In an effort to figure out why application rates are slipping, your college decides to set up an experiment to determine why students who are interested in the college decide to enroll or not. The college decides to send out a questionnaire to everyone who submitted an application to the college in 2017. What's the population for this study, and what's the sample?

A. The population is all college students everywhere, and the sample is all college students interested in your school.
B. The population is all college students everywhere, and the sample is the individuals who responded to the survey.
C. The population is all students who applied to your college, and the sample is the individuals who responded to the survey.
D. The population is all college students interested in your school, and the sample is everyone who decided to enroll.

Answers

Answer 1

The population of interest is the group of students who submitted an application to the college in 2017.

What is sample?

A sample is a subset of a population that is selected and studied in order to make inferences or conclusions about the population. The sample is usually selected to be representative of the population in some way, so that the conclusions drawn from the sample can be generalized to the population as a whole.

According to question:

The correct answer is C.

The purpose of the study is to determine why students who are interested in the college decide to enroll or not. Therefore, the population of interest is the group of students who submitted an application to the college in 2017.

Option A is incorrect because the population is not all college students everywhere, only those who applied to the college in question.Option B is incorrect because the sample is not just the individuals who responded to the survey, but rather all students who submitted an application in 2017.Option D is incorrect because the sample is not just everyone who decided to enroll, but rather all students who submitted an application, regardless of whether they enrolled or not.

To know more about sample visit:

https://brainly.com/question/11045407

#SPJ1


Related Questions

I will mark you brainiest!

If the triangles above are reflections of each other, then ∠D ≅ to:
A) ∠F.
B) ∠E.
C) ∠C.
D) ∠A.
E) ∠B.

Answers

Answer:

D I believe

Step-by-step explanation:

.2 In the diagram below, given that XY = 3cm, XZY = 30° and YZ = x, is it possible to solve for x using the theorem of Pythagoras? Motivate your answer. Show Calculations ​

Answers

Sin 30 =3/x

1/2=3/x

x=6

T
AD
View Instructions
Interpreting a Dot Plot
DAR
3 4 5
1 2
Number of pets at home
6
How many people have 2 pets at home?
How many people have at least 3 pets at home?
How many more people have 2 pets than 5 pets?
How many people have less than 3 pets at home?
11
10 HELP MEEE

Answers

If we total up the dots plot for 3, 4, and 5 pets, we find that 3 people have 2 pets at home, 10 individuals have at least 3 pets at home.

What is the 1 pet in the world?

The fact that dogs are the most common pet in the world shouldn't be shocking. There is a reason why there are tens of millions of dogs living in the United States alone, which is why some people say that dogs are a man's greatest friend. Around the world, at least one dog is kept in one-third of all households.

What exactly is a house pet?

A fully domesticated animal kept constitutes a "household pet." a pet kept by you for personal company, like a dog, cat, reptile, bird, or mouse. Any kind of horse, cow, pig, sheep, goat, chicken, turkey, other captive fur-bearing animal is not considered a household pet, nor is any animal that is typically kept for food or profit.

To know more about dots plot visit:-

https://brainly.com/question/22068145

#SPJ1

The total number of people with pets at home is 11, which is the sum of the heights of the columns.

What is equation?

A math equation is a method that links two claims and represents equivalence using the equals sign (=). An equation is a mathematical statement that establishes the equivalence of two mathematical expressions in algebra.

Based on the given dot plot, we can answer the following questions:

How many people have 2 pets at home?

Answer: Two people have 2 pets at home, as indicated by the two dots in the second column.

How many people have at least 3 pets at home?

Answer: Six people have at least 3 pets at home, as indicated by the dots in the third column and beyond.

How many more people have 2 pets than 5 pets?

Answer: There are no dots in the last column, which represents 5 pets. Therefore, the difference between the number of people with 2 pets and those with 5 pets is 2 - 0 = 2.

How many people have less than 3 pets at home?

Answer: Three people have less than 3 pets at home, as indicated by the dots in the first two columns.

Therefore, the total number of people with pets at home is 11, which is the sum of the heights of the columns.

To know more about equation fro the given link:

brainly.com/question/649785

#SPJ1

Use the power of a power property to simplify the numeric expression.

(91/4)^7/2

Answers

Using the power property to simplify the expression (9¹⁺⁴)⁷⁺², we have 9^7/8


Using the power property to simplify the numeric expression.

Given the expression

(9¹⁺⁴)⁷⁺²

To simplify this expression using the power of a power property, we need to multiply the exponents:

(9¹⁺⁴)⁷⁺² = 9(¹⁺⁴ ˣ ⁷⁺²)

Simplifying the exponents in the parentheses:

(9¹⁺⁴)⁷⁺² = 9⁷⁺⁸ or 9^7/8

Therefore, (9¹⁺⁴)⁷⁺² simplifies to 9^(7/8).

Read more about expression at

https://brainly.com/question/4344214

#SPJ1

During a manufacturing process, a metal part in a machine is exposed to varying temperature conditions. The manufacturer of the machine recommends that the temperature of the machine part remain below 131°F. The temperature T in degrees Fahrenheit x minutes after the machine is put into operation is modeled by T=-0.005x^2+0.45x+125. Will the temperature of the part ever reach or exceed 131°F? Use the discriminant of a quadratic equation to decide.


answer options
1. No
2. Yes​

Answers

From the discriminant of the give quadratic equation, the temperature of the machine will part after 50 minutes of operation.

Will the temperature of the part ever reach or exceed 135°F?

The given equation that models the temperature of the machine is;

T = -0.005x² + 0.45x + 125

Let check if there's a value that exists for T = 135

Putting T = 135 in the given equation,

135 = -0.005x² + 0.45x + 125

We can simplify this to;

0.005x² - 0.45x + 10 = 0

From the general form of quadratic equation which is ax² + bx + c = 0, where a = 0.005, b = -0.45, and c = 10.

The discriminant of this quadratic equation is given by:

D = b² - 4ac

= (-0.45)² - 4(0.005)(10)

= 0.2025 - 0.2

= 0.0025

The discriminant of the equation is positive which indicates we have two roots. Therefore, the temperature of the machine part will cross 135°F at some point during the operation.

We can also find the roots of the quadratic equation using the formula:

[tex]x = (-b \± \sqrt(D)) / 2a[/tex]

Substituting the values of a, b, and D, we get:

[tex]x = (0.45 \± \sqrt(0.0025)) / 2(0.005)\\= (0.45 \± 0.05) / 0.01[/tex]

Taking the positive value, we get:

x = 50

Therefore, the temperature of the machine part will cross 135°F after 50 minutes of operation.

Learn more on discriminant here;

https://brainly.com/question/12526527

#SPJ1

Assume that the readings at freezing on a batch of thermometers are normally distributed with a mean of 0°C and a standard deviation of 1.00°C. A single thermometer is randomly selected and tested. Find the probability of obtaining a reading less than 0.35°C.
Round your answer to 4 decimal places

Answers

The probability of obtaining a reading less than 0.35° C is approximately 35%.

What exactly is probability, and what is its formula?

Accοrding tο the prοbability fοrmula, the likelihοοd οf an event οccurring is equal tο the ratiο οf the number οf favοurable οutcοmes tο the tοtal number οf οutcοmes. Prοbability οf an event οccurring P(E) = The number οf favοurable οutcοmes divided by the tοtal number οf οutcοmes.

The readings at freezing οn a set οf thermοmeters are nοrmally distributed, with a mean (x) οf 0°C and a standard deviatiοn (μ) οf 1.00°C. We want tο knοw hοw likely it is that we will get a reading that is less than 0.35°C.

To solve this problem, we must use the z-score formula to standardise the value:

[tex]$Z = \frac{x - \mu}{\sigma}[/tex]

Z = standard score

x = observed value

[tex]\mu[/tex] = mean of the sample

[tex]\sigma[/tex] = standard deviation of the sample

Here

x = 0.35° C

[tex]\mu[/tex] = 0° C

[tex]\sigma[/tex] = 1.00°C

Using the values on the formula:

[tex]$Z = \frac{0.35 - 0}{1}[/tex]

Z = 0.35

The probability of obtaining a reading less than 0.35° C is approximately 35%.

