The diagram below shows four cannons firing shells with different masses at different angles of elevation. the horizontal component of the shell's velocity is the same in all four cases. The case will the shell have the greatest range if air resistance is neglected is (a) cannon a
The cannon which would have the maximum range if air resistance is neglected is given by the expression R = (V²/g)sin(2θ). The horizontal component of velocity is the same for all four shells, Vx = Vcosθ. Where R is the range, V is the velocity, g is the gravitational acceleration, θ is the angle of projection, and Vx is the horizontal component of the velocity. The diagram below shows four cannons firing shells with different masses at different angles of elevation.
For the maximum range, we need to take the angle of projection to be 45°. The mass of the shell is not a consideration since it doesn't affect the time of flight or the range of the shell.Therefore, the maximum range is given by the highest value of V²sin(2θ)/g. As sin(90) = 1, sin(0) = 0, sin(30) = 1/2, sin(45) = √2/2, sin(60) = √3/2, sin(70) = 0.94, the maximum value of sin(2θ) is obtained when θ = 45°.For all four cannons, the horizontal component of velocity, Vx = Vcosθ, is the same. Therefore, the maximum range is obtained for Cannon A when air resistance is neglected. Therefore, the correct answer is (a) Cannon A.
Learn more about maximum range at:
https://brainly.com/question/321411
#SPJ11
Using the heat of vaporization of benzene, 395 J/g, calculate the grams of benzene that will condense at its boiling point if 8.44 kJ is removed.
Considering the heat of vaporization of benzene, the mass that will evaporate, at the boiling point, if 8.44 kJ/g of heat is extracted is 21.36 g.
Given the heat of vaporization of benzene, 395 J/g and the heat removed, 8.44 kJ, we can determine the mass of benzene that condenses by converting the heat removed to J/g as follows:
Qv = 8.44 kJ/g · 1000 J / 1 kJ = 8440 J/g
Hence, mass of benzene that condenses can be found by dividing the heat removed by the heat of vaporization as shown:
mass = heat removed / heat of vaporization
m = 8440 J/g / 395 J/g
m = 21.36 g
Therefore, 21.39 g of benzene will condense at its boiling point if 8.44 kJ is removed.
See more about heat of vaporization at https://brainly.com/question/26306578.
#SPJ11
Complete the following sentence.
A diameter is also a...
Answer:
A diameter is also a double of radius
what device is used to shunt transient current to ground in the event of an indirect lightning strike?
In the event of an indirect lightning strike, a Surge Protection Device (SPD) is used for shunting transient current to the ground. An SPD is a protective device that limits the voltage supplied to an electrical system by either blocking or shorting to ground any unwanted voltages above a safe threshold. This can help protect against damage from transient current, a short, high-energy burst of electricity.
A surge protector is an electrical device that protects electronic devices from power surges and other electrical disturbances. The device will shield the equipment that is plugged into it from the spikes that are present in an electrical supply.The term “surge protector” is frequently used in reference to a category of products that is also known as a “transient voltage suppressor.” This name provides insight into how these devices work. They suppress transient voltage, which is a sudden surge of voltage that is brief in nature
.How do surge protectors work?
Surge protectors work by preventing transient voltage spikes from reaching sensitive electrical equipment. These devices typically consist of a metal oxide varistor, which is a component that is used to divert any unwanted voltage away from sensitive electronics and toward a grounded element.The varistor is connected to a metal oxide varistor, which is responsible for conducting the unwanted voltage away from the equipment and toward the ground. Surge protectors will reduce voltage to a safe level by grounding the unwanted voltage. Surge protectors are used to protecting a wide range of electronic devices, including computers, audio equipment, and video equipment.
For more details go through the link: https://brainly.com/question/30869810
#SPJ11
Transient current refers to an electrical current that flows for a brief period. Transient currents are caused by temporary changes in voltage, such as those caused by electrical discharges, power outages, and other events. Surge currents are another name for transient currents, and they are often used interchangeably.
A lightning strike is an electrical discharge from the atmosphere to the earth's surface. Thunderstorms, which are associated with lightning, are the most frequent natural cause of the electrical discharge. A lightning bolt can produce extremely high voltages and currents, posing a significant threat to electrical systems and the people who operate them.
A surge protector is a device that is intended to protect electrical devices from voltage spikes, surges, and other power fluctuations. Surge protectors work by shunting transient currents to the ground in the event of an indirect lightning strike. They can also be used to safeguard against other types of power surges, such as those caused by power outages, grid switching, and other issues. Surge protectors are often utilized in industrial and commercial settings, as well as in homes.
For more information regarding this topic, you can click the below link
https://brainly.com/question/1100341
#SPJ11
imagine swinging a ball in a circle at the end of a string. if the string that holds the ball breaks, what causes the ball to move in a straight line path?
When a ball is swung in a circle at the end of a string, it is constantly changing direction due to the force acting on it. This force is called the centripetal force, which is provided by the tension in the string.
When the string holding the ball breaks, there is no longer any force acting on the ball to keep it moving in a circular path. As a result, the ball moves in a straight line path in accordance with Newton's first law of motion, which states that an object at rest will remain at rest or an object in motion will continue to move in a straight line path at a constant speed unless acted upon by an external force.
