Answer:
In this question, we shall be accepting the null hypothesis H0 since the critical value is greater than the test statistic value
Step-by-step explanation:
Here in this question, we want to make a conclusion about the null hypothesis H0.
To make or give the correct conclusion about the null hypothesis in this case, we shall need to compare the absolute value of the test statistic used against the value of the critical value.
Hence, we draw a conclusion if the test statistic is larger or smaller than the critical value.
From the value given in the question, we can see that the test statistic given as 1.68 is lesser in value compared to the critical value given as 1.96.
In this kind of case, the conclusion that we shall be drawing is that we will accept the null hypothesis H0 and reject the alternative hypothesis
Write a rational number in fraction form that is equivalent to -1.\overline{5}
Answer:
[tex]\dfrac{-14}{9}[/tex].
Step-by-step explanation:
The given number is [tex]-1.\overline{5}[/tex].
We need to find a rational number in fraction form that is equivalent to given number.
Let [tex]x=-1.\overline{5}[/tex]
[tex]x=-1.555...[/tex] ...(1)
Multiply both sides by 10.
[tex]10x=-15.555...[/tex] ...(2)
Subtracting (1) from (2), we get
[tex]10x-x=-15.555...-(-1.555...)[/tex]
[tex]9x=-14[/tex]
Divide both sides by 9.
[tex]x=\dfrac{-14}{9}[/tex]
Therefore, the required rational number is [tex]\dfrac{-14}{9}[/tex].
True or false? induction is a kind of thinking you use to form general ideas and rules based on mathematical formuals
Answer:
Hey there!
True. You use individuals rules, pieces of evidence, and experimentally found ideas that can be combined to form a general mathematical statement.
Let me know if this helps :)
tan inverse 1/4 +tan inverse 2/7 = 1/2 cos inverse 3/5
Answer:
The equation is always false
Step-by-step explanation:
arctan1/4+arctan2/7=1/2arccos3/5
0.24497866+0.27829965=1/2(0.92729521)
0.52327832 =0.46364760
not equivalent and will never be.
For some postive value of Z, the probability that a standardized normal variable is between 0 and Z is 0.3770. The value of Z is
Answer:
1.16
Step-by-step explanation:
Given that;
For some positive value of Z, the probability that a standardized normal variable is between 0 and Z is 0.3770.
This implies that:
P(0<Z<z) = 0.3770
P(Z < z)-P(Z < 0) = 0.3770
P(Z < z) = 0.3770 + P(Z < 0)
From the standard normal tables , P(Z < 0) =0.5
P(Z < z) = 0.3770 + 0.5
P(Z < z) = 0.877
SO to determine the value of z for which it is equal to 0.877, we look at the
table of standard normal distribution and locate the probability value of 0.8770. we advance to the left until the first column is reached, we see that the value was 1.1. similarly, we did the same in the upward direction until the top row is reached, the value was 0.06. The intersection of the row and column values gives the area to the two tail of z. (i.e 1.1 + 0.06 =1.16)
therefore, P(Z ≤ 1.16 ) = 0.877
A diameter that is perpendicular to a chord bisects the chord. True False
Answer:
[tex]\Large \boxed{\sf True}[/tex]
Step-by-step explanation:
[tex]\sf A \ diameter \ that \ is \ perpendicular \ to \ a \ chord \ bisects \ the \ chord.[/tex]
Answer:
True!!
I just did the assignment and got it right
Complete the square to make a perfect square trinomial. Then, write the result as a binomial squared. n^2+5/2n
Answer: [tex]\bigg(n+\dfrac{5}{4}\bigg)^2[/tex]
Step-by-step explanation:
[tex]n^2+\dfrac{5}{2}n+\underline{\qquad}\\\\\\n^2+\dfrac{5}{2}n+\bigg(\dfrac{5}{2\cdot 2}\bigg)^2\\\\\\n^2+\dfrac{5}{2}n+\bigg(\dfrac{5}{4}\bigg)^2\\\\\\=\bigg(n+\dfrac{5}{4}\bigg)^2[/tex]
What is 1/3 of 675 is left
The size of the left upper chamber of the heart is one measure of cardiovascular health. When the upper left chamber is enlarged, the risk of heart problems is increased. A paper described a study in which the left atrial size was measured for a large number of children ages 5 to 15 years. Based on this data, the authors conclude that for healthy children, left atrial diameter was approximately normally distributed with a mean of 26.5 mm and a standard deviation of 4.8 mm.
Required:
a. Approximately what proportion of healthy children has left atrial diameters less than 24 mm?
b. Approximately what proportion of healthy children has left atrial diameters greater than 32 mm?
c. Approximately what proportion of healthy children has left atrial diameters between 25 and 30 mm?
d. For healthy children, what is the value for which only about 20% have a larger left atrial diameter?
Answer:
a) P [ X < 24 mm ] = 0,3015 or P [ X < 24 mm ] = 30,15 %
b) P [ X > 32 mm ] = 0,1251 or P [ X > 32 mm ] = 12,51 %
c) P [ 25 < X < 30 ] = 0,4964 or P [ 25 < X < 30 ] = 49,64 %
d) z(s) = 0,84
Step-by-step explanation:
Normal Distribution N ( μ₀ ; σ ) is N ( 26,5 ; 4,8 )
a) P [ X < 24 mm ] = ( X - μ₀ ) / σ
P [ X < 24 mm ] = (24 - 26,5)/ 4,8 = - 0,5208 ≈ - 0,52
P [ X < 24 mm ] = - 0,52
And from z-table we find area for z score
P [ X < 24 mm ] = 0,3015 or P [ X < 24 mm ] = 30,15 %
b)P [ X > 32 mm ] = 1 - P [ X < 32 mm ]
P [ X < 32 mm ] = ( 32 - 26,5 ) / 4,8
P [ X < 32 mm ] = 5,5/4,8 = 1,1458 ≈ 1,15
P [ X < 32 mm ] = 1,15
And from z-table we get
P [ X < 32 mm ] = 0,8749
Then:
P [ X > 32 mm ] = 1 - 0,8749
P [ X > 32 mm ] = 0,1251 or P [ X > 32 mm ] = 12,51 %
c) P [ 25 < X < 30 ] = P [ X < 30 ] - P [ X < 25 ]
P [ X < 30 ] = 30 - 26,5 / 4,8 = 0,73
From z-table P [ X < 30 ] = 0,7673
P [ X < 25 ] = 25 - 26,5 / 4,8 = - 0,3125 ≈ - 0,31
From z-table P [ X < 25 ] = 0,2709
Then
P [ 25 < X < 30 ] = 0,7673 - 0,2709
P [ 25 < X < 30 ] = 0,4964 or P [ 25 < X < 30 ] = 49,64 %
d) If 20 %
z- score for 20% is from z-table
z(s) = 0,84
Solve systems of equations 15 points NOT CLICKBAIT!!! -6y+11y= -36 -4y+7x= -24
Answer:
x = -264/35
y = -36/5
Step-by-step explanation:
-6y + 11y = -36
-4y + 7x = -24
Solve for y in the first equation.
-6y + 11y = -36
Combine like terms.
5y = -36
Divide both sides by 5.
y = -36/5
Plug y as -36/5 in the second equation and solve for x.
-4(-36/5) + 7x = -24
Expand brackets.
144/5 + 7x = -24
Subtract 144/5 from both sides.