To know more about probability visit:

brainly.com/question/30719832

#SPJ1

Find the 66th derivative of the function f(x) = 4 sin (x)…..

Answers

In response to the stated question, we may state that As a result, the 66th derivative of f(x) = 4 sin(x) is 4 sin(x) (x).

what is derivative?

In mathematics, the derivative of a function with real variables measures how sensitively the function's value varies in reaction to changes in its parameters. Derivatives are the fundamental tools of calculus. Differentiation (the rate of change of a function with respect to a variable in mathematics) (in mathematics, the rate of change of a function with respect to a variable). The use of derivatives is essential in the solution of calculus and differential equation problems. The definition of "derivative" or "taking a derivative" in calculus is finding the "slope" of a certain function. Because it is frequently the slope of a straight line, it should be enclosed in quotation marks. Derivatives are rate of change metrics that apply to almost any function.

Using the chain rule and the derivative of the sine function repeatedly yields the 66th derivative of the function [tex]f(x) = 4 sin (x).[/tex]

The derivative of sin(x) is cos(x), and the derivative of cos(x) is -sin(x), and this pattern repeats itself every two derivatives.

As a result, the first derivative of f(x) is:

[tex]f'(x) = 4 cos (x)[/tex]

The second derivative is as follows:

[tex]f"(x) = -4 sin (x)[/tex]

The third derivative is as follows:

[tex]f"'(x) = -4 cos (x)[/tex]

The fourth derivative is as follows:

[tex]f""(x) = 4 sin (x)[/tex]

And so forth.

[tex]f^{(66)(x)} = 4 sin (x)[/tex]

Because the pattern repeats every four derivatives, the 66th derivative is the same as the second, sixth, tenth, fourteenth, and so on.

As a result, the 66th derivative of f(x) = 4 sin(x) is 4 sin(x) (x).

To know more about derivatives visit:

https://brainly.com/question/25324584

#SPJ1

(b) Write 5 as a percentage.​

Answers

Answer:

5 as a percentage of 100 is 5/100 which is 5%

To the nearest hundredth, what is the volume of the sphere? (Use 3.14 for pie.)

Answers

Therefore, the volume of the sphere to the nearest hundredth is 724,775.70 cubic millimeters.

What is volume?

Volume is a measurement of the amount of space occupied by a three-dimensional object. It is often expressed in units such as cubic meters (m³), cubic centimeters (cm³), cubic feet (ft³), or gallons (gal), depending on the context. The volume of a solid object can be calculated by multiplying its length, width, and height or using a specific formula depending on the shape of the object. For example, the volume of a rectangular box can be calculated as length x width x height, while the volume of a cylinder can be calculated as π x radius² x height. In general, volume is an important concept in many fields, including physics, chemistry, engineering, and architecture. It is often used to describe the capacity of containers, the displacement of fluids, and the amount of material used in construction or manufacturing.

Here,

The formula for the volume of a sphere is given as V = (4/3)πr³, where r is the radius of the sphere and π is approximately 3.14.

Substituting the given value of the radius, we get:

V = (4/3) x 3.14 x 48³

V ≈ 724,775.68 cubic millimeters

Rounding this value to the nearest hundredth, we get:

V ≈ 724,775.68 ≈ 724,775.70 cubic millimeters (rounded to two decimal places)

To know more about volume,

https://brainly.com/question/12237641

#SPJ1

Solve please geometry, solve for x

Answers

Answer: The answer is D

Step-by-step explanation:

Pythagorean theorem: a²+b²=c²

x²+x²=14²

2x²=196

Evaluate...

x=7√2

WILL MARK AS BRAINLIEST!!!!!!!!!!!!!!
If "f" is differentiable and f(1) < f(2), then there is a number "c", in the interval (_____, _____) such that f'(c)>_______

Answers

If "f" is differentiable and f(1) < f(2), then there is a number "c", in the interval  (1, 2)  such that f'(c)>  0.