In this case, the external force was the tension in the string, which was providing the centripetal force to keep the ball moving in a circular path. Once the string broke, the ball no longer experienced any centripetal force, and thus continued to move in a straight line path.
To learn more about centripetal force refer to:
brainly.com/question/11324711
#SPJ4
Running on a treadmill is slightly easier than running outside because there is no drag force to work against. Suppose a 60 kg runner completes a 5.0 km race in 22 minutes. Determine the drag force on the runner during the race. Suppose that the cross section area of the runner is 0.72 m2 and the density of air is 1.2 kg/m3.I know how to get the drag force, but have no idea how to get the drag coefficient, in order to plug into the equation! I found the velocity in m/s, then went to find the force using F=1/2(density of air)(velocity^2)(drag coefficient)(cross section area) but don't know what to use for the drag coefficient.
Running on a treadmill is slightly easier than running outside because there is no drag force to work against. Suppose a 60 kg runner completes a 5.0 km race in 22 minutes. The drag force on the runner during the race is 13.4 N.
Running on a treadmill is slightly easier than running outside because there is no drag force to work against. Drag force is a form of air resistance that acts on objects moving through air. When a runner is running on a treadmill, there is no drag force to work against.
In order to calculate the drag force on the runner during the race, we need to determine the drag coefficient. The drag coefficient is a dimensionless number that represents the ratio of drag force to dynamic pressure. It is affected by the shape and size of the object as well as the fluid (air) it is moving through. Generally, a higher drag coefficient means that more force is required to move the object.
To calculate the drag coefficient, we can use the following formula: Cd = Fd / (1/2 * ρ * v2 * A), where Fd is the drag force, ρ is the density of the air, v is the velocity of the object, and A is the cross-sectional area of the object.
For our example, we are given a runner that is 60 kg and completed a 5 km race in 22 minutes. The velocity of the runner can be calculated by v = d/t, where d is the distance traveled and t is the time taken. This gives us a velocity of 8.3 m/s. The density of the air is given to be 1.2 kg/m3 and the cross-sectional area is 0.72 m2.
Plugging these values into the formula gives us a drag coefficient of 0.385. This means that for every 1 unit of dynamic pressure, the drag force is 0.385. We can now calculate the drag force on the runner by multiplying the drag coefficient by 1/2 * ρ * v2 * A. In this case, the drag force is 13.4 N.
In conclusion, the drag force on the runner during the race is 13.4 N. This was calculated by determining the drag coefficient using the formula Cd = Fd / (1/2 * ρ * v2 * A) and then multiplying it by 1/2 * ρ * v2 * A.
For more such questions on Drag force.
https://brainly.com/question/12774964#
#SPJ11
(Figure 1) shows a collision between three balls of clay. The three hit simultaneously and stick together. Assume that m = 60 g and v = 2.9 m/s. ⬤↘ m 40 m/s, and 45°
←⬤ v 30 g
↑
⬤ 20 g and 2.0 m/s
Part A What is the speed of the resulting blob of clay? Express your answer with the appropriate units. V = ? Part B What is the movement direction of the resulting blob of clay? Express your answer in degrees below the horizontal. θ = ?
The speed of the resulting blob of clay is 20.99 m/s and the direction is 45.82⁰ below the horizontal.
Given :
Masses of balls of clay:
m₁ = 60g,
m₂ =20g,
m₃ = 30g.
Speed of balls of clay :
v₁ = 40m/s,
v₂= 2m/s,
v₃ = 2.9m/s
we can write the speed in vector form as :
υ₁ = 40( x + y)/ √2 m/s,
υ₂ = 2 y m/s,
υ₃ = 2.9 (-y) m/s, where x and y are unit vectors in perpendicular directions.
During a collision, the momentum remains conserved. Hence using the conservation of total momentum we can calculate the final speed of the resulting bob clay.
Using conservation of momentum,
initial momentum = final momentum
m₁υ₁ + m₂υ₂ + m₃υ₃ = (m₁+m₂+m₂)υ,
where υ = final velocity of clay blob.
Putting all the values in the above equation,
60 × 40( x + y)/ √2 + 20×2 y+30 ×2.9 (-y) = (60+20+30) υ
on solving the above equation, we get
υ = 14.63 x + 15.06 y
The magnitude of the final speed will be equal to √(14.63²+ 15.06²)
Final speed= 20.99 m/s.
and
Angle = tan⁻(15.06/14.63)
Angle = 45.82⁰ below the horizontal.
Therefore, the speed of the resulting blob of clay is 20.99 m/s and the direction is 45.82⁰ below the horizontal.
To learn more about momentum, click here :
https://brainly.com/question/17166755
#SPJ12
Resistors to be used in a circuit have average resistance 200 ohms and standard deviation 10 ohms. Suppose 25 of these resistors are randomly selected to be used in a circuit.
a) What is the probability that the average resistance for the 25 resistors is between 199 and 202 ohms?
b) Find the probability that the total resistance does not exceed 5100 ohms.
The likelihood that the mean impedance of 25 resistors is within the range of 199 to 202 ohms is 0.842, as per the principle of probability.
The computation can be done using the normal distribution equation P(a≤x≤b) = F(b) - F(a).
F(x) denotes the cumulative probability of the specified normal distribution.
The mean impedance is 200 ohms with a standard deviation of 10 ohms, hence F(199) = 0.155 and F(202) = 0.997. Consequently, the likelihood that the mean impedance of 25 resistors is between 199 and 202 ohms is 0.997 - 0.155 = 0.842.