7x = -264/5
Divide both sides by 7.
x = -264/35
Answer: -264/35
Step-by-step explanation:
i did my work on a calculator
What are the solution(s) of the quadratic equation 98 - x2 = 0?
x = +27
Ox= +63
x = +7/2
no real solution
Answer:
±7 sqrt(2) = x
Step-by-step explanation:
98 - x^2 = 0
Add x^2 to each side
98 =x^2
Take the square root of each side
±sqrt(98) = sqrt(x^2)
±sqrt(49*2) = x
±7 sqrt(2) = x
Answer:
[tex]\huge \boxed{{x = \pm 7\sqrt{2} }}[/tex]
Step-by-step explanation:
[tex]98-x^2 =0[/tex]
[tex]\sf Add \ x^2 \ to \ both \ sides.[/tex]
[tex]98=x^2[/tex]
[tex]\sf Take \ the \ square \ root \ of \ both \ sides.[/tex]
[tex]\pm \sqrt{98} =x[/tex]
[tex]\sf Simplify \ radical.[/tex]
[tex]\pm \sqrt{49} \sqrt{2} =x[/tex]
[tex]\pm 7\sqrt{2} =x[/tex]
[tex]\sf Switch \ sides.[/tex]
[tex]x= \pm 7\sqrt{2}[/tex]
Jaclyn is one-fourth of a foot taller than John. John is 31/6 feet tall. How many feet tall is Jaclyn
Answer:
5 5/12
Step-by-step explanation:
31/6 feet + 1/4 foot
= 31/6 + 1/4
= [(31 * 4) / 6 * 4] + [(1 * 6) / 4 * 6]
= [ 124/24 ] + [ 6/24 ]
= (124 + 6) / 24
= 130 / 24
= 5 10/24
= 5 5/12
Hope this helps! Tell me if I'm wrong!
49, 34, and 48 students are selected from the Sophomore, Junior, and Senior classes with 496, 348, and 481 students respectively. Group of answer choices
Answer:
Stratified Random sampling.
Step-by-step explanation:
As per the scenario, It is stratified random sampling as it divides students into strata which represent Sophomores, Juniors, and Seniors.
Simple random samples of the given sizes of the proportional to the size of the stratum which is to be taken from every stratum that is to be about 10 percent of students from every class that is selected here.
Hence, according to the given situation, the correct answer is a random stratified sampling.
The points (-6,-4) and (3,5) are the endpoints of the diameter of a circle. Find the length of the radius of the circle.
The length of the radius is a
(Round to the nearest hundredth as needed.)
Answer:
40.5
Step-by-step explanation:
diameter^2 = (3 +6)^2 + (5+4)^2
or, d^2 = 9^2 + 9^2
or, d^2 = 81 +81
or,d^2 =162
or d=√ 162
• d= 81
then radius = d/2
r = 81/2
•r= 40.5 ans
The size of a television is the length of the diagonal of its screen in inches. The aspect ratio of the screens of older televisions is 4:3, while the aspect ratio of newer wide-screen televisions is 16:9. Find the width and height of an older 35-inch television whose screen has an aspect ratio of 4:3.
Answer:
The Width = 28 inches
The Height = 21 inches
Step-by-step explanation:
We are told in the question that:
The width and height of an older 35-inch television whose screen has an aspect ratio of 4:3
Using Pythagoras Theorem
Width² + Height² = Diagonal²
Since we known that the size of a television is the length of the diagonal of its screen in inches.
Hence, for this new TV
Width² + Height² = 35²
We are given ratio: 4:3 as aspect ratio
Width = 4x
Height = 3x
(4x)² +(3x)² = 35²
= 16x² + 9x² = 35²
25x² = 1225
x² = 1225/25
x² = 49
x = √49
x = 7
Hence, for the 35 inch tv set
The Width = 4x
= 4 × 7
= 28 inches.
The Height = 3x
= 3 × 7
= 21 inches
Combine like terms to simplify the expression: 2/5k - 3/5 +1/10k
━━━━━━━☆☆━━━━━━━
▹ Answer
1/2k - 3/5
▹ Step-by-Step Explanation
2/5k - 3/5 + 1/10k
Collect like terms:
2/5k + 1/10k = 1/2
Final Answer:
1/2k - 3/5
Hope this helps!
CloutAnswers ❁
━━━━━━━☆☆━━━━━━━
Answer:
1/2k - 3/5
Step-by-step explanation:
Hey there!
Well the only fraction needed to combine are,
2/5 and 1/10.
To add them we need to make 2/5 have a denominator of 10.
To do that we multiply 5 by 2.
5*2 = 10
What happens to the denominator happens to the denominator.
2*2 = 4
Fraction - 4/10
4/10 + 1/10 = 5/10
5/10
simplified
1/2
1/2k - 3/5
Hope this helps :)
Write the equation of the line that passes through (−2, 6) and (2, 14) in slope-intercept form. (2 points)
Answer:
[tex]y = 4x + 14[/tex]
Step-by-step explanation:
Equation of a line is y = mx + c
where
m is the slope
c is the y intercept
To find the equation we must first find the slope of the line
Slope of the line using points (−2, 6) and (2, 14) is
[tex]m = \frac{14 - 6}{2 + 2} = \frac{8}{2} = 4[/tex]
Now we use the slope and any of the points to find the equation of the line.
Equation of the line using point ( - 2, 6) and slope 4 is
[tex]y - 6 = 4(x + 2) \\ y - 6 = 4x + 8 \\ y = 4x + 8 + 6[/tex]
We have the final answer as
[tex]y = 4x + 14[/tex]
Hope this helps you
Each leg of a 45°-45°-90° triangle measures 12 cm.
What is the length of the hypotenuse?
Z
х
45°
45°
O 6 cm
12 cm
12 cm
O 672 cm
O 12 cm
O 122 cm
Answer:
The legs are 12 cm each, so the hypotenuse is
√(144+144)=12√2
Step-by-step explanation:
Applying the Pythagorean Theorem, the length of the hypotenuse is: 12√2 cm.
The Pythagorean TheoremWhere, a and b are two legs of a right triangle, and c is the hypotenuse, the Pythagorean Theorem states that, c² = a² + b².Given the two legs of the right triangle to be 12 cm
Therefore:c² = 12² + 12².
c² = 288
c = √288
c = 12√2 cm
Therefore, applying the Pythagorean Theorem, the length of the hypotenuse is: 12√2 cm.
Learn more about, the Pythagorean Theorem on:
https://brainly.com/question/654982
Techwiz electronics makes a profit of $35 for each mp3 and $18 for each DVD last week techwiz sold a combined total of 118 mp3 and DVD players. Let x be the number of mp3 sold last week write an expression for the combined total profit (in dollars) made last week
Answer:
The total profit is [tex]p = 17x + 2124[/tex]
Step-by-step explanation:
From the question we are told that
The profit made on each mp3 is k = $35
The profit made on each mp3 is y = $18
The total amount sold is n = 118
Now given that the amount of mp3 sold is x then the amount of DVD sold is mathematically evaluated as
[tex]n - x[/tex]
Now the profit made on the x number of mp3 sold is
[tex]x * 35 = 3x[/tex]
And the the profit made from the n-x number of DVD sold is 18 (n-x ) = 18 - 18x
So the total profit made last week from the sales of both mp3 and DVD is
[tex]p = 35x + 18n - 18x[/tex]
[tex]p = 17x + 18(118)[/tex]
[tex]p = 17x + 2124[/tex]
A special mixed-nut blend at a store cost $1.35 per lb, and in 2010 the blend cost $1.83 per lb. Let y represent the cost of a pound of the mixed-nut blend x years after 2005. Use a linear equation model to estimate the cost of a pound of the mixed-nut blend in 2007.
Answer:
y = $1.542 per lb
Step-by-step explanation:
given data
mixed-nut blend store cost 2005 = $1.35 per lb
blend cost in 2010 = $1.83 per lb
solution
we consider here y = cost of a pound
and x year = after 2005
we will use here linear equation model
so
[tex]\frac{y - 1.35}{1.83-1.35} = \frac{x-10}{5 - 0}[/tex] .........................1
solve it we get
5y - 6.75 = .48 x
so
at 2007 year here x wil be 2
so
[tex]y = \frac{0.48 \times 2 + 6.75}{5}[/tex]
solve it we get
y = $1.542 per lb
8. When dividing polynomials using factorization, cancelling identical factors in the denominator and the numerator will give the _______.