How do we know?

Applying the  Mean Value Theorem for derivatives, if a function f is continuous on the closed interval [a, b] and differentiable on the open interval (a, b), then there exists at least one number c in the interval (a, b) such that:

f'(c) = (f(b) - f(a)) / (b - a)

In the scenario above, we have that f is differentiable, and that f(1) < f(2).

choosing a = 1 and b = 2.

Then applying the Mean Value Theorem, there exists at least one number c in the interval (1, 2) such that:

f'(c) = (f(2) - f(1)) / (2 - 1)

f'(c) = f(2) - f(1)

We have that f(1) < f(2), we have:

f(2) - f(1) > 0

We can conclude by saying that there exists a number c in the interval (1, 2) such that:

f'(c) = f(2) - f(1) > 0

Learn more about Mean Value Theorem at: https://brainly.com/question/19052862

#SPJ1

The roots of a quadratic equation a x +b x +c =0 are (2+i √2)/3 and (2−i √2)/3 . Find the values of b and c if a = −1.

Answers

[tex]\begin{cases} x=\frac{2+i\sqrt{2}}{3}\implies 3x=2+i\sqrt{2}\implies 3x-2-i\sqrt{2}=0\\\\ x=\frac{2-i\sqrt{2}}{3}\implies 3x=2-i\sqrt{2}\implies 3x-2+i\sqrt{2}=0 \end{cases} \\\\\\ \stackrel{ \textit{original polynomial} }{a(3x-2-i\sqrt{2})(3x-2+i\sqrt{2})=\stackrel{ 0 }{y}} \\\\[-0.35em] ~\dotfill[/tex]

[tex]\stackrel{ \textit{difference of squares} }{[(3x-2)-(i\sqrt{2})][(3x-2)+(i\sqrt{2})]}\implies (3x-2)^2-(i\sqrt{2})^2 \\\\\\ (9x^2-12x+4)-(2i^2)\implies 9x^2-12x+4-(2(-1)) \\\\\\ 9x^2-12x+4+2\implies 9x^2-12x+6 \\\\[-0.35em] ~\dotfill\\\\ a(9x^2-12x+6)=y\hspace{5em}\stackrel{\textit{now let's make}}{a=-\frac{1}{9}} \\\\\\ -\cfrac{1}{9}(9x^2-12x+6)=y\implies \boxed{-x^2+\cfrac{4}{3}x-\cfrac{2}{3}=y}[/tex]

Which expressions are equivalent to 8(3/4y -2)+6(-1/2+4)+1

Answers

Answer: 6y + 6

Step-by-step explanation:

To simplify the expression 8(3/4y -2) + 6(-1/2+4) + 1, we can follow the order of operations (PEMDAS):

First, we simplify the expression within parentheses, working from the inside out:

6(-1/2+4) = 6(7/2) = 21

Next, we distribute the coefficient of 8 to the terms within the first set of parentheses:

8(3/4y -2) = 6y - 16

Finally, we combine the simplified terms:

8(3/4y -2) + 6(-1/2+4) + 1 = 6y - 16 + 21 + 1 = 6y + 6

Therefore, the expression 8(3/4y -2) + 6(-1/2+4) + 1 is equivalent to 6y + 6.

what is the Taylor's series for 1+3e^(x)+x^2 at x=0​

Answers

The Taylor's series for [tex]1 + 3e^x + x^2[/tex] at [tex]x=0[/tex] is :

[tex]1 + 3e^x+ x^2 = 5 + 3x + (3/2)x^2 + (1/3)x^3 + ...[/tex]

What do you mean by Taylor's series ?

The Taylor's series is a way to represent a function as a power series, which is a sum of terms involving the variable raised to increasing powers. The series is centered around a specific point, called the center of the series. The Taylor's series approximates the function within a certain interval around the center point.

The general formula for the Taylor's series of a function f(x) centered at [tex]x = a[/tex] is:

[tex]f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)^2/2! + f'''(a)(x-a)^3/3! + ...[/tex]

where [tex]f'(a), f''(a), f'''(a),[/tex] etc. are the derivatives of f(x) evaluated at [tex]x = a[/tex].

Finding the Taylor's series for [tex]1 + 3e^x + x^2[/tex] at [tex]x=0[/tex] :

We need to find the derivatives of the function at [tex]x=0[/tex]. We have:

[tex]f(x) = 1 + 3e^x + x^2[/tex]

[tex]f(0) = 1 + 3e^0 + 0^2 = 4[/tex]

[tex]f'(x) = 3e^x+ 2x[/tex]

[tex]f'(0) = 3e^0 + 2(0) = 3[/tex]

[tex]f''(x) = 3e^x + 2[/tex]

[tex]f''(0) = 3e^0 + 2 = 5[/tex]

[tex]f'''(x) = 3e^x[/tex]

[tex]f'''(0) = 3e^0 = 3[/tex]

Substituting these values into the general formula for the Taylor's series, we get:

[tex]f(x) = f(0) + f'(0)x + f''(0)x^2/2! + f'''(0)x^3/3! + ...[/tex]

[tex]f(x) = 4 + 3x + 5x^2/2 + 3x^3/6 + ...[/tex]

Simplifying, we get:

[tex]f(x) = 5 + 3x + (3/2)x^2 + (1/3)x^3 + ...[/tex]

Therefore, the Taylor's series for [tex]1 + 3e^x + x^2[/tex] at [tex]x=0[/tex] is :

[tex]1 + 3e^x+ x^2 = 5 + 3x + (3/2)x^2 + (1/3)x^3 + ...[/tex]

To know more about Taylor's series visit :

brainly.com/question/29733106

#SPJ1

Without an appointment, the average waiting time in minutes at the doctor's office has the probability density function f(t)=1/38, where 0≤t≤38
Step 1 of 2:
What is the probability that you will wait at least 26 minutes? Enter your answer as an exact expression or rounded to 3 decimal places.
Step 2 of 2:
What is the average waiting time?

Answers

The probability of waiting at least 26 minutes is 0.316. The average waiting time is 19 minutes.

Step 1:

The probability of waiting at least 26 minutes can be calculated by finding the area under the probability density function from 26 to 38:

P(waiting at least 26 minutes) = ∫26^38 (1/38) dt = [t/38] from 26 to 38

= (38/38) - (26/38) = 12/38 = 0.316

So the probability of waiting at least 26 minutes is 0.316 or approximately 0.316 rounded to 3 decimal places.

Step 2:

The average waiting time can be calculated by finding the expected value of the probability density function:

E(waiting time) = ∫0³⁸ t f(t) dt = ∫0³⁸ (t/38) dt

= [(t²)/(238)] from 0 to 38

= (38²)/(238) = 19

Therefore, the average waiting time is 19 minutes.

Learn more about probability here: brainly.com/question/30034780
#SPJ4

Uri paid a landscaping company to mow his lawn. The company charged $74 for the service plus
5% tax. After tax, Uri also included a 10% tip with his payment. How much did he pay in all?

Answers

Uri paid a total of $85.47 for the landscaping service including tax and tip.

What is tax?

Taxes are compulsory payments made by a government organisation, whether local, regional, or federal, to people or businesses. Tax revenues are used to fund a variety of government initiatives, such as Social Security and Medicare as well as public infrastructure and services like roads and schools. Taxes are borne by whoever bears the cost of the tax in economics, whether this is the entity being taxed, such as a business, or the final users of the items produced by the firm. Taxes should be taken into consideration from an accounting standpoint, including payroll taxes, federal and state income taxes, and sales taxes.

Given that company charged $74 for the service plus 5% tax.

The tax is 5%, that is:

Tax = 5% of $74 = 0.05 x $74 = $3.70

Cost after tax = $74 + $3.70 = $77.70

Now, tip is 10%:

Tip = 10% of $77.70 = 0.10 x $77.70 = $7.77

Total cost = $77.70 + $7.77 = $85.47

Hence, Uri paid a total of $85.47 for the landscaping service including tax and tip.

