Answer:
Step-by-step explanation:
From the given information;
let the hypotenuse be a , the opposite which is the north direction be b and the west direction which is the adjacent be c
SO, using the Pythagoras theorem
a² = c² + 177²
By taking the differentiation of both sides with respect to time t , we have
[tex]2a \dfrac{da}{dt} = 2c \dfrac{dc}{dt} + 0[/tex]
[tex]\dfrac{da}{dt} = \dfrac{c}{a} \dfrac{dc}{dt}[/tex]
At c = 71 miles,[tex]a = \sqrt{ (71)^2 +(177)^2}[/tex]
[tex]a = \sqrt{ 5041+31329}[/tex]
[tex]a = \sqrt{ 36370}[/tex]
a = 190.71
SImilarly, [tex]\dfrac{dc}{dt} = \ 31 miles \ / hr[/tex]
Thus, the rate of change of the distance between Morristown and the van when the van has been travelling for 71 miles can be calculate as:
[tex]\dfrac{da}{dt} = \dfrac{c}{a} \dfrac{dc}{dt}[/tex]
[tex]\dfrac{da}{dt} = \dfrac{71}{190.71} \times 31[/tex]
[tex]\dfrac{da}{dt} = 0.37229 \times 31[/tex]
[tex]\mathbf{\dfrac{da}{dt} = 11.54}[/tex] to the nearest hundredth.
In order to earn an A in her math course,
Bernadette must have an average of at
least 90 on her exam scores. She has
grades of 83, 97, 89, and 82 on her first 4
exams. What is the minimum she can
score on the final exam to earn an A in the
course?
Step-by-step explanation:
Let minimum score on the final exam to earn an A be X
[tex]mean \: = \frac{sum \: of \: observation}{number \: of \: observation} [/tex]
[tex]90 = \frac{83 + 97 + 89 + 82 + x}{5} [/tex]
Further solving :
X = 99 marks
Find the value of x.
A. 3
B. 9
C. 0
D. 12
Answer:
x=3
Step-by-step explanation:
(segment piece) x (segment piece) = (segment piece) x (segment piece)
3x(x+1) = 4x(x)
Divide each side by x
3x(x+1)/x = 4x(x)/x
3(x+1) = 4x
Distribute
3x+3 = 4x
Subtract 3x
3x+3-3x= 4x-3x
3 =x
Answer:
x = 3
Step-by-step explanation:
0 is a rediculas answer 9 and 12 are to big.
The lines are supposed to have a simular length:
3(3) + 4 = 13
4(3) + 3 = 15
These are the best answers that fit.
Suppose that Y1, Y2,..., Yn denote a random sample of size n from a Poisson distribution with mean λ. Consider λˆ 1 = (Y1 + Y2)/2 and λˆ 2 = Y . Derive the efficiency of λˆ 1 relative to λˆ 2.
Answer:
The answer is "[tex]\bold{\frac{2}{n}}[/tex]".
Step-by-step explanation:
considering [tex]Y_1, Y_2,........, Y_n[/tex] signify a random Poisson distribution of the sample size of n which means is λ.
[tex]E(Y_i)= \lambda \ \ \ \ \ and \ \ \ \ \ Var(Y_i)= \lambda[/tex]
Let assume that,
[tex]\hat \lambda_i = \frac{Y_1+Y_2}{2}[/tex]
multiply the above value by Var on both sides:
[tex]Var (\hat \lambda_1 )= Var(\frac{Y_1+Y_2}{2} )[/tex]
[tex]=\frac{1}{4}(Var (Y_1)+Var (Y_2))\\\\=\frac{1}{4}(\lambda+\lambda)\\\\=\frac{1}{4}( 2\lambda)\\\\=\frac{\lambda}{2}\\[/tex]
now consider [tex]\hat \lambda_2[/tex] = [tex]\bar Y[/tex]
[tex]Var (\hat \lambda_2 )= Var(\bar Y )[/tex]
[tex]=Var \{ \frac{\sum Y_i}{n}\}[/tex]
[tex]=\frac{1}{n^2}\{\sum_{i}^{}Var(Y_i)\}\\\\=\frac{1}{n^2}\{ n \lambda \}\\\\=\frac{\lambda }{n}\\[/tex]
For calculating the efficiency divides the [tex]\hat \lambda_1 \ \ \ and \ \ \ \hat \lambda_2[/tex] value:
Formula:
[tex]\bold{Efficiency = \frac{Var(\lambda_2)}{Var(\lambda_1)}}[/tex]
[tex]=\frac{\frac{\lambda}{n}}{\frac{\lambda}{2}}\\\\= \frac{\lambda}{n} \times \frac {2} {\lambda}\\\\ \boxed{= \frac{2}{n}}[/tex]
how many meters are in 250 centimeters
Answer:
2.5 meters
Step-by-step explanation:
Write three fractions that are equivalent to 3 over 11 , but written in higher terms. One of them must
include one or more variables.