A. remainder
B. dividend
C. quotient
D. divisor
●✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎❀✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎●
Hi my lil bunny!
❧⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯☙
When dividing polynomials using factorization, cancelling identical factors in the denominator and the numerator will give the remainder.
A. remainder
B. dividend
C. quotient
D. divisor
❧⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯☙
●✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎❀✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎●
Hope this helped you.
Could you maybe give brainliest..?
❀*May*❀
Answer:
a. remainder
Step-by-step explanation:
took the test
dont leave your house without a vest
or you will get hit in the vital organs in your chest
Factor.
x2 – 5x - 36
(x - 9)(x + 4)
(x - 12)(x + 3)
(x + 9)(x - 4)
(x + 12)(x - 3)
Answer:
The answer is option AStep-by-step explanation:
x² - 5x - 36
To factor the expression rewrite -5x as a difference
That's
x² + 4x - 9x - 36
Factor out x from the expression
x( x + 4) - 9x - 36
Factor out -9 from the expression
x( x + 4) - 9( x+ 4)
Factor out x + 4 from the expression
The final answer is
( x - 9)( x + 4)Hope this helps you
Answer:
[tex] \boxed{(x - 9) \: (x + 4) }[/tex]
Option A is the correct option.-
Step-by-step explanation:
( See the attached picture )
Hope I helped!
Best regards!
Brainliest for the correct answer!! A calculator was used to perform a linear regression on the values in the table. The results are shown to the right of the table.What is the line of best fit?A.y = –0.984x + 13.5B.y = –2.9x + 13.5C.–0.984 = –2.9x + 13.5D.y = 13.5x – 2.9
Answer:
B. y = –2.9x + 13.5
Step-by-step explanation:
You can try to use the calculator to determine the best line for the values given; you will se that the calculator form, for the linear function is
y = a + bx, where a is the y intercept and b is the slope.
To determine the slope, we apply a formula, to calculate the product of the two xy and, x², plus the sum of each column.
x y xy x²
1 . 11 = 11 → x² = 1² = 1
2 . 8 = 16 → x² = 2² = 4
3 . 4 = 12 → x² = 3² = 9
4 . 1 = 4 → x² = 4² = 16
5 . 0 = 0 → x² = 5² = 25
Total x = 1 + 2 + 3 + 4 + 5 = 15
Total y = 11 + 8 + 4+ 1 + 0 = 24
Sum of xy = 11 + 16 + 12 + 4 + 0 = 43
Sum of x² = 1 + 4 + 9 + 16 + 25 = 55
n = 5
So b = 5 (43) - (15) . (24) / 5 (55) - 15² = -2.9
a = y media - b . x media → a = 24/5 - (-2.9) . 15/5 = 13.5
area to the right of z=0.72
I don’t have a graphing calculator and I couldn’t find one online. I’m completely clueless on this one.
Answer:
Desmos could come in handy
Lydia drives from city a to city b to transport goods. her return speed is 3 times her departure speed and she takes 40 minutes less on her return trip. how long did her departure trip take?
Answer:
1 hour
Step-by-step explanation:
Hello, let's say that her departure trip takes t in minutes, as her return speed is 3 times her departure speed, she took t/3 for the return and we know that this 40 minutes less, so we can write.
t/3=t-40
We can multiply by 3
t = 3t -40*3 = 3t - 120
This is equivalent to
3t -120 = t
We subtract t
2t-120 = 0
2t = 120
We divide by 2
t = 120/2 = 60
So this is 60 minutes = 1 hour.
Thank you.