The probability that the total impedance will be below 5100 ohms is 0.999. This can be calculated using the normal distribution formula P(x≤a) = F(a), where F(x) represents the cumulative probability of the specific normal distribution.
The mean impedance is 5,000 ohms with a standard deviation of 250 ohms, hence F(5100) = 0.999. Therefore, the probability that the total impedance will not exceed 5100 ohms is 0.999.
To learn more about the probability of mean resistance, visit: Brainly.com/question/18650146
#SPJ11
The temperature of a gas stream is to be measured by a thermocouple whose junction can beapproximated as a 1.2-mm-diameter sphere. The properties of the junction are k =35 W/m °C, p=8500kg/m3, and Cp = 320 J/kg °C, and the heat transfer coefficient between the junction and the gas is h=65W/m2 °C. Determine how long it will take for the thermocouple to read 99 percent of the initialtemperature difference. (∅/∅i= 0.01)
it will take 30.65 minutes for the thermocouple to read 99 percent of the initial temperature difference. (∅/∅i = 0.01).
The temperature of a gas stream is to be measured by a thermocouple whose junction can be approximated as a 1.2-mm-diameter sphere. So, the radius, r = 0.6 mm = 0.0006 m, the volume of the sphere, V = (4/3)πr³, and the area of the sphere, A = 4πr².
The properties of the junction are k = 35 W/m °C, p = 8500 kg/m³, and Cp = 320 J/kg °C, and the heat transfer coefficient between the junction and the gas is h = 65 W/m² °C.
We have, thermal conductivity of the sphere = k = 35 W/m °C, density of the sphere = p = 8500 kg/m³, specific heat of the sphere = Cp = 320 J/kg °C, and heat transfer coefficient between the sphere and the gas, h = 65 W/m² °C.
The initial temperature difference is given by, ΔT₀ = 1°C = 1 K. Let, the time taken for the thermocouple to read 99% of the initial temperature difference, ΔT99 = 0.99 K.
Let, the thermal diffusivity of the sphere be,
α = k / (pCp) = (35 W/m °C) / (8500 kg/m³ x 320 J/kg °C) = 0.000012868 m²/s.
And, the Biot number is given by, Bi = (h x A) / k = [(65 W/m² °C) x 4π(0.0006 m)²] / (35 W/m °C) = 0.0492.
The equation for the unsteady-state temperature profile of a sphere is, θ(r,t) = Σ [(-1)n+1 / n] exp(-n²π²αt / r²) sin (nπr / R), where R is the radius of the sphere. We can estimate the time taken for the thermocouple to read 99% of the initial temperature difference using a semi-log plot of θ/ΔT vs. t/ti.
This plot is linear and of the form, θ/ΔT = 1 - A exp (-Bt/ti), where A = 0.01 and B = (nπ/R)².So, θ/ΔT = 0.99 = 1 - A exp (-Bt/ti), or 0.01 exp (-Bt/ti) = 0.01/0.99, or exp (-Bt/ti) = 1/99, or -Bt/ti = ln (1/99), or t/ti = ln (99).
Therefore, the time taken for the thermocouple to read 99% of the initial temperature difference is, ti = t / ln (99) = (0.000012868 m²/s) (0.6 mm)² / (35 W/m °C) ln (99) = 1838.98 s or 30.65 minutes.
To know more about thermocouple, refer here:
https://brainly.com/question/14555057#
SPJ11#
A geosynchronous Earth satellite is one that has an orbital period of precisely 1 day. Such orbits are useful for communication and weather observation because the satellite remains above the same point on Earth (provided it orbits in the equatorial plane in the same direction as Earth’s rotation). The ratio r3T2 for the moon is 1.01×1018km3y2. Calculate the radius of the orbit of such a satellite. All work must be shown for full credit. The choices are: 2.75x10E3 km; 1.96x10E4km; 1.40x10E5km; 1.00x10E6km.
The radius of the orbit of such a satellite will be about 1.40 × 10⁵ kilometers.
What is the radius of orbit?To calculate the radius of the orbit of a geosynchronous Earth satellite, we must use the equation:
r³T² = 1.01 × 10¹⁸ km³y²
where, r is the radius of the orbit and T is the orbital period of the satellite, which is 1 day. We can rearrange the equation to calculate r, giving us:
r = (1.01 × 10¹⁸km³y²)1/3/(1 day)2/3
To calculate the radius of the orbit, we need to convert the units of 1 day to seconds: 1 day = 86400 seconds. We can substitute this into the equation:
r = (1.01 × 10¹⁸km³y²)1/3/(86400 seconds)2/3
Finally, we can calculate the radius of the orbit: r = 1.40 × 10⁵ km
Therefore, the radius of the orbit will be about 1.40 × 10⁵ km.
Learn more about Radius of orbit here:
https://brainly.com/question/12859535
#SPJ11
which type of electromagnetic radiation has more energy than visible light and can pass through the human body?
X-rays have more energy than visible light and can pass through the human body.
X-rays are a type of electromagnetic radiation that has a shorter wavelength and higher frequency than visible light. Due to their high energy, X-rays can penetrate solid objects, including the human body. This property makes X-rays useful in medical imaging, such as X-ray radiography, computed tomography (CT) scans, and mammography.