Answer:
Three fractions that are equivalent to [tex]\frac{3}{11}[/tex] are: [tex]\frac{6}{22}[/tex], [tex]\frac{24}{88}[/tex] and [tex]\frac{144}{528}[/tex].
Step-by-step explanation:
Equivalent fractions are set of fractions in which when simplified, they have the same answer.
Given: [tex]\frac{3}{11}[/tex]
i. multiply the numerator and denominator of [tex]\frac{3}{11}[/tex] by 2,
= [tex]\frac{3*2}{11*2}[/tex] = [tex]\frac{6}{22}[/tex]
i. multiply both the numerator and denominator of [tex]\frac{6}{22}[/tex] by 4,
= [tex]\frac{6*4}{22*4}[/tex]= [tex]\frac{24}{88}[/tex]
ii. multiply the numerator and denominator of [tex]\frac{24}{88}[/tex] by 6,
= [tex]\frac{24*6}{88*6}[/tex] = [tex]\frac{144}{528}[/tex]
So that;
[tex]\frac{3}{11}[/tex] = [tex]\frac{6}{22}[/tex] = [tex]\frac{24}{88}[/tex] = [tex]\frac{144}{528}[/tex].
Three fractions that are equivalent to [tex]\frac{3}{11}[/tex] are: [tex]\frac{6}{22}[/tex], [tex]\frac{24}{88}[/tex] and [tex]\frac{144}{528}[/tex].
Kent Co. manufactures a product that sells for $60.00. Fixed costs are $285,000 and variable costs are $35.00 per unit. Kent can buy a new production machine that will increase fixed costs by $15,900 per year, but will decrease variable costs by $4.50 per unit. What effect would the purchase of the new machine have on Kent's break-even point in units?
0riginal break even point:
285000/ 60/35 = $166,250
New break even point = new fixed costs / ( selling price - variable cost/ selling price)
New break even point = 285,000 + 15,900. / ( 60-( 35-4.50)/60
300,900 / 60-30.50/60 = $612,000
The new break even point increases.
How many pepperoni pizzas did they buy if they bought 6 cheese pizzas
Answer:
Question is incomplete but use below
Step-by-step explanation:
you can do total = (price of cheese pizza) ( amount of cheese pizzas bought)+(price of pepperoni pizza) ( amount of pepperoni pizzas bought)
PLEASE HELP ASAP WILL GIVE BRAINLIEST
If f is a function that f(f(x)) = 2x² + 1, which is the value of f(f(f(f(3)))? Please help!
[tex]f(f(3))=2\cdot3^2+1=19\\f(f(f(f(3))))=2\cdot19^2+1=723[/tex]
I NEED HELP WITH THESE 4 ASAP
Answer:
I'm confused by this. What do they mean by prove?
Step-by-step explanation:
Point E lies within rectangle ABCD. If AE = 6, BE = 7, and CE = 8, what is the length of DE?
Answer:
[tex]\sqrt{51}[/tex] units.
Step-by-step explanation:
Point E is inside a rectangle ABCD.
Please refer to the attached image for the given statement and dimensions.
Given that:
Sides AE = 6 units
BE = 7 units and
CE = 8 units
To find:
DE = ?
Solution:
For a point E inside the rectangle the following property hold true:
[tex]AE^2+CE^2=BE^2+DE^2[/tex]
Putting the given values to find the value of DE:
[tex]6^2+8^2=7^2+DE^2\\\Rightarrow 26+64=49+DE^2\\\Rightarrow DE^2=100-49\\\Rightarrow DE^2=51\\\Rightarrow \bold{DE = \sqrt{51}\ units}[/tex]
Residents of four cities are able to vote in an upcoming regional election. A newspaper recently conducted a survey to gauge support for each of the two candidates. The results of the poll are shown in the two-way frequency table below.
Answer:
3 only
Step-by-step explanation:
Consider the statement, "The two cities with the highest number of respondents, both show more support for candidate A." In the total column, the two highest number of respondents are 471 and 463 which represent Carsonville and Appleton. For Carsonville, the number of respondents who prefer candidate A is 205, which is less than the number of respondents who prefer candidate B, 266. Therefore, this statement is not true.