A low-noise transistor for use in computing products is being developed. It is claimed that the mean noise level will be below the 2.5-dB level of products currently in use. It is believed that the noise level is approximately normal with a standard deviation of .8. find 95% CI
Answer:
The 95% CI is [tex]2.108 < \mu < 2.892[/tex]
Step-by-step explanation:
From the question we are told that
The population mean [tex]\mu = 2.5[/tex]
The standard deviation is [tex]\sigma = 0.8[/tex]
Given that the confidence level is 95% then the level of confidence is mathematically evaluated as
[tex]\alpha = 100 - 95[/tex]
=> [tex]\alpha = 5\%[/tex]
=> [tex]\alpha = 0.05[/tex]
Next we obtain the critical value of [tex]\frac{\alpha }{2}[/tex] from the normal distribution table, the values is [tex]Z_{\frac{\alpha }{2} } = 1.96[/tex]
Generally the margin of error is mathematically evaluated as
[tex]E = Z_{\frac{\alpha }{2} } * \frac{\sigma}{\sqrt{n} }[/tex]
here we would assume that the sample size is n = 16 since the person that posted the question did not include the sample size
So
[tex]E = 1.96* \frac{0.8}{\sqrt{16} }[/tex]
[tex]E = 0.392[/tex]
The 95% CI is mathematically represented as
[tex]\= x -E < \mu < \= x +E[/tex]
substituting values
[tex]2.5 - 0.392 < \mu < 2.5 + 0.392[/tex]
substituting values
[tex]2.108 < \mu < 2.892[/tex]
Julissa gave out an equal number of oranges to each of the 6 apartments on her floor. if she gave each apartment 5 oranges, how many oranges did Julissa give out in all?
julissa gave equal oranges in 6 apartments
she gave each apartment 5 oranges
so total no. of oranges are = 6×5 = 30
Answer:
D. 30
Step-by-step explanation:
Which relation is a function?
The number two is a function
First rule of function: for each element of A there is one and only one element of B
For example, in the first one -5 is "collegated" to -2 and 3. So this isn't a function.
Naturally, every element of B can have more element of A
Given v(x) = g(x) (3/2*x^4 + 4x – 1), find v'(2).
Answer:
Step-by-step explanation:
Given that v(x) = g(x)×(3/2*x^4+4x-1)
Let's find V'(2)
V(x) is a product of two functions
● V'(x) = g'(x)×(3/2*x^4+4x-1)+ g(x) ×(3/2*x^4+4x-1)
We are interested in V'(2) so we will replace x by 2 in the expression above.
g'(2) can be deduced from the graph.
● g'(2) is equal to the slope of the tangent line in 2.
● let m be that slope .
● g'(2) = m =>g'(2) = rise /run
● g'(2) = 2/1 =2
We've run 1 square to the right and rised 2 squares up to reach g(2)
g(2) is -1 as shown in the graph.
■■■■■■■■■■■■■■■■■■■■■■■■■■
Let's derivate the second function.
Let h(x) be that function
● h(x) = 3/2*x^4 +4x-1
● h'(x) = 3/2*4*x^3 + 4
● h'(x) = 6x^3 +4
Let's calculate h'(2)
● h'(2) = 6 × 2^3 + 4
● h'(2) = 52
Let's calculate h(2)
●h(2) = 3/2*2^4 + 4×2 -1
●h(2)= 31
■■■■■■■■■■■■■■■■■■■■■■■■■■
Replace now everything with its value to find V'(2)
● V'(2) = g'(2)×h(2) + g(2)× h'(2)
● V'(2)= 2×31 + (-1)×52
●V'(2) = 61 -52
●V'(2)= 9
if 2x-7 is 5 more than x+4, what is the value of 3x+5
Answer:
53
Step-by-step explanation:
Let's start with the given relation:
2x -7 = (x+4) +5
x = 16 . . . . . . . . . add 7-x
3x +5 = 3(16) +5 = 53 . . . . . multiply by 3 and add 5
The value of 3x+5 is 53.
Which of the following is NOT a requirement of testing a claim about two population means when 1 and 2 are unknown and not assumed to be equal? Choose the correct answer below. A. The two samples are dependent. B. Both samples are simple random samples. C. Either the two sample sizes are large (30 and 30) or both samples come from populations having normal distributions, or both of these conditions are satisfied. D. The two samples are independent.
Answer:
b
Step-by-step explanation: