the resistor is I = BLv/R

Explanation:

The induced emf ε in the long bar of length, L in a magnetic field of strength, B moving with a velocity, v is given by

ε = BLv.

Now, the current I in the resistor is given by

I = ε/R where ε = induced emf in circuit and R = resistance of resistor.

So, the current I = ε/R.

substituting the value of ε the induced emf, we have

I = ε/R

I = BLv/R

So, the induced current through the resistor is given by I = BLv/R

Water flows at speed v in a pipe of radius R. At what speed does the water flow through a constriction in which the radius of the pipe is R/3

Answers

Answer:

   v₂ = 9 v

Explanation:

For this exercise in fluid mechanics, let's use the continuity equation

           v₁ A₁ = v₂ A₂

where v is the velocity of the fluid, A the area of ​​the pipe and the subscripts correspond to two places of interest.

The area of ​​a circle is

           A = π R²

let's use the subscript 1 for the starting point and the subscript 2 for the part with the constraint

     

In this case v₁ = v and the area is

            A₁ = π R²

in the second point

           A₂= π (R / 3)²

we substitute in the continuity equation

           v π R² = v₂ π R² / 9

            v = v₂ / 9

           

            v₂ = 9 v

At what angle should the axes of two Polaroids be placed so as to reduce the intensity of the incident unpolarized light to

Answers

Answer:

Ok, the question is incomplete buy ill try to answer this in a general way.

Suppose that you have no-polarized light.

When that light hits one polaroid, the light becomes polarized along some line, and has an intensity I0.

Now, when polarized light hits a polaroid which axis is at an angle θ with respect to the polarization of the light, the intensity of the resulting beam is given by the Malus's law:

I(θ) = I0*cos^2(θ)

For example, if the axis of the polaroid is exactly the same as the one of the polarized light, then we have θ = 0°

and:

I(0°) = I0*cos^2(0°) = I0

So the intensity does not change.

Now, knowing the initial intensity, you can find the angle needed to get a given intensity.

For example, if the question was:

"At what angle should the axes of two Polaroids be placed so as to reduce the intensity of the incident unpolarized light to A"

We should solve:

I(θ) = A = I0*cos^2(θ)

(A/i0) = cos^2(θ)

√(A/I0) = cos(θ)

Acos(√(A/I0)) = θ

A person can see clearly up close but cannot focus on objects beyond 75.0 cm. She opts for contact lenses to correct her vision.
(a) Is she nearsighted or farsighted?
(b) What type of lens (converging or diverging) is needed to correct her vision?
(c) What focal length contact lens is needed, and what is its power in diopters?

Answers

Answer:

(a) nearsighted

(b) diverging

(c) the lens strength in diopters is 1.33 D, and considering the convention for divergent lenses normally prescribed as: -1 33 D

Explanation:

(a) The person is nearsighted because he/she cannot see objects at distances larger than 75 cm.

(b) the type of correcting lens has to be such that it counteracts the excessive converging power of the eye of the person, so the lens has to be diverging (which by the way carries by convention a negative focal length)

(c) the absolute value of the focal length (f) is given by the formula:

[tex]f=\frac{1}{d} =\frac{1}{0.75} = 1.33\,D[/tex]

So it would normally be written with a negative signs in front indicating a divergent lens.


Somebody please help it’s urgent!!!!

In the tug of war game, none of the teams won. What can you conclude about the forces of the two teams ? Write all the evidence to support your answer.

Answers

Answer:

Explanation:

We can conclude that the forces of the two teams are equal and opposite and hence they cancel each other. Therefore none of the teams won as the rope did not move.

hope this helps

plz mark as brainliest!!!!!!!

Which statement accurately describes the inner planets? Uranus is one of the inner planets. The inner planets formed when the solar system cooled. The inner planets are also called terrestrial planets. The inner planets are larger than the outer planets.

Answers

The correct answer is C. The inner planets are also called terrestrial planets.

Explanation:

Our solar system includes a total of eight planets. Additionally, planets are classified into broad categories including inner planets and outer planets. The inner planets category applies to planets such as Earth, Mercury, or Mars because these are located within the asteroid belt (region of asteroids between Mars and Jupiter). Moreover, inner planets differ from others due to their composition as they are composed of rocks and metals. Also, due to this composition, these are known as terrestrial planets. According to this, the statement that best describes inner planets is "The inner planets are also called terrestrial planets".

Answer:

The answer is c.) The inner planets are also called terrestrial planets.

Explanation:

Why was Bohr's atomic model replaced by the
modern atomic model?

Answers

Answer:

Explanation:

Bohr's atomic model was replaced by the  modern atomic model because of its limitations, which included :

(a) Only applicable for Hydrogen and like atoms ( He+1, Li+2 )

(b) Couldn't explain Zeeman Effect (splitting of spectral lines due external magnetic field ) and Stark Effect (splitting of spectral lines due to external electric field).

(c) Inconsistent with De-Broglie's Dual nature of matter and Heisenberg Uncertainty principal, etc.

What is the magnitude of the applied electric field inside an aluminum wire of radius 1.4 mm that carries a 4.5-A current

Answers

Answer:

Explanation:

From the question we are told that

    The radius is  [tex]r = 1.4 \ mm = 1.4 *10^{-3} \ m[/tex]

     The  current is  [tex]I = 4.5 \ A[/tex]

Generally the electric field is mathematically represented as

         [tex]E = \frac{J}{\sigma }[/tex]

Where [tex]\sigma[/tex] is the conductivity of  aluminum with value [tex]\sigma = 3.5 *10^{7} \ s/m[/tex]

J is the current density which mathematically represented as  

      [tex]J = \frac{I}{A}[/tex]

Here A is the cross-sectional area which is mathematically represented as  

       [tex]A = \pi r^2[/tex]

       [tex]A = 3.142 * (1.4*10^{-3})^2[/tex]

       [tex]A = 6.158*10^{-6} \ m^2[/tex]

So

    [tex]J = \frac{ 4.5 }{6.158*10^{-6}}[/tex]

    [tex]J = 730757 A/m^2[/tex]

So

       [tex]E = \frac{ 730757}{3.5*10^{7} }[/tex]

       [tex]E = 0.021 \ N/C[/tex]

You plan to take your hair blower to Europe, where the electrical outlets put out 240 V instead of the 120 V seen in the United States. The blower puts out 1700 W at 120 V.Required:a. What could you do to operate your blower via the 240V line in Europe? which one is it?b. What current will your blower draw from a European outlet?c. What resistance will your blower appear to have when operated at 240 ?

Answers

Answer:

a) Connect a series resistance of 8,47 ohms

b)14,16 [A]

c) r = 10,96 ohms

Explanation:

My blower requires 120 (v) then, I have to connect a series resistor to make the nominal 240 (v) of the European voltage outlet drop to 120 (V) but at the same time keep the level of current to operate my blower

In America

P = V*I

1700 (w) = 120*I

I = 1700/120 [A]

I = 14,16 [A]        current needed for the blower

In Europe

120 (v)  (the drop of voltage I need) when a current of 14,16 passes through to series  resistor is

V = I*R          120 = 14,16* R         R = 8,47 ohms

c) P = I*r²

1700 (w) = 14,16 (A) * r²

r² = 120,06

r = 10,96 ohms

The highest mountain on mars is olympus mons, rising 22000 meters above the martian surface. If we were to throw an object horizontaly off the mountain top, how long would it take to reach the surface? (Ignore atmospheric drag forces and use gMars=3.72m/s^2

a. 2.4 minutes
b. 0.79 minutes
c. 1.8 minutes
d. 3.0 minutes

Answers

Answer:

  t = 1.81 min ,     the correct answer is c

Explanation:

This is a missile throwing exercise

The object is thrown horizontally, so its vertical speed is zero (voy = 0), let's use the equation

             y = y₀ + [tex]v_{oy}[/tex] t - ½ g t²

the final height is y = 0 and the initial height is y₀ = 22000 m

            0 = y₀ + 0 - ½ g t²

             

            t = √y 2y₀ / g

let's calculate

           t = √(2  22000 / 3.72)

           t = 108.76 s

let's reduce to minutes

           t = 108.76 s (1 min / 60 s)

           t = 1.81 min

The correct answer is c

A string is stretched and fixed at both ends, 200 cm apart. If the density of the string is 0.015 g/cm, and its tension is 600 N, what is the wavelength (in cm) of the first harmonic?

Answers

Answer:

200cm

Explanation:

Answer:

100cm

Explanation:

Using

F= ( N/2L)(√T/u)

F1 will now be (0.5*2)( √600/0.015)

=> L( wavelength)= 200/2cm = 100cm

If the
refractive index of benzere is 2.419,
what is the speed of light in benzene?

Answers

Answer:

[tex]v=1.24\times 10^8\ m/s[/tex]

Explanation:

Given that,

The refractive index of benzene is 2.419

We need to find the speed of light in benzene. The ratio of speed of light in vacuum to the speed of light in the medium equals the refractive index. So,

[tex]n=\dfrac{c}{v}\\\\v=\dfrac{c}{n}\\\\v=\dfrac{3\times 10^8}{2.419}\\\\v=1.24\times 10^8\ m/s[/tex]

So, the speed of light in bezene is [tex]1.24\times 10^8\ m/s[/tex].

What is the minimum thickness of coating which should be placed on a lens in order to minimize reflection of 566 nm light? The index of refraction of the coating material is 1.46 and the index of the glass is 1.71.

Answers

Answer:

The  thickness is   [tex]t = 1.415 *10^{-7 } \ m[/tex]

Explanation:

From the question we are told that

    The wavelength is  [tex]\lambda = 566 \ nm = 566 *10^{-9} \ m[/tex]

     The  index of refraction of glass is  [tex]n_g = 1.71[/tex]

     The index of refraction of the coating is  [tex]n= 1.46[/tex]

Generally the condition for destructive interference is  

         [tex]2 t = (m + \frac{1}{2} ) * \frac{\lambda }{n }[/tex]

Here m is the order of the interference pattern and given from the question that we are considering minimizing  reflection  m = 0

t = thickness of the coating

substituting values

         [tex]2 t = (0 + \frac{1}{2} ) * \frac{ 566 *10^{-9}}{ 1.46 }[/tex]

    =>    [tex]t = 1.415 *10^{-7 } \ m[/tex]

           

Other Questions
How does H. G. Wells refute the theory of social Darwinism in The Time Machine? Currents in DC transmission lines can be 100 A or higher. Some people are concerned that the electromagnetic fields from such lines near their homes could pose health dangers. A. For a line that has current 150 A and a height of 8.0 m above the ground, what magnetic field does the line produce at ground level? Express your answer in teslas. B. What magnetic field does the line produce at ground level as a percent of earth's magnetic field which is 0.50 G? C. Is this value of magnetic field cause for worry? Choose your answer below. i. Yes. Since this field does not differ a lot from the earth's magnetic field, it would be expected to have almost the same effect as the earth's field. ii. No. Since this field is much lesser than the earth's magnetic field, it would be expected to have less effect than the earth's field. iii. Yes. Since this field is much greater than the earth's magnetic field, it would be expected to have more effect than the earth's field. iv. No. Since this field does not differ a lot from the earth's magnetic field, it would be expected to have almost the same effect as the earth's field. Find the odds in favor and the odds against a randomly selected person from Country X, age 25 and over, with the stated amount of education. four years (or more) of college BRAINLIEST IF CORRECT!!! and 15 points solve for z -cz + 6z = tz + 83 Sodium hydroxide and water will react at room temperature. What does this indicate about its activation energy? A. The activation energy is very low. B. The activation energy is at exactly 600 kJ. C. The activation energy is very high. D. The reaction cannot reach activation energy. Jeremy drove 180 miles in 3 hours. Find his average rate of change. Which word or phrase best completes this sentence? Lupe: El vendedor est ____________ el sof y le doy dinero al vendedor. A. me vendiendo B. vendindote C. nos vendiendo D. vendindome Having trouble.. help? You have a lightweight spring whose unstretched length is 4.0 cm. First, you attach one end of the spring to the ceiling and hang a 1.8 g mass from it. This stretches the spring to a length of 5.1 cm . You then attach two small plastic beads to the opposite ends of the spring, lay the spring on a frictionless table, and give each plastic bead the same charge. This stretches the spring to a length of 4.3 cm .Requried:What is the magnitude of the charge (in nC) on each bead? URGENT PLZ!! Drag the correct transformation into the box to match the definition. [BLANK]... moves points across a specified line so that the line is the perpendicular bisector of each line segment connecting corresponding preimage and image points. Translation Rotation Reflection There are 10 students on the basketball team. The coach selects 3 of them to go to the basketball clinic. In how many ways can she choose 3 of the 10 students? Which equations has no solution? Find the surface area of asphere with a diameter of15 in.Can someone please explain how? Evaluate 9x*2 y*2 for x = 3 and y = 2. Answers: What information do you need in order to determine the total distance Sam drives versus the actual displacement between his starting and ending points? 10. A sample of 60 mutual funds was taken and the mean return in the sample was 13% with a standard deviation of 6.9%. The return on a particular index of stocks (against which the mutual funds are compared) was 11.5%. Therefore, the test statistic is 1.68. When testing the hypothesis that the average return on actively-managed mutual funds is higher than the return on an index of stocks, if the critical value is 1.96, what is your conclusion concerning the null hypothesis 5. The speed of a transverse wave on a string is 170 m/s when the string tension is 120 ????. To what value must the tension be changed to raise the wave speed to 180 m/s? 5. The cost of movie tickets at theCinema Verite is 9 dollars for adultsand five dollars for children under 12.During the Saturday and Sundaymatinees, adults are charged 8 dollarsfor admission and children under 12are charged 4 dollars. At any time atall, there is a group discount for groupsof 15 or more adults at a cost of 6dollars per ticket. What is the cost for 2adults and 3 children during theSaturday matinee?a. 27b. 28C. 14d. 32 Explain how growth in the demand for Australia's natural resources would affect the demand for Australian dollars in the foreign exchange market. Explain how the supply of Australian dollars would change. If cot Theta = Two-thirds, what is the value of csc Theta? StartFraction StartRoot 13 EndRoot Over 3 EndFraction Three-halves StartFraction StartRoot 13 EndRoot Over 2 EndFraction Eleven-thirds