Consider the statement, "The number of people who support candidate B in Carsonville is twice the number of people who support candidate B in New Thomas." In the table, the number of people who support candidate B in Carsonville is observed to be 266 and the number of people who support candidate B in New Thomas is 138. Since 266 is not equal to twice 138, this statement is not true.
Consider the statement, "More residents of Center City responded to the poll than the number who responded from New Thomas." In the total column, it can be observed that 350 people responded to the poll in Center City and 318 people responded to the poll in New Thomas. Since, 350 is greater than 318, this statement is true.
Consider the statement, "Overall, more residents support candidate A than candidate B." The bottom row of the table represents the total number of responses for each candidate. The number of people supporting candidate A is 797, which is less than the number of people supporting candidate B, 805. So, this statement is not true.
Therefore, the true statement is III only.
More residents of the center city responded to the pole than the number who responded from New Thomas, which is the only correct option. Option B. is correct.
Data given in the table shows the data of elections between two candidates among the different cities.
What is Statistic?
Statistics is the study of mathematics that deals with relations between comprehensive data.
I.The two cities with the highest number of respondents both show more support for candidate A. This statement is false because carsonville is the second highest support for A but it does not show more support for candidate A.
II.The number of people who support candidate B in Carsonville is twice the number of people who support candidate B in New Thomas. It is false
III. More residents of Center City responded to the pole than the number who responded from New Thomas. It is true.
IV. Overall, more residents support candidate A than candidate B. it is also false.
Thus, more residents of the center city responded to the pole than the number who responded from New Thomas, which is the only correct option. Option B. is correct.
Learn more about Statistics here:
https://brainly.com/question/23091366
#SPJ5
Please help me understand this question!
Answer:
C
Step-by-step explanation:
The first sentence basically sets up the equation which is given, so we can read it for knowledge but it is not crucial to solve the problem.
We start here:
we are given: $120 - 0.2($120)
= 120 - (0.2)(120) (factoring out 120)
= 120 (1 - 0.2)
= 120 (0.8)
= 0.8 (120) (answer c)
If an image of a triangle is congruent to the pre-image, what is the scale factor of the dilation? 0.1 1 10
Answer:
1
Step-by-step explanation: diliation is like multiplilcation if you were to do 3*1 =3. simply congruent means all sides and angles are the same.
Given that the image and the preimage of the triangle are congruent, their
dimensions are the same.
The scale factor of dilation of an image of a triangle that is congruent to the pre-image is; 1Reasons:
Let ΔABC represent the preimage, and let ΔA'B'C' represent the image.
Given that the image and the preimage are congruent, we have;
AB ≅ A'B'
BC ≅ B'C'
AC ≅ A'C'
By definition of congruency, we have;
AB = A'B'
BC = B'C'
AC = A'C'
The scale factor of dilation is given as follows;
[tex]\displaystyle Scale \ factor = \mathbf{ \frac{A'B'}{AB}} = \frac{AB}{AB} = 1[/tex]Therefore;
If the image is congruent to the pre-image, the scale factor of dilation is; 1Learn more about dilation transformation here:
https://brainly.com/question/5453159
evaluate -99 + 3^2•5
Answer:
= - 54
Step-by-step explanation:
- 99 + 3^2•5
- 99 + 9 × 5
- 99 + 45
= - 54
Please help me with this question
Answer:
0 ≤ x ≤ 10
Step-by-step explanation:
The domain of f(x) is the set of values of x for which the function is defined. Here, the square root function is only defined for non-negative arguments, so we require ...
-x^2 +10x ≥ 0
x(10 -x) ≥ 0
The two factors in this product will both be positive only for values ...
0 ≤ x ≤ 10 . . . . the domain of f(x)
Given the graph, find an equation for the parabola.
Answer:
[tex]\Large \boxed{\sf \bf \ \ y=\dfrac{1}{16}(a-3)^2-2 \ \ }[/tex]
Step-by-step explanation:
Hello, please consider the following.
When the parabola equation is like
[tex]y=a(x-h)^2+k[/tex]
The vertex is the point (h,k) and the focus is the point (h, k+1/(4a))
As the vertex is (3,-2) we can say that h = 3 and k = -2.
We need to find a.
The focus is (3,2) so we can say.
[tex]2=-2+\dfrac{1}{4a}\\\\\text{*** We add 2. ***}\\\\\dfrac{1}{4a}=2+2=4\\\\\text{*** We multiply by 4a. ***}\\\\16a=1\\\\\text{*** We divide by 16. ***}\\\\a=\dfrac{1}{16}[/tex]
So an equation for the parabola is.