Learn more about tax here:

https://brainly.com/question/16423331

#SPJ1

P, Q, R, S, T and U are different digits.
PQR + STU = 407

Answers

Step-by-step explanation:

There are many possible solutions to this problem, but one possible set of values for P, Q, R, S, T, and U is:

P = 2

Q = 5

R = 1

S = 8

T = 9

U = 9

With these values, we have:

PQR = 251

STU = 156

And the sum of PQR and STU is indeed 407.

According to Money magazine, Maryland had the highest median annual household income of any state in 2018 at $75,847.† Assume that annual household income in Maryland follows a normal distribution with a median of $75,847 and standard deviation of $33,800.
(a) What is the probability that a household in Maryland has an annual income of $90,000 or more? (Round your answer to four decimal places.)
(b) What is the probability that a household in Maryland has an annual income of $50,000 or less? (Round your answer to four decimal places.)

Answers

The required probability that a household in Maryland with annual income of ,

$90,000 or more is equal to 0.3377.

$50,000 or less is equal to 0.2218.

Annual household income in Maryland follows a normal distribution ,

Median =  $75,847

Standard deviation = $33,800

Probability of household in Maryland has an annual income of $90,000 or more.

Let X be the random variable representing the annual household income in Maryland.

Then,

find P(X ≥ $90,000).

Standardize the variable X using the formula,

Z = (X - μ) / σ

where μ is the mean (or median, in this case)

And σ is the standard deviation.

Substituting the given values, we get,

Z = (90,000 - 75,847) / 33,800

⇒ Z = 0.4187

Using a standard normal distribution table

greater than 0.4187  as 0.3377.

P(X ≥ $90,000)

= P(Z ≥ 0.4187)

= 0.3377

Probability that a household in Maryland has an annual income of $90,000 or more is 0.3377(rounded to four decimal places).

Probability that a household in Maryland has an annual income of $50,000 or less.

P(X ≤ $50,000).

Standardizing X, we get,

Z = (50,000 - 75,847) / 33,800

⇒ Z = -0.7674

Using a standard normal distribution table

Probability that a standard normal variable is less than -0.7674 as 0.2218. This implies,

P(X ≤ $50,000)

= P(Z ≤ -0.7674)

= 0.2218

Probability that a household in Maryland has an annual income of $50,000 or less is 0.2218.

Therefore, the probability with annual income of $90,000 or more and  $50,000 or less is equal to 0.3377 and 0.2218 respectively.

learn more about probability here

brainly.com/question/24111146

#SPJ4

Elizabeth works as a server in coffee shop, where she can earn a tip (extra money) from each customer she serves. The histogram below shows the distribution of her 60 tip amounts for one day of work. 25 g 20 15 10 6 0 0 l0 15 20 Tip Amounts (dollars a. Write a few sentences to describe the distribution of tip amounts for the day shown. b. One of the tip amounts was S8. If the S8 tip had been S18, what effect would the increase have had on the following statistics? Justify your answers. i. The mean: ii. The median:

Answers

a. Histogram shows tip amounts ranging between $6 and $25, skewed to the right with a longer tail of higher tips.

b. Increasing the $8 tip to $18 would increase the mean since total tip amount increases by $10 spread out over 60 customers. Median won't be affected since changing one value does not alter the middle value.

a. The histogram shows that Elizabeth received a range of tip amounts, with the majority of tips falling between $6 and $25. The distribution is skewed to the right, with a longer tail of higher tip amounts.

b. i. The mean would increase because the total tip amount would increase by $10, and this increase would be spread out over the 60 customers.

ii. The median would not be affected because it is the middle value when the data is ordered, and changing one value does not change the middle value.

Learn more about histogram here: brainly.com/question/30354484

#SPJ4


The population of a certain city was 3,846 in 1996. It is expected to decrease by about 0.27% per year. Write an exponential decay function, and use it to approximate the population in 2022.

Answers

Answer:

To write an exponential decay function for this situation, we can use the formula:

P(t) = P₀e^(rt)

where:

P(t) = the population at time t

P₀ = the initial population

r = the annual rate of decrease (as a decimal)

t = time in years

We are given P₀ = 3,846 and r = -0.0027 (since the population is decreasing).

To approximate the population in 2022, we need to find t, the number of years from 1996 to 2022. That is:

t = 2022 - 1996 = 26 years

Now we can plug in the values we have:

P(t) = 3,846 e^(-0.0027t)

To find P(2022), we plug in t = 26:

P(26) = 3,846 e^(-0.0027(26))

≈ 3,200.62

Therefore, we can approximate the population of the city in 2022 to be about 3,201 people.

Answer:

3,101

Step-by-step explanation:

Please hit brainliest if this helped!

To write an exponential decay function for the population of the city, we can use the formula:

P(t) = P₀e^(-rt)

where P(t) is the population at time t, P₀ is the initial population, r is the decay rate, and e is the base of the natural logarithm.

In this problem, P₀ = 3,846 and r = 0.0027 (0.27% expressed as a decimal). We want to find the population in 2022, which is 26 years after 1996.To use the formula, we need to convert 26 years to the same time units as the decay rate. Since the decay rate is per year, we can use 26 years directly. Therefore, the exponential decay function for the population is:

P(t) = 3,846e^(-0.0027t)

To find the population in 2022 (t = 26), we substitute t = 26 into the function:

P(26) = 3,846e^(-0.0027*26) ≈ 3,101

Therefore, the population in 2022 is approximately 3,101.

Let me know if this helped by hitting brainliest! If you have any questions, comment below and I"ll get back to you ASAP.

WILL MARK AS BRAINLIEST!!!!!!!!!!!!!!!!!!
The point on the parabola y=x^2 that is closest to the point (1,0) is (_______,_______). The distance between the two points is ________.

you can use Newtons's Method or Bisection to help but you don't have to.

Answers

Answer:Approximately

(0.58975,0.34781)

Step-by-step explanation:

If (x,y) is a point on the parabola, then the distance between (x,y) and (1,0) is:

√(x−1)2+(y−0)2=√x4+x2−2x+1

To minimize this, we want to minimize

f(x)=x4+x2−2x+1

The minimum will occur at a zero of:

f'(x)=4x3+2x−2=2(2x3+x−1)

graph{2x^3+x-1 [-10, 10, -5, 5]}

Using Cardano's method, find

x=3√14+√8736+3√14−√8736≅0.58975

y=x2≅0.34781

se spherical coordinates to evaluate the triple integral where is the region bounded by the spheres and .

Answers

The value of the triple integral[tex]\int \int\int _{E } \frac{e^{-(x^2+y^2+z^2)}}{\sqrt{(x^2+y^2+z^2}}\sqrt{dV}[/tex] by using spherical coordinates [tex]2\pi(e^{-1}-e^{-9})[/tex].

Given that the triple integral is-

[tex]\int \int\int _{E } \frac{e^{-(x^2+y^2+z^2)}}{\sqrt{(x^2+y^2+z^2}}\sqrt{dV}[/tex]

E is the region bounded by the spheres which are,

[tex]x^2+y^2+z^2=1\\\\x^2+y^2+z^2=9[/tex]

In spherical coordinates we have,

x = r cosθ sin ∅

y = r sinθ sin∅

z = r cos∅

dV = r²sin∅ dr dθ d∅

E contains two spheres of radius 1 and 3 () respectively, the bounds will be like this,

1 ≤ r ≤ 3

0 ≤ θ ≤ 2π

0 ≤ ∅ ≤ π

Then

[tex]\int \int\int _{E } \frac{e^{-(x^2+y^2+z^2)}}{\sqrt{(x^2+y^2+z^2}}\sqrt{dV}[/tex]

[tex]\int\int\int _{E} \frac{e^{-r^2}}{r}r^2Sin\phi drd\phi d\theta\\\\2\pi \int_{0}^{\pi} \int_1^3 re^{-r^2} dr d\phi\\\\2\pi \int_1^3 re^{-r^2} dr\\\\2\pi(e^{-1}-e^{-9})[/tex]

The complete question is-

Use spherical coordinates to evaluate the triple integral ∭ee−(x2 y2 z2)x2 y2 z2−−−−−−−−−−√dv, where e is the region bounded by the spheres x2 y2 z2=1 and x2 y2 z2=9.

learn more about triple integral,

https://brainly.com/question/30404807

#SPJ4

Other Questions
you work at a large department store selling computer products. iwina walks in and wants to buy a wireless router. she explains that the media streaming device she ordered online supports a transmission speed of up to 200 mbps. what type of router should you recommend? how should you write the volume dispensed by a 5 ml volumetric pipet? Sally has 3:4 as many beads as Kelly. Kelly has 18 more beads than Sally. Find the average number of beads the girl have how is the beat divided in this selection? a. long-shorts in the drum during the guitar solo. b. short-short-short-short or four quicker notes. c. short-short or two quicker notes on each beat. d. long-shorts or three quicker notes on each beat. Current Liabilities and Ratios Several accounts that appeared on Kruse's 2017 balance sheet are as follows: Accounts Payable $55,000 Equipment $950,000 Marketable Securities 40,000 Taxes Payable 15,000 Accounts Receivable 180,000 Retained Earnings 250,000 Notes Payable, 12%, due in 60 days 20,000 Inventory 85,000 Capital Stock 1,150,000 Allowance for Doubtful Accounts 20,000 Salaries Payable 10,000 Land 600,000 Cash 15,000 Required: 1. Prepare the Current Liabilities section of Kruse's 2017 balance sheet. Kruse Partial Balance Sheet As Of December 31, 2017 Current liabilities: Accounts payable $ 55,000 Notes payable, 12%, due in 60 days 20,000 Taxes payable 15,000 Salaries payable 10,000 Total current liabilities $ 100,000 Feedback Prepare the liabilities section of the balance sheet. 2. Compute Kruse's working capital. __ 3. Compute Kruse's current ratio. __: 1 davon watched his father recoil from a snake in fear. now he is afraid of snakes. this apparent acquisition of fear of snakes is an example of: group of answer choices modeling. response discrimination. escape response. stimulus generalization. Identify each of the following orbitals, and determine the n and quantum numbers. Explain your answers. Maria purchased 1,000 shares of stock for $35. 50 per share in 2014. She sold them in 2016 for $55. 10 per share. Express her capital gain as a percent, rounded to the nearest tenth of a percent an organization provides in service treatment for alcoholic clients and receives virutally all of these referrals from the family service agencies this is an example of what kind of relationship? true/false. the birth of information technology such as texting and email is giving firms and employees increased flexibility to choose while staying competitive. The LIBOR zero curve is flat at 5% (continuously compounded) out to 1.5 years. Swap rates for 2- and 3-year semiannual pay swaps are 5.4% and 5.6%, respectively. Estimate the LIBOR zero rates for maturities of 2.0, 2.5, and 3.0 years. (Assume that the 2.5-year swap rate is the average of the 2- and 3-year swap rates and use LIBOR discounting.) Explain. Congress struck a blow against organized labor with the passage of the 1947 Taft-Hartley Act. Which of the following were features of this legislation?feature of the Taft-Hartley Act-granted the president the ability to suspend strikes-forced union officials to swear that they were not communists-prohibited mandatory union membership in unionized workplaces Ralph Waldo Emerson predicted what the future of the United States would look like if the country tried to take over part of Mexico. What quotes resonates with his ideas? if x < y < z and all three are consecutive non-zero integers, then which of the following must be a positive odd integer? In the figure, curves A-D depict per capita rate increases (r). Which of the following best explains the difference between the shapes of these curves? Marked individuals have the same probability of being recaptured as unmarked individuals during the recapture phase. In the 1920s how many U.S. workers were annually replaced by machines? what is the Taylor's series for 1+3e^(x)+x^2 at x=0 PLEASE HELP!!! THIS IS DUE TODAY!! What geographic difficulties do you think the Cherokee traveling the northern route, mostly on foot, might have faced? Learning that does not reveal itself until it is needed is called a) observational learning. b) latent learning stuck on this question need some help