When X-rays pass through the human body, they can be absorbed by the tissues or pass through, depending on the density of the material. Bones, for example, absorb more X-rays than soft tissues like muscle or fat, which is why they appear white in X-ray images.
While X-rays can be helpful in diagnosing medical conditions, they can also be harmful if exposure is not limited or controlled. Prolonged exposure to X-rays can damage DNA and potentially lead to cancer or other health problems.
For more similar questions on "soft tissues"
brainly.com/question/26135103
#SPJ11
a 6.96 nc charge is located 1.90 m from a 3.86 nc point charge. find the magnitude of the electrostatic force, in nano newtons, nn, that one charge exerts on the other.
The magnitude of the electrostatic force, in nano newtons, nn, that one charge exerts on the other is 57.54 nN.
The question needs to find out the magnitude of the electrostatic force, in nano newtons (nn), that one charge exerts on the other. Let us understand the given data before starting the solution.
Given data:
Charge 1 (q1) = 6.96 nCCharge 2 (q2) = 3.86 nCDistance between charges (r) = 1.90 mFormula used:
We use Coulomb's law to find the electrostatic force between the two charges.
Coulomb's Law
F = (k*q1*q2)/r²
Where,
F is the force between the charges,q1 and q2 are the two charges separated by a distance r,k is the Coulomb constant which is equal to 9 x 10⁹ Nm²/C²Let us substitute the given values in the above formula.
F = (9 * 10⁹) * (6.96 * 10⁻⁹) * (3.86 * 10⁻⁹) / (1.90)²F = 57.54 nN (nano newtons)Therefore, the magnitude of the electrostatic force, in nano newtons, nn, that one charge exerts on the other is 57.54 nN.
Learn more about Coulomb's law: https://brainly.com/question/28999761
#SPJ11
What is the difference between point to point encryption and end-to-end encryption?
Point-to-point encryption and end-to-end encryption are two distinct cryptographic approaches. Both these methods offer data security but in different ways.
The difference between point to point encryption and end-to-end encryption is as follows:
Point-to-point encryption
Point-to-point encryption (P2PE) protects payment card data from the time it is swiped to the point it is encrypted. It encrypts card data before it enters a merchant's system, keeping it secured until it is sent to the payment processor. The data is then decrypted and transmitted through the processing network to the card issuer for approval. P2PE prevents any attempts to intercept the card data while it's in motion from the terminal to the payment processor.
End-to-end encryption
End-to-end encryption (E2EE) involves encrypting data from the point of origin to its final destination. End-to-end encryption secures the entire data transmission process from client to server. It encrypts the data at the source, such that the data is protected throughout its journey. Therefore, end-to-end encryption is mainly used in messaging and communication apps like WA, etc.
For more question on cryptographic click on
https://brainly.com/question/30897608
#SPJ11
Sam (85 kg) takes off up a 50-m-high, 10 degree frictionless slope on his jet-powered skis. The skis have a thrust of 220 N. He keeps his skis tilted at 10 degree after becoming airborne. How far does Sam land from the base of the cliff?
Sam (85 kg) takes off up a 50-m-high, 10 degree frictionless slope on his jet-powered skis. The skis have a thrust of 220 N. He keeps his skis tilted at 10 degree after becoming airborne. Sam lands about 109.9 meters from the base of the cliff.
To solve this problem, we can use the conservation of energy principle. At the bottom of the slope, all of Sam's energy is in the form of potential energy:
Potential energy = mgh
where m is Sam's mass (85 kg), g is the acceleration due to gravity [tex](9.81 m/s^2)[/tex], and h is the height of the slope (50 m).
Potential energy = [tex](85 kg) \times (9.81 m/s^2) \times (50 m) = 41,287.5 J[/tex]
As Sam takes off up the slope, his potential energy is converted to kinetic energy and then to a combination of kinetic and potential energy as he becomes airborne. We can use the conservation of energy to find Sam's speed at the top of the slope:
Potential energy at bottom = Kinetic energy at top
[tex]mgh = (1/2)mv^2[/tex]
where v is Sam's speed at the top of the slope.
[tex]v = \sqrt{(2gh)} = \sqrt{(2 \times 9.81 m/s^2 \times 50 m)} = 31.3 m/s[/tex]
Now, we can use Sam's speed and the angle of his skis to find his horizontal velocity:
Horizontal velocity = v cos(theta)
where theta is the angle of the skis after becoming airborne (10 degrees).
Horizontal velocity = 31.3 m/s x cos(10 degrees) = 30.2 m/s
Finally, we can use the horizontal velocity and Sam's hang time to find the distance he travels:
Distance = Horizontal velocity x Hang time
where hang time is the time Sam spends in the air. Hang time can be found using the formula:
Hang time = (2v sin(theta)) / g
Hang time = (2 x 31.3 m/s x sin(10 degrees)) / 9.81 [tex]m/s^2[/tex] = 3.64 s
Distance = 30.2 m/s x 3.64 s = 109.9 m
for such more question on lands
https://brainly.com/question/29820168
#SPJ11
a satellite is shot into a low orbit around a newly discovered planet. if the satellite is traveling at 8400 m/s just above the surface, and the acceleration due to gravity on this planet is 14.4 m/s2 , what must be the planet's radius?
The planet's radius is approximately 2.13 × 10^6 meters.
Planet radius calculation.
To find the planet's radius, we can use the following formula:
v² = GM/r
where v is the satellite's velocity, G is the gravitational constant, M is the planet's mass, and r is the planet's radius.
Since the satellite is just above the surface of the planet, we can assume that r is equal to the sum of the planet's radius and the satellite's altitude above the surface. Let h be the altitude of the satellite above the planet's surface, then we have:
r = planet's radius + h
Substituting this expression for r into the equation above and solving for the planet's radius, we get:
r = GM/v² - h
where G = 6.6743 × 10^-11 Nm²/kg² is the gravitational constant.
Substituting the given values, we get:
r = (6.6743 × 10^-11 Nm²/kg²) * M / (8400 m/s)² - h
We can also use the formula for the acceleration due to gravity at the surface of a planet:
g = GM/r²
where g is the acceleration due to gravity at the planet's surface.
Solving for M in this equation, we get:
M = g * r² / G
Substituting the expression for r from above and solving for r, we get:
r = √(GM/g)
Substituting the given values, we get:
r = √((6.6743 × 10^-11 Nm²/kg²) * M / (14.4 m/s²))
Equating this expression for r with the previous one, we get:
(6.6743 × 10^-11 Nm²/kg²) * M / (8400 m/s)² - h = √((6.6743 × 10^-11 Nm²/kg²) * M / (14.4 m/s²))
Squaring both sides and rearranging, we get:
M = (8400 m/s)² * (14.4 m/s²) * h / (2 * G)
Substituting this expression for M into the equation for r, we get:
r = √((8400 m/s)² * h / (2 * g))
Substituting the given values, we get:
r = √((8400 m/s)² * h / (2 * 14.4 m/s²))
r = 2.13 × 10^6 meters
Therefore, the planet's radius is approximately 2.13 × 10^6 meters using v² = GM/r.
Learn more about planet radius below.
https://brainly.com/question/16233311
#SPJ1
if the variable capacitor in an fm receiver ranges from 10.9 pf to 16.4 pf , what inductor should be used to make an lc circuit whose resonant frequency spans the fm band?
To create an LC circuit spanning the FM band with a variable capacitor of 10.9-16.4 pF, use the formula L = 1/(4π²f²C).
The inductor needed to make an LC circuit whose resonant frequency spans the FM band depends on the variable capacitor in the FM receiver. In your case, the variable capacitor ranges from 10.9 pF to 16.4 pF. To determine the inductor needed for the LC circuit, you can use the following formula:
L = (1/ (4π² * f² * C))
Where:
"L" is the inductor. "f" is the frequency of the LC circuit. "C" is the capacitor.For example, if you set the variable capacitor to 10.9 pF, the inductor needed to make an LC circuit whose resonant frequency spans the FM band would be:
L = (1/ (4π² * f² * 10.9 pF))
Learn more about circuit: https://brainly.com/question/29255502
#SPJ11
What planet rotates once a day?
Earth is the only planet with a daily rotation. The only planet in our solar system known to offer the ideal circumstances for supporting life is Earth, which is located third from the Sun.
The only planet in our solar system known to offer the ideal circumstances for supporting life is Earth, which is located third from the Sun. The rotation of our planet, which creates day and night, is one of its most striking characteristics. Every 24 hours, the Earth spins on its axis, giving rise to the cycle of day and night. The Coriolis effect, which affects the direction of winds, ocean currents, and other significant motions in the atmosphere and seas, is also a result of this rotation. The molten core of the globe spins as Earth rotates, creating a magnetic field that shields humans from dangerous solar radiation.
Learn more about planet here:
https://brainly.com/question/26756957
#SPJ4
When the price of radios decreases 5%, quantity demanded increases 5%. The price elasticity of demand for radios is ________ and total revenue from radio sales will ________.
Price elasticity of demand for radios is 1 and total revenue from radio sales will remain constant.
Price elasticity of demand is calculated as the percentage change in quantity demanded divided by the percentage change in price. Using this formula, we can calculate the price elasticity of demand for radios as follows:
Price elasticity of demand = (percentage change in quantity demanded) / (percentage change in price)
Given that when the price of radios decreases by 5%, quantity demanded increases by 5%.So, the percentage change in quantity demanded = 5% and the percentage change in price = -5%. (Because price has decreased by 5%.)Price elasticity of demand = (5% / -5%) = -1.The negative sign indicates that the demand is elastic. However, the question asks for a positive value, so we take the absolute value of -1.Price elasticity of demand = 1.
Therefore, the price elasticity of demand for radios is 1.When the price elasticity of demand is equal to 1, it means that the demand is unit elastic. This implies that the percentage change in quantity demanded is equal to the percentage change in price. If the price of radios decreases by 5% and the quantity demanded increases by 5%, it means that the total revenue from radio sales will remain constant. In other words, the increase in quantity demanded is exactly offset by the decrease in price, resulting in the same total revenue.
More price elasticity: https://brainly.com/question/22716533
#SPJ11
You know your mass is 70 kg, but when you stand on a bathroom scale in an elevator, it says your mass is 76 kg. What is the magnitude of the acceleration of the elevator? Express your answer using two significant figures.
The magnitude of the acceleration of the elevator is approximately 0.84 m/s².
When you stand on a bathroom scale in an elevator, it says your mass is 76 kg. Your actual mass is 70 kg.
Thus, the apparent weight of an object on the scale is the product of the object's mass and the net force acting on it. The scale reads a greater mass because of the upward force the elevator floor exerts on you.
The magnitude of the acceleration of the elevator is provided by the following formula:
The magnitude of the acceleration of the elevator = F_net/m,
where F_net is the net force on the object and m is the object's mass.
Since your actual mass is 70 kg and the scale measures an apparent mass of 76 kg, the net force acting on you is the difference between the apparent weight and the actual weight, which is given by
F_net = (76 kg - 70 kg) by × 9.8 m/s²
= 58.8 N
Thus, the magnitude of the acceleration of the elevator is: the magnitude of the acceleration of the elevator
= F_net/m = 58.8 N/70 kg
≈ 0.84 m/s²
Therefore, the magnitude of the acceleration of the elevator is approximately 0.84 m/s².
Learn more about the magnitude of the acceleration here:
https://brainly.com/question/29678420
#SPJ11
Can we use our brainly points.
What did the triangle say to the circle?
Your pointless
Answer:
i actually giggled at that oml.
Explanation:
that was good
Is it possible to have an acceleration without having a force?
No, there must always be a force present in order to have an acceleration. This is because, according to Newton's Second Law of Motion, acceleration is exactly proportional to force.
An item will accelerate more quickly the more force is given to it. An object's velocity will remain constant without a force acting on it (whether it is at rest or moving with a constant speed and direction), hence its acceleration will be zero. One of Newton's Three Laws of Motion, this is referred to as the Law of Inertia. No, an acceleration always requires the presence of a force. This is because acceleration is eminently proportional to force, in accordance with Newton's Second Law of Motion. it NOT possible to have an acceleration without having a force.
learn more about force here:
https://brainly.com/question/13191643
#SPJ4
Part A A canoe is designed to have very little drag when it moves along its length. Riley, mass 62 kg, sits in a 21 kg canoe in the middle of a lake. She dives into the water off the front of the canoe, along the axis of the canoe. She dives forward at 1.7 m/s relative to the boat. Just after her leap, how fast is she moving relative to the water? Express your answer with the appropriate units Value Units Submit Request Answer ▼ Part B Just after her leap, how fast is the canoe moving relative to the water? Express your answer with the appropriate units. (c)EValue Units
The speed of Riley relative to the water is 1.7 m/s. and the speed of canoe relative to the water is 0 m/s.
How fast is Riley moving relative to the water?The equation needed to solve the problem is the following:
Final Velocity = Initial Velocity + (Acceleration × Time)
The steps to solve for speed of Riley are the following:
Mass of Riley = 62 kg
Mass of canoe = 21 kg
Speed of leap relative to the boat = 1.7 m/s
By using the equation for conservation of momentum (also known as the center of mass formula):
m₁v₁ + m₂v₂ = (m₁ + m₂)vf
Solve for the unknown variable: vf = (m₁v₁ + m₂v₂) / (m₁ + m₂)
Plugging in the values given, you get: vf = (62 kg × 1.7 m/s) / (62 kg + 21 kg) = 1.2 m/s
Therefore, Riley is moving at 1.2 m/s relative to the water.
Velocity of the canoe relative to the water can be determined by using the equation for conservation of momentum (also known as the center of mass formula):
m₁v₁ + m₂v₂ = (m₁ + m₂)vf
v₂ = [(m₁ + m₂)vf - m₁v₂] / m₂
Plugging in the values given, you get: v₂ = [(62 kg + 21 kg) × 1.2 m/s - 62 kg × 1.7 m/s] / 21 kg = 0 m/s
Therefore, the canoe is not moving relative to the water.
Learn more about Relative speed here:
https://brainly.com/question/14362959
#SPJ11
two long parallel wires placed side-by-side on a horizontal table carry identical current straight toward you. from your point of view, the magnetic field at the point exactly between the two wires select one: a. points down. b. points toward you. c. is zero. d. points away from you.
The magnetic field at the point exactly between the two wires will point away from your point of view is zero. The correct option is C.
What is the magnetic field?The two currents in the wires create a parallel magnetic field, which is oriented so that the same pole is facing each other (in this case, the north pole). This causes the field lines to repel away from each other, creating a magnetic field that points away from the midpoint between the wires.
The magnetic field at the point exactly between the two wires is zero. Two parallel long wires that carry identical currents straight towards us are placed side by side on a horizontal table.
As a result, the net magnetic field is zero.
Therefore, the correct option is C.
Read more about magnetic field here:
https://brainly.com/question/14411049
#SPJ11
Studying a spectrum from a star can tell us a lot. All of the following statements are true except one. Which statement is not true?The total amount of light in the spectrum tells us the star's radius.We can identify chemical elements present in the star by recognizing patterns of spectral lines that correspond to particular chemicals.Shifts in the wavelengths of spectral lines compared to the wavelengths of those same lines measured in a laboratory on Earth can tell us the star's speed toward or away from us.The peak of the star's thermal emission tells us its temperature: hotter stars peak at shorter (bluer) wavelength
All of the following statements are true about studying spectrum from a star except the statement that "The total amount of light in the spectrum tells us the star's radius."
It is possible to identify chemical elements present in the star by recognizing patterns of spectral lines that correspond to particular chemicals. In other words, we can determine which elements are present in a star by analyzing the spectrum of the light it emits. This is because every chemical element has a unique spectrum of energy that it emits.
The wavelength shifts of spectral lines compared to the wavelengths of those same lines measured in a laboratory on Earth can tell us the star's speed toward or away from us. This is known as the Doppler effect, and it enables astronomers to calculate how fast a star is moving relative to Earth. For example, if the spectral lines are shifted towards the blue end of the spectrum, it means that the star is moving towards us.
On the other hand, if the spectral lines are shifted towards the red end of the spectrum, it means that the star is moving away from us.The peak of the star's thermal emission tells us its temperature: hotter stars peak at shorter (bluer) wavelengths. This is because the hotter an object is, the more energy it radiates, and the shorter the wavelength of that radiation. Therefore, the peak of the thermal emission spectrum provides an indication of the star's temperature.
More on spectrum: https://brainly.com/question/14965583
#SPJ11
Alice holds a small battery operated device used for tuning instruments that emits the frequency of middle C (262 Hz) while walking with a constant speed of 4.68 m/s toward a building which presents a hard smooth surface and hence reflects sound well. (Use343 m/s as the speed of sound in air.)
(a) Determine the beat frequency Alice observes between the device and its echo. (Enter your answer to at least 1 decimal place.)
(b) Determine how fast Alice must walk away from the building in order to observe a beat frequency of 6.19 Hz.
(A) Alice observes a beat frequency of approximately 3.9 Hz between the device and its echo. (B) Alice must walk away from the building at a speed of approximately 7.05 m/s to observe a beat frequency of 6.19 Hz.
(A) The given values are:
Speed of Alice, vA = 4.68 m/s.
The frequency emitted by the device, f1 = 262 Hz
Speed of sound in air, v = 343 m/s(a)
The beat frequency, f beat is given by the formula: fbeat = |f1 - f2| where f2 is the frequency of the reflected sound.
Since the speed of sound is reflected, the distance traveled by the sound to the building and back is 2d.
Therefore, the time taken is given by t = 2d/v.
The frequency f2 is given by f2 = v/(2d).
The distance d = vt/2 = (vA t)/2
The time t is given by: t = d/vA
The frequency f2 is given by f2 = v/(2d) = vA/(2v t)
Therefore, the beat frequency is: fbeat = |f1 - f2| = |262 - vA/(2v t)|
Thus, substituting the given values, we get: fbeat = |262 - 343/(2 × 4.68 × t)|
To solve this, we can use trial and error method.
We can check if fbeat is approximately equal to 2, 3, 4, 5, or 6 Hz.
Using t = 0.01 s, we get: fbeat = |262 - 343/(2 × 4.68 × 0.01)|≈ 4.4 Hz
Using t = 0.011 s, we get: fbeat = |262 - 343/(2 × 4.68 × 0.011)|≈ 3.9 Hz
Therefore, Alice observes a beat frequency of approximately 3.9 Hz between the device and its echo.
(b) Let's suppose that Alice walks with a velocity of vA' away from the building. Therefore, the distance traveled by the sound in the same time interval t = d/vA' is d' = vA' t/2.The time taken is given by t = d/vA = d'/vA'
Now, the frequency f2 is given by f2 = v/(2d') = vA'/(2v t)
The beat frequency is:fbeat = |f1 - f2| = |262 - vA'/(2v t)|
Thus, substituting the given values, we get: fbeat = |262 - 343/(2 × vA' × t)|
Let's suppose that fbeat = 6.19 Hz.
Using trial and error, we get that t ≈ 0.018 s.
Substituting this value, we get:6.19 = |262 - 343/(2 × vA' × 0.018)|
Therefore, vA' ≈ 7.05 m/s
Thus, Alice must walk away from the building at a speed of approximately 7.05 m/s to observe a beat frequency of 6.19 Hz.
To know more about frequency, refer here:
https://brainly.com/question/5102661#
SPJ11#
The prelab required you to use the impedance method to calculate the steady-state amplitude and phase (in degrees) of vc to an input vs = cos(2phi ft) where f-1000 Hz (ω = 2phif). The results from the prelab are . Ao=_____Phase, φ =_____degrees
The steady-state amplitude Ao = 50.03 degrees and phase, φ = -88.7 degrees by using the impedance method.
The given equation for vs is:
vs = cos(2phi ft) ...[1]
where, f = 1000 Hz,
therefore ω = 2φf
ω= 2000π radians/s
Let's find the impedance of the circuit elements.
The impedance of the resistor is R.
The impedance of the capacitor is:
Zc = 1/(jωC)
The impedance of the inductor is:
ZL = jωL
As the capacitor and resistor are connected in series, their total impedance is:
ZC+R = R + 1/(jωC) ...[2]
Now, as the inductor is connected in parallel with the combination of R and C, the total impedance of the circuit is:
Ztotal = (ZC+R) || ZL...[3]
Ztotal = (R + 1/(jωC)) || jωL
Ztotal = 1/[(1/R) + j(1/ωC - ωL)]...[4]
Comparing the real and imaginary parts of the equation [4],
we get, 1/R = √{(1/ωC - ωL)^2} ...[5]and
1/ωC - ωL = 0
or
ωL = 1/ωC ...[6]
From equation [5],
we get, R = 1/√{(1/ωC - ωL)^2} ...[7]
The magnitude of the input voltage Vs is 1 volt.
The amplitude of the steady-state output voltage, Vc is given by:
Voc = Ao x 1VoltA0
Voc = R/ZtotalA0
Voc = R/1/[(1/R) + j(1/ωC - ωL)]A0
Voc = R(1/R) + jR(1/ωC - ωL)A0
Voc = 1 + jR(1/ωC - ωL) ...[8]
From equation [6],
we get: L = 1/(ωC)
L = 1/(2π x 1000)
L = 1.59 x 10-7 H
Substituting L in equation [6],
we get: ωL = ωC
ωL = 1/2π x 1000 x 1.59 x 10-7
ωL = 0.1Ω
From equation [7], we get: R = 1000 Ω
Substituting the value of R and ωL in equation [8],
we get: A0 = 1 + j1000(1/2π x 1000 x 1.59 x 10-7 - 0.1)
A0 = √{(1^2) + (-50.03)^2}
A0 = 50.03 degrees
Let φ be the phase of the output voltage with respect to the input voltage.
Therefore, we have: tanφ = -50.03φ = -88.7 degrees
Therefore, Ao = 50.03 degrees and φ = -88.7 degrees.
Answer: Ao = 50.03 degrees, φ = -88.7 degrees.
Learn more about impedance: https://brainly.com/question/24225360
#SPJ11
If the change in internal energy = 1714J, specific
heat capacity = 49J/°C/kg, and mass = 38kg,
what is the temperature change experienced?
Give your answer to 2 decimal places.
Answer:
0.92°C
Explanation:
C = change in Q/m × change in T
so
change in T = change in Q/C ×m
C= 49
m= 38
change in Q= 1714
then
= 1714/49 × 38
= 1714/1862
= 0.92°C
rounded off to 2 d.p
Lab: Electromagnetic Induction: Instructions Click the links to open the resources below. These resources will help you complete the assignment. Once you have created your file(s) and are ready to upload your assignment, click the Add Files button below and select each file from your desktop or network folder. Upload each file separately. Your work will not be submitted to your teacher until you click Submit.
To complete the lab assignment on Electromagnetic Induction, first click the links to open the resources provided.
This will help you complete the task.
After creating the file(s) and once you are ready to submit your assignment,
click the 'Add Files' button and select each file from your desktop or network folder.
Remember to upload each file separately. Once you have uploaded the files, click 'Submit' to submit your work to your teacher.
In this lab, you are expected to understand and apply the concept of Electromagnetic Induction.
Electromagnetic Induction is a process where a varying magnetic field creates an electric field.
The electric field then induces a current in a nearby circuit. This current is caused by Faraday's law of induction.
To know more about Electromagnertic induction; https://brainly.com/question/27613726
#SPJ11
the us bank tower in los angeles is designed to resist an earthquake of what magnitude on the richter scale?
The 8.3 on the Richter scale earthquake magnitude can be withstood by the US Bank Tower in Los Angeles.
How earthquake-proof is the Los Angeles U.S. Bank Tower?A frame that is strengthened in two directions is part of the central core structure. Two struts, each one level high, are employed to decrease horizontal stresses brought on by wind or earthquakes beginning at the 53rd floor.
A 9.0 earthquake can a tower withstand?Indeed, it is the answer. Modern structural design techniques can be used to construct skyscrapers that can resist earthquakes. Performance-based structural design (PBSD), a cutting-edge design methodology for creating earthquake-resistant structures, is one of them.
To know more about magnitude visit:-
https://brainly.com/question/30395926
#SPJ1
you are designing a spacecraft to a giant planet. which planet is your spacecraft going to study, and what is it going to learn about the planet?
A spacecraft is a vehicle that can travel into space. The spacecraft can be used to study other planets, asteroids, and comets in our solar system. Spacecraft has the ability to collect data, take photographs, and make measurements about the planets and other space objects.
What can you learn about a planet?With a spacecraft, scientists can learn a lot about planets. Some of the things that can be learned include the following:
The chemical composition of the planet's surface and atmosphere.The geology of the planet, such as mountains, valleys, and other features.How the planet rotates, and how long it takes to complete one rotation.The planet's weather patterns and climate, such as temperature and wind speeds.The planet's magnetic field, and how it interacts with the solar wind.The planet's moons and rings, and how they interact with the planet.In conclusion, with a spacecraft, scientists can learn a lot about planets. Information about a planet can vary depending on the planet.
Learn more about spacecraft: https://brainly.com/question/24571549
#SPJ11
how do the summer and winter monsoon affect climate in the region?
The summer monsoon brings heavy rainfall and cooler temperatures, while the winter monsoon brings dry, cool air to the region.
The summer monsoon is characterized by winds blowing from the southwest over the Indian Ocean, bringing moisture to the Indian subcontinent and Southeast Asia. This results in heavy rainfall, cooler temperatures, and increased humidity during the summer months. The winter monsoon, on the other hand, is characterized by winds blowing from the northeast, bringing dry, cool air to the region, leading to lower temperatures and little to no rainfall. The seasonal changes brought by the monsoon winds play a crucial role in shaping the climate of the region, affecting everything from agriculture to water resources to human settlements.
To know more about monsoons, here
brainly.com/question/22831604
#SPJ4