[tex]\large \boxed{\sf y=\dfrac{1}{16}(a-3)^2-2 }[/tex]
Hope this helps.
Do not hesitate if you need further explanation.
Thank you
Simplify the following expression. 3x(4x − 3) A. 12x2 + 13x B. 12x2 + 5x C. 12x2 − 5x D. 12x2 − 9x
Answer:
Multiply using the distributive property.
D is the best answer.
Step-by-step explanation:
The simplified form of expression 3x (4x - 3) is 12x² - 9x.
What is an algebraic expression?An algebraic expression is consists of variables, numbers with various mathematical operations,
The given expression is,
3x (4x - 3).
Simplify the expression by solving bracket term,
3x × (4x) - 3 x (3x)
12x² - 9x
The given expression can be simplified as 12x² - 9x.
Hence, option (D) is correct.
To know more about Algebraic expression on:
https://brainly.com/question/19245500
#SPJ2
where p is the price (in dollars) and x is the number of units (in thousands). Find the average price p on the interval 40 ≤ x ≤ 50. (Round your answer to two decimal places.)
THIS IS THE COMPLETE QUESTION BELOW
The demand equation for a product is p=90000/400+3x where p is the price (in dollars) and x is the number of units (in thousands). Find the average price p on the interval 40 ≤ x ≤ 50.
Answer
$168.27
Step by step Explanation
Given p=90000/400+3x
With the limits of 40 to 50
Then we need the integral in the form below to find the average price
1/(g-d)∫ⁿₐf(x)dx
Where n= 40 and a= 50, then if we substitute p and the limits then we integrate
1/(50-40)∫⁵⁰₄₀(90000/400+3x)
1/10∫⁵⁰₄₀(90000/400+3x)
If we perform some factorization we have
90000/(10)(3)∫3dx/(400+3x)
3000[ln400+3x]₄₀⁵⁰
Then let substitute the upper and lower limits we have
3000[ln400+3(50)]-ln[400+3(40]
30000[ln550-ln520]
3000[6.3099×6.254]
3000[0.056]
=168.27
the average price p on the interval 40 ≤ x ≤ 50 is
=$168.27
What is the correct answer and how can this be solved?
Answer:
[tex]$\mathbf{\frac{1}{19} }[/tex]
Step-by-step explanation:
[tex]$$\bullet \Nth \ Term;\\$$$\frac{n+2}{2n^{2} +3n-2}[/tex]
[tex]$$\bullet U_{10} \ Term;\\\\$$\boxed{\frac{(10+2) }{2*10^{2} +3*10-2}= \frac{1}{19} }[/tex]
Answer:
[tex]\boxed{\displaystyle \frac{1}{19}}[/tex]
Step-by-step explanation:
[tex]\displaystyle \frac{n+2}{2n^2 +3n-2}[/tex]
Replace n with 10 to find the 10th term.
[tex]\displaystyle \frac{10+2}{2(10)^2 +3(10)-2}[/tex]
Evaluate.
[tex]\displaystyle \frac{12}{2(100) +30-2}[/tex]
[tex]\displaystyle \frac{12}{200 +30-2}[/tex]
[tex]\displaystyle \frac{12}{228}[/tex]
Simplify.
[tex]\displaystyle \frac{1}{19}[/tex]
Suppose that the height (in centimeters) of a candle is a linear function of the amount of time (in hours) it has been burning. After 9 hours of burning, a candle has a height of 25.4 centimeters. After 23 hours of burning, its height is 19.8 centimeters. What is the height of the candle after 22 hours?
Answer:
Suppose that the height (in centimeters) of a candle is a linear function of
the amount of time (in hours) it has been burning.
After 11 hours of burning, a candle has a height of 23.4 centimeters.
After 30 hours of burning, its height is 12 centimeters.
What is the height of the candle after 13 hours?
:
Assign the given values as follows:
x1 = 11; y1 = 23.4
x2 = 30; y2 = 12
:
Find the slope using: m = %28y2-y1%29%2F%28x2-x1%29
m = %2812-23.4%29%2F%2830-11%29 = %28-11.4%29%2F19
:
Find the equation using the point/slope formula: y - y1 = m(x - x1)
y - 23.4 = -11.4%2F19(x - 11)
y - 23.4 = -11.4%2F19x + 125.4%2F19
y = -11.4%2F19x + 125.4%2F19 + 23.4
y = -11.4%2F19x + 125.4%2F19 + 23.4
y = -11.4%2F19x + 125.4%2F19 + 444.6%2F19
y = -11.4%2F19x + 570%2F19
y = -11.4%2F19x + 30, is the equation
:
What is the height of the candle after 13 hours?
x = 13
y = -11.4%2F19(13) + 30
y = -148.2%2F19 + 30
y = -7.8 + 30
y = 22.2 cm after 13 hrs
The sum of two positive number is 6 times their difference. what is the reciprocal of the ratio of the larger number to the smaller?
let the numbers be a and b, a>b
a+b=6(a-b)
we need to find reciprocal of ratio of larger to smaller , which will be same as ratio of smaller to larger or b/a, let's call it x
divide the equation by a.
1+x=6(1-x)
on solving, x=5/7
Translate the expression from algebra to words: 6+r
Answer:
a number, r, added to 6
Step-by-step explanation:
a number, r, added to 6
Answer:
a number, r, added to 6
Step-by-step explanation:
a number, r, added to 6
if pentagon OPQRS is dilated by a scale factor or ?
from the origin to create O'P'Q'R'S: what is the ordered pair of point S'?
Answer:
Option (D) : (3.5, 8.75)
Find the sum. 1. -7+(-5)
O-12
O-2
0 2
0 12
Answer:
-12
Step-by-step explanation:
-7+(-5)=
-7-5=
-12
Evaluate the expresión 6c-d when c=2 and d=10 I need help?
Answer:
the answer is 18
Step-by-step explanation:
8 is the answer
What is the volume of a sphere, to the nearest cubic inch, if the radius equals 5 inches? Use π = 3.14.
Answer:
V = 523 in^3
Step-by-step explanation:
The volume of a sphere is given by
V = 4/3 pi r^3
V = 4/3 ( 3.14) * 5^3
V = 523.33333repeating
Rounding to the nearest inch^3
V = 523 in^3
Answer:
[tex] 523.6 {in}^{3} [/tex]
Step-by-step explanation:
[tex]v = \frac{4}{3} \pi {r}^{3} \\ = \frac{4}{3} \pi \times 5 \times 5 \times 5 \\ = 523.6 {in}^{3} [/tex]
PLEASE HELP!!
Solve for y
a) 8
b) 12
c) 3V7
d) 4V7
Answer:
C. [tex] y = 3\sqrt{7} [/tex]
Step-by-step explanation:
Based on the right triangle altitude theorem, the altitude, y, in the diagram above, equals the geometric mean of 9 and 7.
This implies => [tex] y = \sqrt{9*7} [/tex]
Thus, solve for y.
[tex] y = \sqrt{9} * \sqrt{7} [/tex]
[tex] y = 3\sqrt{7} [/tex]
The answer is C. [tex] y = 3\sqrt{7} [/tex]
Show that the set of functions from the positive integers to the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} is uncountable. [Hint: First set up a one-to-one correspondence between the set of real numbers between 0 and 1 and a subset of these functions. Do this by associating to the real number 0.d1d2 . . . dn . . . the function f with f(n).
Answer:
since the set of functions expressed are uncountable and they are a subset of real numbers starting from N therefore the set {0,1,2,3,4,5,6,7,8,9} is uncountable as well as its off functions
Step-by-step explanation:
set = {0,1,2,3,4,5,6,7,8,9}
setting up a one-to-one correspondence between the set of real numbers between 0 and 1
The function : F(n)= {0,1} is equivalent to the subset (sf) of (n) , this condition is met if n belongs to the subset (sf) when f(n) = 1
hence The power set of (n) is uncountable and is equivalent to the set of real numbers given
since the set of functions expressed are uncountable and they are a subset of real numbers starting from N therefore the set {0,1,2,3,4,5,6,7,8,9} is uncountable as well as its offfunctions
Quadrilateral RSTV is dilated with respect to the origin by a scale factor of 1.5 to produce quadrilateral R'S'T'V' . Vertex R is located at (6, -9). Which ordered pair represents R' after the dilation?
Answer:
(9, -13.5)
Step-by-step explanation:
It's given in the question that a quadrilateral RSTV is dilated with a scale factor of 1.5 with respect to the origin to form R'S'T'V'.
Rule for dilation is,
(x, y) → (kx, ky)
where 'k' is the scale factor.
If vertex R of the quadrilateral is (6, -9),
By the given rule of dilation,
R(6, 9) → R'[(1.5 × 6), -(1.5 × 9)]
→ R'(9, -13.5)
Therefore, Option given in bottom right (9, -13.5) will be the answer.