Answer:
Reflection.
Step-by-step explanation:
Reflection moves points across a specified line so that the line is the perpendicular bisector of each line segment connecting corresponding pre-image and image points.
On the other hand, "Translation" moves points the same distance along lines that are parallel to each other while "Rotation" moves points along concentric circles and through the same angle of rotation.
At an angle of 90°, a line of reflection intersects the line segments connecting corresponding points of the pre-image under a reflection.
Basically, a reflection allows us to flip an object or figure across a line, point or plane without any change in its shape or size.
Hence, to reflect an object or a figure such as a triangle simply means that its mirror image would be produced with respect to a line; this line is generally referred to as the line of reflection.
What is the rule for the transformation below?
=================================================
Explanation:
The translation notation T(-5, 3) looks like an ordered pair point, but it is not. Instead, it is a rule to tell you how to shift any point left/right and up/down. The first number is the left/right shifting as its done along the x axis. The negative value means we shift left, so we shift 5 units to the left. The positive 3 in the y coordinate place means we shift 3 units up.
We see this shifting happen when we go from
A = (-1, -1) to A ' = (-6, 2) B = (2, 3) to B ' = (-3, 6)C = (5, -3) to C ' = (0, 0)The translation notation T(-5, 3) is the same as writing [tex](x,y) \to (x-5, y+3)[/tex] which may be a more descriptive notation to use, and it would avoid confusion with ordered pair point notation.
The ratio of two numbers is 2:3 and the sum of their cubes is 945,what are the two numbers. let the 1st no be=2x and 2nd=3x (2x)^3 + (3x)^3=945
Answer:
The first number is 6, the second number is 9Step-by-step explanation:
a:b = 2:3
a = 2x - first number
b = 3x - second number
a³ + b³ = 945
[tex](2x)^3 + (3x)^3=945\\\\8x^3 +27x^3=945\\\\35x^3 = 945\\\\x^3=945:35\\\\x^3=27\\\\ x^3=3^3\\\\x=3\\\\\\a=2\cdot3 = 6\\\\b=3\cdot3=9[/tex]
ux=x+y/k, solve for x
Answer:
x = y/( ku-1)
Step-by-step explanation:
Here in this question, we are asked to solve for x.
we have;
Ux = x+ u/ k
cross multiply;
k * Ux = x + y
kUx = x + y
kUx- x = y
x(KU-1) = y
x = y/( ku-1)
The expression (x-6)^2 is equivalent to
Answer:
2−12x+36
Step-by-step explanation:
Answer:
(x-6)² = (x-6)(x-6) = x² - 12x + 36
Step-by-step explanation:
Check whether 301 is a term of the list of numbers 5, 11, 17, 23, . . .
Answer:
not a term
Step-by-step explanation:
There is a common difference between consecutive terms in the sequence, that is
d = 11- 5 = 17 - 11 = 23 - 17 = 6
This indicate the sequence is arithmetic with n th term
[tex]a_{n}[/tex] = a₁ + (n - 1)d
where a₁ is the first term and d the common difference
Here a₁ = 5 and d = 6, thus
[tex]a_{n}[/tex] = 5 + 6(n - 1) = 5 + 6n - 6 = 6n - 1
Equate this to 301 and solve for n
6n - 1 = 301 ( add 1 to both sides )
6n = 302 ( divide both sides by 6 )
n = 50.333....
Since n is not an integer value then 301 is not a term in this sequence.
Simplify the expression a-2b, when a=1.4 - 2x and b=-0.2x + 1.7 *
Answer:
a-2b= -1.6x-2.0
Step-by-step explanation:
[tex]a=1.4-2x\\b=-0.2x+1.7\\a-2b= (1.4-2x)-2(-0.2x+1.7)\\a-2b= 1.4-2x+0.4x-3.4\\a-2b=-1.6x-2.0\\[/tex]
{By, substituting the values of a and b in a-2b , we can find the value of a-2b}
Write each expression using a positive exponent. ("/" means division)("^" means to the power of) 9^-4
Answer:
[tex]\frac{1}{9^4}[/tex].
Step-by-step explanation:
[tex]9^{-4}[/tex]
= [tex]\frac{1}{9^4}[/tex]
= [tex]\frac{1}{9 * 9 * 9 * 9}[/tex]
= [tex]\frac{1}{81 * 81}[/tex]
= [tex]\frac{1}{6561}[/tex]
= 0.0001524157903.
Hope this helps!
Parabolic microphones are used for field audio during sports events. The microphones are manufactured such that the equation of their cross section is x=1/34y^2, in inches. The feedhorn part of the microphone is located at the focus
a. How far is the feedhorn from the edge of the parabolic surface of the microphone?
b. What is the diameter of the microphone? Explain your reasoning
c. If the diameter is increased by 5 inches, what is the new equation of the cross section of the microphone?
Answer:
a. 8.5 in.
b. 34 in
c. x = 1/39 x^2.
Step-by-step explanation:
Part a.
x = 1/34 y^2
y^2 = 34x
Comparing with y^2 = 4px where p is the focus:
4p = 34
p = 8.5 in.
Part b.
The diameter = 4p = 34 in.
Part c.
Diameter = 4p = 34 + 5 = 39 in
The new equation is x = 1/39 x^2.
If a and b are acute angles such that tan (a+b)= 1.73 and tan(a-b) =1/1.73, find a and b
[tex] \LARGE{ \underline{ \boxed{ \orange{ \rm{Solution:)}}}}}[/tex]
Given,tan (a + b) = 1.73 [tex]\approx[/tex] √3tan (a - b) = 1 / 1.83 [tex]\approx[/tex] 1 / √3To find:Value of a and b in degrees....?Solution:☃️ Refer to the trigonometric table....
Then, proceeding
⇛ tan 60 ° = √3
⇛ tan 60° = tan (a + b)
⇛ 60° = a + b
Flipping it,
⇛ a + b = 60° --------(1)
And,
⇛ tan 30° = 1 / √3
⇛ tan 30° = tan (a - b)
⇛ 30° = a - b
Flipping it,
⇛ a - b = 30° ---------(2)
Now adding eq.(1) and eq.(2),
⇛ a + b + a - b = 60° + 30°
⇛ 2a = 90°
⇛ a = 90° / 2
⇛ a = 45°
Putting value of a in eq.(1),
⇛ 45° + b = 60°
⇛ b = 15°
☄ So, Our Required answers:
a = 45°b = 15°━━━━━━━━━━━━━━━━━━━━
Please help me Tramserran mam...
Answer: see proof below
Step-by-step explanation:
Use the following when solving the proof...
Double Angle Identity: cos2A = 1 - 2sin²B
Pythagorean Identity: cos²A + sin²A = 1
note that A can be replaced with B
Proof from LHS → RHS
Given: cos²A + sin²A · cos2B
Double Angle Identity: cos²A + sin²A(1 - 2sin²B)
Distribute: cos²A + sin²A - 2sin²A·sin²B
Pythagorean Identity: 1 - 2sin²A·sin²B
Pythagorean Identity: cos²B + sin²B - 2sin²A·sin²B
Factor: cos²A + sin²B(1 - 2sin²A)
Double Angle Identity: cos²B + sin²B · cos2A
cos²B + sin²B · cos2A = cos²B + sin²B · cos2A [tex]\checkmark[/tex]
Two shaded identical rectangular decorative tiles are first placed (one each) at the top and at the base of a door frame for a hobbit's house, as shown in Figure 1. The distance from W to H is 45 inches. Then the same two tiles are rearranged at the top and at the base of the door frame, as shown in Figure 2. The distance from Y to Z is 37 inches. What is the height of the door frame, in inches?
Answer:
41 inches
Step-by-step explanation:
Let the point at the top of the door on the left be x
Wx + xH = 45
Let the point at the top of the door on the right be c
Yc + cZ = 37
We know the door is
xH + plus the width of the tile
The width of the tile is Yc
xH + Yc
On the right door
cZ + the height of the tile
cZ + Wx
Add the two doors together
xH + Yc + cZ + Wx = 2 times the height of the door
Rewriting
xH + Wx + Yc + cZ = 2 times the height of the door
45+ 37 = 2 times the door height
82 = 2 times the door height
Divide by 2
41 = door height
Triangle A' B' C' is a dilation of a triangle ABC. The scale factor is [tex]\frac{3}{4}[/tex]. Point B is 11 inches away from the center of dilation is point B'?
Answer:
None of the options are correct
Step-by-step explanation:
Let us assume point B is at (x, y) and the center of dilation is at (a, b). Therefore the distance between the two points is:
[tex]Distance =\sqrt{(b-y)^2+(a-x)^2}=11 \\\\\sqrt{(b-y)^2+(a-x)^2}=11[/tex]
If Triangle ABC is then dilated by 3/4, the new coordinate is B'(3/4 (x-a) + a, 3/4 (y - b) + b). The distance between B' and the center of dilation would be:
[tex]Distance =\sqrt{(b-[\frac{3}{4}( y-b)+b])^2+(a-[\frac{3}{4} (x-a)+a])^2}[/tex]
Therefore the distance cannot be gotten until the center of dilation is given
If PR = 4X - 2 AND RS = 3X - 5 which expression represents PS?
Answer:
7x - 7
Step-by-step explanation:
If PR, RS, and PS are line segments then the equation below will work.
PR + RS = PS
(4x-2) + (3x-5) = 7x - 7
Given an angle of a triangle and the opposite side length; which trigonometric function would you use to find the hypotenuse? a TAN b COS c SIN d Not enough information
Answer:
Sin
Step-by-step explanation:
Sin < = opposite/hypotenuse
Mildred’s salary has increased from £24,600 to £25,338. By what percentage has her salary increase?
Answer:
The answer is 3%Step-by-step explanation:
To find the percentage increase we use the formula
[tex]Percentage \: change = \frac{ change}{original \: quantity} \times 100[/tex]
To find the change subtract the smaller quantity from the bigger one
From the question
original price = $24,600
Current price = $ 25,338
Change = $25,338 - $ 24,600
Change = $ 738
So the percentage increase is
[tex] \frac{738}{24600} \times 100[/tex]
[tex] = \frac{3}{100} \times 100[/tex]
We have the final answer as
Percentage increase = 3%Hope this helps you
Find the value of x. A. 53–√ m B. 241−−√ m C. 6 m D. 6+35–√ m
Answer:
x = 2√41 mStep-by-step explanation:
Since the triangle is a right angled triangle we can use Pythagoras theorem to find the missing side x
Using Pythagoras theorem we have
a² = b² + c²
where a is the hypotenuse
From the question x is the hypotenuse
So we have
[tex] {x}^{2} = {8}^{2} + {10}^{2} [/tex][tex] {x}^{2} = 64 + 100[/tex][tex] {x}^{2} = 164[/tex]Find the square root of both sides
We have the final answer as
x = 2√41 mHope this helps you
Answer:
2 sqrt(41) =c
Step-by-step explanation:
Since this is a right triangle, we can use the Pythagorean theorem
a^2 + b^2 = c^2
8^2 + 10^2 = c^2
64+ 100 = c^2
164 = c^2
take the square root of each side
sqrt(164) = sqrt(c^2)
sqrt(4*41) = c
2 sqrt(41) =c
Multiply and simplify. (1 − 5i)(1 − 2i) A) 1 + 7i B) 9 − 7i C) 1 − 7i D) − 9 − 7i
Answer:
The product renders: [tex]-9-7\,i[/tex]
Step-by-step explanation:
Recall that the product of the imaginary unit i by itself renders -1
Now proceed with the product of the two complex numbers using distributive property:
[tex](1-5\,i)\,(1-2\,i)=1-2\,i-5\,i+10\,i^2=1-7\,i-10=-9-7\,i[/tex]
Need to find the Domain and Range
Answer:
D: {x∈R | -2 ≤ x ≤ 2 }
R: {y∈R | 0 ≤ y ≤ 4 }
Step-by-step explanation:
The domain ranges between -2 and 2
The range ranges between 0 and 4
An air traffic controller spots two airplanes at the same altitude converging to a point as they fly at right angles to each other. One airplane is 150 miles from the point and has a speed of 300 miles per hour. The other is 200 miles from the point and has a speed of 400 miles per hour.(a) At what rate is the distances between the planes decreasing?(b) How much time does the air traffic controller have to get one of the planes on a different flight path?
Answer:
The answer to this question can be defined as follows:
In option A, the answer is "- 357.14 miles per hour".
In option B, the answer is "-0.98".
Step-by-step explanation:
Given:
[tex]\frac{dx}{dt} =- 300 \text{ miles per hour}[/tex]
[tex]\frac{dy}{dt} =- 400 \text{ miles per hour}[/tex]
find:
[tex]\frac{ds}{dt} =?[/tex] when
[tex]x= 150 \\y= 200\\s=x+y\\\\[/tex]
[tex]= 150+200 \\\\=350[/tex]
[tex]\to s^2=x^2+y^2\\[/tex]
differentiate the above value:
[tex]\to 2s\frac{ds}{dt}= 2x \frac{dx}{dt}+2y \frac{dy}{dt}[/tex]
[tex]\to 2s\frac{ds}{dt}= 2(x \frac{dx}{dt}+y \frac{dy}{dt})\\\\\to \frac{ds}{dt}= \frac{(x \frac{dx}{dt}+y \frac{dy}{dt})}{s}\\\\[/tex]
[tex]= \frac{(150 \times -300 +200 \times -400 )}{350}\\\\= \frac{-45000+ (-80000) }{350}\\\\= \frac{- 125000 }{350}\\\\= - 357.14 \ \text{miles per hour}[/tex]
In option B:
[tex]\to d=rt\\\\ \to t= \frac{d}{r}[/tex]
[tex]\to \ \ d= 350 \ \ \ \ \ \ r= -357.14\\[/tex]
[tex]\to t= - \frac{350}{357.14}\\\\\to t= - 0.98[/tex]
Please explain and help
Answer:
y=-x+2
Step-by-step explanation:
it is linear equation y=mx+b two points (0,2),(1,1)
find m ( slope)=y2-y1/x2-x1 ⇒1-2/1-0⇒-1
y=mx+b choosea point from graph :(0,2)\when x =0 the y=b=2
y=-x+2
2x + 3y = 40
5x + 2y = 30
●✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎❀✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎●
Hi my lil bunny!
❧⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯☙
A) Let's solve for x. [tex]2x + 3y = 40[/tex]
Step 1: Add -3y to both sides.
[tex]2x + 3y + -3y = 40 + -3y[/tex]
[tex]2x = -3y + 40[/tex]
Step 2: Divide both sides by 2.
[tex]\frac{2x}{2} = \frac{-3y + 40}{2}[/tex]
[tex]x = \frac{-3}{2} y + 20[/tex]
Answer : [tex]\frac{-3}{2} y + 20[/tex]
~~~~~~~~~~~~~~~~~
B) Let's solve for x. [tex]5x + 2y = 30[/tex]
Step 1: Add -2y to both sides.
[tex]5x + 2y + -2y = 30 + -2y[/tex]
[tex]5x = -2y + 30[/tex]
Step 2: Divide both sides by 5.
[tex]\frac{5x}{5} = \frac{-2y + 30}{5}[/tex]
[tex]x = \frac{-2}{5} y + 6[/tex]
Answer : [tex]\frac{-2}{5} y + 6[/tex]
❧⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯☙
●✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎❀✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎●
Hope this helped you.
Could you maybe give brainliest..?
❀*May*❀
The marketing department at Quality Home Improvement Center (QHIC) uses simple linear regression analysis to predict home upkeep expenditure on the basis of home value. Predictions of home upkeep expenditures are used to help determine which homes should be sent advertising brochures promoting QHIC's products and services.
Full question :
The Tasty Sub Shop Case:
A business entrepreneur uses simple linear regression analysis to predict the yearly revenue for a potential restaurant site on the basis of the number of residents living near the site. The entrepreneur then uses the prediction to assess the profitability of the potential restaurant site.
And
The QHIC Case:
The marketing department at Quality Home Improvement Center (QHIC) uses simple linear regression analysis to predict home upkeep expenditure on the basis of home value. Predictions of home upkeep expenditures are used to help determine which homes should be sent advertising brochures promoting QHIC’s products and services.
Discuss the difference in the type of prediction in both cases and provide rational of the reasons that these predictions were used.
Answer and explanation:
In the first case, The Tasty Sub Shop Case, the entrepreneur aims to utlilize the predicted values from his regression analysis in ascertaining profit of his potential business. He does this using the values from number of residents in the area(independent variables) to predict the revenue for his business(dependent variables). His predictions using the number of residents in the area are largely because the residents in the area are his target consumers and are the ones to buy food from his restaurant and increase his revenue.
In the other case, the marketing department in QHIC utilizes the predicted values in determining their customers who need to be aware of their products. They get the predicted values(home upkeep expenditure and dependent variable) by plotting their relationship with home value(independent variable) and then use predicted values of home upkeep expenditures in determining their customers who they will market their products to. They do this because predicting home upkeep expenditures will enable them determine what homes can afford or will need their products and services.
one utilizes his predictions at ascertaining profit while the other uses his predictions in determining potential customer base to market products to. The first case is making a revenue/ profitability prediction while the other is making a market prediction
[tex] \frac{ {9x}^{2} - {(x}^{2} - 4) {}^{2} }{4 + 3x - {x}^{2} } [/tex]
pls help me need help asap
Answer:
[tex] { x^2+3x-4} [/tex]
Step-by-step explanation:
Factor top and bottom.
The numerator is a difference of two squares, and the denominator is a quadratic.
[tex] \frac{ {9x}^{2} - {(x}^{2} - 4)^{2} }{4 + 3x - {x}^{2} } [/tex]
= [tex]\frac{ (3x+x^2-4)(3x-x^2+4) }{(1+x)(4-x)}[/tex]
= [tex] \frac{ (x-1)(x+4) (1+x)(4-x) }{(1+x)(4-x)} [/tex]
If x does not equal -1 and does not equal 4, we can cancel the common factors in italics to give
= [tex] { (x-1)(x+4)} [/tex]
= [tex] { x^2+3x-4} [/tex]
Answer:
The answer is
x² + 3x - 4Step-by-step explanation:
[tex] \frac{9 {x}^{2} - ( { {x}^{2} - 4})^{2} }{4 + 3x - {x}^{2} } [/tex]
To solve the expression first factorize both the numerator and the denominator
For the numerator
9x² - ( x² - 4)²
Expand the terms in the bracket using the formula
( a - b)² = a² - 2ab + b²
(x² - 4) = x⁴ - 8x² + 16
So we have
9x² - (x⁴ - 8x² + 16)
9x² - x⁴ + 8x² - 16
- x⁴ + 17x² - 16
Factorize
that's
(x² - 16)(-x² + 1)
Using the formula
a² - b² = ( a + b)(a - b)
We have
(x² - 16)(-x² + 1) = (x + 4)(x - 4)( 1 - x)(1 + x)
For the denominator
- x² + 3x + 4
Write 3x as a difference
- x² + 4x - x + 4
Factorize
That's
- ( x - 4)(x + 1)
So we now have
[tex] \frac{(x + 4)(x - 4)( 1 - x)(1 + x)}{ - (x - 4)(x + 1)} [/tex]
Simplify
[tex] \frac{ - (x + 4)(1 - x)(1 + x)}{x + 1} [/tex]
Reduce the expression by x + 1
That's
-( x + 4)( 1 - x)
Multiply the terms
We have the final answer as
x² + 3x - 4Hope this helps you
when the point ( k, 3 ) lies on each of these lines, find the value of k y= 3x+1 , y= 4x-2 , y=1/2x - 1 and 2x+3y=4
Answer:
see explanation
Step-by-step explanation:
Since (k, 3) lies on each of the lines, the point satisfies the equations.
Substitute x = k, y = 3 into each and solve for k
y = 3x + 1
3 = 3k + 1 ( subtract 1 from both sides )
2 = 3k ( divide both sides by 3 )
k = [tex]\frac{2}{3}[/tex]
-------------------------------------------------------
y = 4x - 2
3 = 4k - 2 ( add 2 to both sides )
5 = 4k ( divide both sides by 4 )
k = [tex]\frac{5}{4}[/tex]
--------------------------------------------------------
y = [tex]\frac{1}{2}[/tex] x
3 = [tex]\frac{1}{2}[/tex] k ( multiply both sides by 2 to clear the fraction )
k = 6
---------------------------------------------------------
2x + 3y = 4
2k + 3(3) = 4
2k + 9 = 4 ( subtract 9 from both sides )
2k = - 5 ( divide both sides by 2 )
k = - [tex]\frac{5}{2}[/tex]
really urgent...i need the working also ...pls help me
Answer:
See below.
Step-by-step explanation:
In each case, you are looking for time. We know speed is distance divided by time. Lets start with the speed formula.
speed = distance/time
Now we solve it for time. Multiply both sides by time and divide both sides by speed.
speed * time = distance
time = distance/speed
Time is distance divided by speed. In each problem, you have a speed and a distance. Divide the distance by the speed to to find the time.
1) speed = 44.1 km/h; distance = 150 km
time = distance/speed = 150 km/(44.1 km/h) =
= 3.401 hours = 3 hours + 0.401 hour * 60 min/hour = 3 hours 24 minutes
2) speed = 120 km/h; distance = 90 km
time = distance/speed = 90 km/(120 km/h) =
= 0.75 hours = 0.75 hour * 60 min/hour = 45 minutes
3) speed = 125 m/s; distance = 500 m
time = distance/speed = 500 m/(125 m/s) =
= 4 seconds
A movie theater conducted a survey to see what customers preferred at the concession stand. The theater asked every fifth person who entered the movie theater every Friday for a month what his or her favorite movie snack was. Were the results of the survey valid? A. No, because the theater did not survey everyone in the theater. B. Yes, because the theater only surveyed children. C. Yes, because the theater surveyed a random sample. D. No, because the theater did not use a random sample.
Answer:
A) No because the theater did not survey everyone in the theater.
Answer:
Yes, because the theater surveyed a random sample.
Step-by-step explanation:
The survey is valid because there was a random sample. They surveyed every fifth person, so there was a variety of age groups, genders, and preferences included in the sample. Therefore, the correct answer is yes, because the theater surveyed a random sample.
Find the missing the side of the triangle A. 130−−−√ m B. 179−−−√ m C. 42–√ m D. 211−−−√ m
Answer:
The answer is option AStep-by-step explanation:
Since the triangle is a right angled triangle we can use the Pythagoras theorem to find the missing side
Using the Pythagoras theorem
That's
[tex] {a}^{2} = {b}^{2} + {c}^{2} [/tex]
From the question
x is the hypotenuse or the longest side of the triangle
Substituting the values into the above formula we have
[tex] {x}^{2} = {9}^{2} + {7}^{2} [/tex]
[tex] {x}^{2} = 81 + 49[/tex]
[tex] {x}^{2} = 130[/tex]
Find the square root of both sides
We have the final answer as
x = √130 mHope this helps you
According to data from the U.S. Department of Education, the average cost y of tuition and fees at public four-year institutions in year x is approximated by the equation where x = 0 corresponds to 1990. If this model continues to be accurate, during what year will tuition and fees reach $4000?
Answer:
Graphing Calculator
Step-by-step explanation:
One hundred people, ages 11-15, were randomly surveyed to find their opinion of their favorite leisure time activity. Sixty-four percent of them said they liked to spend time watching TV. If there are 1500 students in your school, about how many of them would you predict would enjoy watching t.v. A.2343 B.960 C.640 D.500
Answer:
If there are 1500 students in your school then 960 students would enjoy watching TV
Step-by-step explanation:
Step 1: We know that 64% of kids aged from 11 to 15 enjoy watching TV and there is 1500 students in your school
Step 2: We now want to find 64% of 1500, we can rewrite 64% as 0.64. We multiple 1500 by 0.64 to find out how many students enjoy watching TV
0.64 x 1500 = # of students who like watching TV
960 = # of students who like watching TV
Therefore out of 1500 students, 960 would enjoy watching TV
Michael is using a number line to evaluate the expression –8 – 3. A number line going from negative 12 to positive 12. A point is at negative 8. After locating –8 on the number line, which step could Michael complete to evaluate the expression?
Answer:
move to the left 3 more spaces
Step-by-step explanation:
you are at -8 already. Therefore, you (-3) more spaces, so you go to the left three more spaces. Use the saying keep change change to help with this.
Keep the first number sign, change the next sign, and the next sign.
Answer:
d
Step-by-step explanation: