Answer:
3
Step-by-step explanation:
a is 4 and 3 is x so 4+3=7
Answer: a=2 {x=3} r=1. 2(3)+ 1= 7
Step-by-step explanation:
The sum of two positive number is 6 times their difference. what is the reciprocal of the ratio of the larger number to the smaller?
let the numbers be a and b, a>b
a+b=6(a-b)
we need to find reciprocal of ratio of larger to smaller , which will be same as ratio of smaller to larger or b/a, let's call it x
divide the equation by a.
1+x=6(1-x)
on solving, x=5/7
which best defines a service
Answer:
A service could be multiple things.
Step-by-step explanation:
Like, working as a scribe in a nursing home helping old people. Or, being part of a leadership club at school that funds food banks and things like that
Answer:
a
Step-by-step explanation:
Quadrilateral RSTV is dilated with respect to the origin by a scale factor of 1.5 to produce quadrilateral R'S'T'V' . Vertex R is located at (6, -9). Which ordered pair represents R' after the dilation?
Answer:
(9, -13.5)
Step-by-step explanation:
It's given in the question that a quadrilateral RSTV is dilated with a scale factor of 1.5 with respect to the origin to form R'S'T'V'.
Rule for dilation is,
(x, y) → (kx, ky)
where 'k' is the scale factor.
If vertex R of the quadrilateral is (6, -9),
By the given rule of dilation,
R(6, 9) → R'[(1.5 × 6), -(1.5 × 9)]
→ R'(9, -13.5)
Therefore, Option given in bottom right (9, -13.5) will be the answer.
Please help me understand this question!
Answer:
C
Step-by-step explanation:
The first sentence basically sets up the equation which is given, so we can read it for knowledge but it is not crucial to solve the problem.
We start here:
we are given: $120 - 0.2($120)
= 120 - (0.2)(120) (factoring out 120)
= 120 (1 - 0.2)
= 120 (0.8)
= 0.8 (120) (answer c)
PLEASE HELP!!
Solve for y
a) 8
b) 12
c) 3V7
d) 4V7
Answer:
C. [tex] y = 3\sqrt{7} [/tex]
Step-by-step explanation:
Based on the right triangle altitude theorem, the altitude, y, in the diagram above, equals the geometric mean of 9 and 7.
This implies => [tex] y = \sqrt{9*7} [/tex]
Thus, solve for y.
[tex] y = \sqrt{9} * \sqrt{7} [/tex]
[tex] y = 3\sqrt{7} [/tex]
The answer is C. [tex] y = 3\sqrt{7} [/tex]
Please help me with this question
Answer:
0 ≤ x ≤ 10
Step-by-step explanation:
The domain of f(x) is the set of values of x for which the function is defined. Here, the square root function is only defined for non-negative arguments, so we require ...
-x^2 +10x ≥ 0
x(10 -x) ≥ 0
The two factors in this product will both be positive only for values ...
0 ≤ x ≤ 10 . . . . the domain of f(x)
THE PRICE OF AN ITEM FROM $10 TO $17. WHAT WAS THE PERCENT INCREASE IN THE PRICE OF THE ITEM?
Answer:
70%
Step-by-step explanation:
The method to find out percentage increase is by subtracting the original price from the increased price and making it into a fractional form with the denominator as 10 (out of 100%). So it results to this.
(original price - increased price) / 10
(17 - 10) / 10 = 7/10
7/10 can be converted from its fractional form to 70% i.e.its percentage.
Hope this helps and please mark as the brainliest.
In designing an experiment involving a treatment applied to 4 test subjects, researchers plan to use a simple random sample of 4 subjects selected from a pool of 31 available subjects. (Recall that with a simple random sample, all samples of the same size have the same chance of being selected.) Answer the question below.
What is the probability of each simple random sample in thiscase?
Answer:
The probability is [tex]p(n ) = 3.18*10^{-5}[/tex]
Step-by-step explanation:
From the question we are told that
The population size is N = 31
The sample size n = 4
Generally the number of way by which the n can be selected from N is mathematically represented as
[tex]\left N} \atop {}} \right. C_n = \frac{N! }{(N-n)!n!}[/tex]
=> [tex]\left 31} \atop {}} \right. C_4 = \frac{31! }{(31-4)!4!}[/tex]
=> [tex]\left 31} \atop {}} \right. C_4 = \frac{31 * 30 * 29 * 28* 27! }{27! * 4*3 * 2 * 1 }[/tex]
=> [tex]\left 31} \atop {}} \right. C_4 = \frac{ 755160 }{ 24}[/tex]
=> [tex]\left 31} \atop {}} \right. C_4 = 31465[/tex]
The number of ways of selecting a particular sample size is is [tex]k = 1[/tex]
Therefore the probability of each simple random sample in this case is mathematically evaluated as
[tex]p(n ) = \frac{1}{31465}[/tex]
[tex]p(n ) = 3.18*10^{-5}[/tex]
What is the 50th term of the arithmetic sequence having u(subscript)1 = -2 and d = 5
Answer:
243
Step-by-step explanation:
The general term for this arithmetic sequence is:
a(n) = -2 + 5(n - 1).
Then a(50) = -2 + 5(49) = 243
Find the sum. 1. -7+(-5)
O-12
O-2
0 2
0 12
Answer:
-12
Step-by-step explanation:
-7+(-5)=
-7-5=
-12
how many meters are in 250 centimeters
Answer:
2.5 meters
Step-by-step explanation:
A manufacturer of paper coffee cups would like to estimate the proportion of cups that are defective (tears, broken seems, etc.) from a large batch of cups. They take a random sample of 200 cups from the batch of a few thousand cups and found 18 to be defective. The goal is to perform a hypothesis test to determine if the proportion of defective cups made by this machine is more than 8%.
Required:
a. Calculate a 95% confidence interval for the true proportion of defective cups made by this machine.
b. What is the sample proportion?
c. What is the critical value for this problem?
d. What is the standard error for this problem?
Answer:
a
The 95% confidence interval is [tex]0.0503 < p < 0.1297[/tex]
b
The sample proportion is [tex]\r p = 0.09[/tex]
c
The critical value is [tex]Z_{\frac{\alpha }{2} } = 1.96[/tex]
d
The standard error is [tex]SE =0.020[/tex]
Step-by-step explanation:
From the question we are told that
The sample size is n = 200
The number of defective is k = 18
The null hypothesis is [tex]H_o : p = 0.08[/tex]
The alternative hypothesis is [tex]H_a : p > 0.08[/tex]
Generally the sample proportion is mathematically evaluated as
[tex]\r p = \frac{18}{200}[/tex]
[tex]\r p = 0.09[/tex]
Given that the confidence level is 95% then the level of significance is mathematically evaluated as
[tex]\alpha = 100 - 95[/tex]
[tex]\alpha = 5\%[/tex]
[tex]\alpha = 0.05[/tex]
Next we obtain the critical value of [tex]\frac{ \alpha }{2}[/tex] from the normal distribution table, the value is
[tex]Z_{\frac{\alpha }{2} } = 1.96[/tex]
Generally the standard of error is mathematically represented as
[tex]SE = \sqrt{\frac{\r p (1 - \r p)}{n} }[/tex]
substituting values
[tex]SE = \sqrt{\frac{0.09 (1 - 0.09)}{200} }[/tex]
[tex]SE =0.020[/tex]
The margin of error is
[tex]E = Z_{\frac{ \alpha }{2} } * SE[/tex]
=> [tex]E = 1.96 * 0.020[/tex]
=> [tex]E = 0.0397[/tex]
The 95% confidence interval is mathematically represented as
[tex]\r p - E < \mu < p < \r p + E[/tex]
=> [tex]0.09 - 0.0397 < \mu < p < 0.09 + 0.0397[/tex]
=> [tex]0.0503 < p < 0.1297[/tex]
Residents of four cities are able to vote in an upcoming regional election. A newspaper recently conducted a survey to gauge support for each of the two candidates. The results of the poll are shown in the two-way frequency table below.
Answer:
3 only
Step-by-step explanation:
Consider the statement, "The two cities with the highest number of respondents, both show more support for candidate A." In the total column, the two highest number of respondents are 471 and 463 which represent Carsonville and Appleton. For Carsonville, the number of respondents who prefer candidate A is 205, which is less than the number of respondents who prefer candidate B, 266. Therefore, this statement is not true.
Consider the statement, "The number of people who support candidate B in Carsonville is twice the number of people who support candidate B in New Thomas." In the table, the number of people who support candidate B in Carsonville is observed to be 266 and the number of people who support candidate B in New Thomas is 138. Since 266 is not equal to twice 138, this statement is not true.
Consider the statement, "More residents of Center City responded to the poll than the number who responded from New Thomas." In the total column, it can be observed that 350 people responded to the poll in Center City and 318 people responded to the poll in New Thomas. Since, 350 is greater than 318, this statement is true.
Consider the statement, "Overall, more residents support candidate A than candidate B." The bottom row of the table represents the total number of responses for each candidate. The number of people supporting candidate A is 797, which is less than the number of people supporting candidate B, 805. So, this statement is not true.
Therefore, the true statement is III only.
More residents of the center city responded to the pole than the number who responded from New Thomas, which is the only correct option. Option B. is correct.
Data given in the table shows the data of elections between two candidates among the different cities.
What is Statistic?
Statistics is the study of mathematics that deals with relations between comprehensive data.
I.The two cities with the highest number of respondents both show more support for candidate A. This statement is false because carsonville is the second highest support for A but it does not show more support for candidate A.
II.The number of people who support candidate B in Carsonville is twice the number of people who support candidate B in New Thomas. It is false
III. More residents of Center City responded to the pole than the number who responded from New Thomas. It is true.
IV. Overall, more residents support candidate A than candidate B. it is also false.
Thus, more residents of the center city responded to the pole than the number who responded from New Thomas, which is the only correct option. Option B. is correct.
Learn more about Statistics here:
https://brainly.com/question/23091366
#SPJ5
Show that the set of functions from the positive integers to the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} is uncountable. [Hint: First set up a one-to-one correspondence between the set of real numbers between 0 and 1 and a subset of these functions. Do this by associating to the real number 0.d1d2 . . . dn . . . the function f with f(n).
Answer:
since the set of functions expressed are uncountable and they are a subset of real numbers starting from N therefore the set {0,1,2,3,4,5,6,7,8,9} is uncountable as well as its off functions
Step-by-step explanation:
set = {0,1,2,3,4,5,6,7,8,9}
setting up a one-to-one correspondence between the set of real numbers between 0 and 1
The function : F(n)= {0,1} is equivalent to the subset (sf) of (n) , this condition is met if n belongs to the subset (sf) when f(n) = 1
hence The power set of (n) is uncountable and is equivalent to the set of real numbers given
since the set of functions expressed are uncountable and they are a subset of real numbers starting from N therefore the set {0,1,2,3,4,5,6,7,8,9} is uncountable as well as its offfunctions
Suppose that the height (in centimeters) of a candle is a linear function of the amount of time (in hours) it has been burning. After 9 hours of burning, a candle has a height of 25.4 centimeters. After 23 hours of burning, its height is 19.8 centimeters. What is the height of the candle after 22 hours?
Answer:
Suppose that the height (in centimeters) of a candle is a linear function of
the amount of time (in hours) it has been burning.
After 11 hours of burning, a candle has a height of 23.4 centimeters.
After 30 hours of burning, its height is 12 centimeters.
What is the height of the candle after 13 hours?
:
Assign the given values as follows:
x1 = 11; y1 = 23.4
x2 = 30; y2 = 12
:
Find the slope using: m = %28y2-y1%29%2F%28x2-x1%29
m = %2812-23.4%29%2F%2830-11%29 = %28-11.4%29%2F19
:
Find the equation using the point/slope formula: y - y1 = m(x - x1)
y - 23.4 = -11.4%2F19(x - 11)
y - 23.4 = -11.4%2F19x + 125.4%2F19
y = -11.4%2F19x + 125.4%2F19 + 23.4
y = -11.4%2F19x + 125.4%2F19 + 23.4
y = -11.4%2F19x + 125.4%2F19 + 444.6%2F19
y = -11.4%2F19x + 570%2F19
y = -11.4%2F19x + 30, is the equation
:
What is the height of the candle after 13 hours?
x = 13
y = -11.4%2F19(13) + 30
y = -148.2%2F19 + 30
y = -7.8 + 30
y = 22.2 cm after 13 hrs
PLEASE HELP ASAP WILL GIVE BRAINLIEST
Suppose that Y1, Y2,..., Yn denote a random sample of size n from a Poisson distribution with mean λ. Consider λˆ 1 = (Y1 + Y2)/2 and λˆ 2 = Y . Derive the efficiency of λˆ 1 relative to λˆ 2.
Answer:
The answer is "[tex]\bold{\frac{2}{n}}[/tex]".
Step-by-step explanation:
considering [tex]Y_1, Y_2,........, Y_n[/tex] signify a random Poisson distribution of the sample size of n which means is λ.
[tex]E(Y_i)= \lambda \ \ \ \ \ and \ \ \ \ \ Var(Y_i)= \lambda[/tex]
Let assume that,
[tex]\hat \lambda_i = \frac{Y_1+Y_2}{2}[/tex]
multiply the above value by Var on both sides:
[tex]Var (\hat \lambda_1 )= Var(\frac{Y_1+Y_2}{2} )[/tex]
[tex]=\frac{1}{4}(Var (Y_1)+Var (Y_2))\\\\=\frac{1}{4}(\lambda+\lambda)\\\\=\frac{1}{4}( 2\lambda)\\\\=\frac{\lambda}{2}\\[/tex]
now consider [tex]\hat \lambda_2[/tex] = [tex]\bar Y[/tex]
[tex]Var (\hat \lambda_2 )= Var(\bar Y )[/tex]
[tex]=Var \{ \frac{\sum Y_i}{n}\}[/tex]
[tex]=\frac{1}{n^2}\{\sum_{i}^{}Var(Y_i)\}\\\\=\frac{1}{n^2}\{ n \lambda \}\\\\=\frac{\lambda }{n}\\[/tex]
For calculating the efficiency divides the [tex]\hat \lambda_1 \ \ \ and \ \ \ \hat \lambda_2[/tex] value:
Formula:
[tex]\bold{Efficiency = \frac{Var(\lambda_2)}{Var(\lambda_1)}}[/tex]
[tex]=\frac{\frac{\lambda}{n}}{\frac{\lambda}{2}}\\\\= \frac{\lambda}{n} \times \frac {2} {\lambda}\\\\ \boxed{= \frac{2}{n}}[/tex]
I NEED HELP WITH THESE 4 ASAP
Answer:
I'm confused by this. What do they mean by prove?
Step-by-step explanation:
The triangle shown on the graph above is rotated 90 degrees clockwise about the original to form triangle P’Q’R which of the following are the (x,y) coordinates of the point P’
Hey there! I'm happy to help!
When rotating a point 90 degrees clockwise about the origin, our original point (x,y) becomes (-y,x), because it is now at a negative y-value.
We see that our point P is at (1,2). We can use this rotation formula to find the coordinates of P' (the new spot where P is)/
(x,y)⇒(-y,x)
(1,2)⇒(-2,1)
Therefore, the coordinates of the point P' are (-2,1).
Have a wonderful day! :D
Simplify the following expression. 3x(4x − 3) A. 12x2 + 13x B. 12x2 + 5x C. 12x2 − 5x D. 12x2 − 9x
Answer:
Multiply using the distributive property.
D is the best answer.
Step-by-step explanation:
The simplified form of expression 3x (4x - 3) is 12x² - 9x.
What is an algebraic expression?An algebraic expression is consists of variables, numbers with various mathematical operations,
The given expression is,
3x (4x - 3).
Simplify the expression by solving bracket term,
3x × (4x) - 3 x (3x)
12x² - 9x
The given expression can be simplified as 12x² - 9x.
Hence, option (D) is correct.
To know more about Algebraic expression on:
https://brainly.com/question/19245500
#SPJ2
If an image of a triangle is congruent to the pre-image, what is the scale factor of the dilation? 0.1 1 10
Answer:
1
Step-by-step explanation: diliation is like multiplilcation if you were to do 3*1 =3. simply congruent means all sides and angles are the same.
Given that the image and the preimage of the triangle are congruent, their
dimensions are the same.
The scale factor of dilation of an image of a triangle that is congruent to the pre-image is; 1Reasons:
Let ΔABC represent the preimage, and let ΔA'B'C' represent the image.
Given that the image and the preimage are congruent, we have;
AB ≅ A'B'
BC ≅ B'C'
AC ≅ A'C'
By definition of congruency, we have;
AB = A'B'
BC = B'C'
AC = A'C'
The scale factor of dilation is given as follows;
[tex]\displaystyle Scale \ factor = \mathbf{ \frac{A'B'}{AB}} = \frac{AB}{AB} = 1[/tex]Therefore;
If the image is congruent to the pre-image, the scale factor of dilation is; 1Learn more about dilation transformation here:
https://brainly.com/question/5453159
What is the volume of a sphere, to the nearest cubic inch, if the radius equals 5 inches? Use π = 3.14.
Answer:
V = 523 in^3
Step-by-step explanation:
The volume of a sphere is given by
V = 4/3 pi r^3
V = 4/3 ( 3.14) * 5^3
V = 523.33333repeating
Rounding to the nearest inch^3
V = 523 in^3
Answer:
[tex] 523.6 {in}^{3} [/tex]
Step-by-step explanation:
[tex]v = \frac{4}{3} \pi {r}^{3} \\ = \frac{4}{3} \pi \times 5 \times 5 \times 5 \\ = 523.6 {in}^{3} [/tex]
Write three fractions that are equivalent to 3 over 11 , but written in higher terms. One of them must
include one or more variables.
Answer:
Three fractions that are equivalent to [tex]\frac{3}{11}[/tex] are: [tex]\frac{6}{22}[/tex], [tex]\frac{24}{88}[/tex] and [tex]\frac{144}{528}[/tex].
Step-by-step explanation:
Equivalent fractions are set of fractions in which when simplified, they have the same answer.
Given: [tex]\frac{3}{11}[/tex]
i. multiply the numerator and denominator of [tex]\frac{3}{11}[/tex] by 2,
= [tex]\frac{3*2}{11*2}[/tex] = [tex]\frac{6}{22}[/tex]
i. multiply both the numerator and denominator of [tex]\frac{6}{22}[/tex] by 4,
= [tex]\frac{6*4}{22*4}[/tex]= [tex]\frac{24}{88}[/tex]
ii. multiply the numerator and denominator of [tex]\frac{24}{88}[/tex] by 6,
= [tex]\frac{24*6}{88*6}[/tex] = [tex]\frac{144}{528}[/tex]
So that;
[tex]\frac{3}{11}[/tex] = [tex]\frac{6}{22}[/tex] = [tex]\frac{24}{88}[/tex] = [tex]\frac{144}{528}[/tex].
Three fractions that are equivalent to [tex]\frac{3}{11}[/tex] are: [tex]\frac{6}{22}[/tex], [tex]\frac{24}{88}[/tex] and [tex]\frac{144}{528}[/tex].
Point E lies within rectangle ABCD. If AE = 6, BE = 7, and CE = 8, what is the length of DE?
Answer:
[tex]\sqrt{51}[/tex] units.
Step-by-step explanation:
Point E is inside a rectangle ABCD.
Please refer to the attached image for the given statement and dimensions.
Given that:
Sides AE = 6 units
BE = 7 units and
CE = 8 units
To find:
DE = ?
Solution:
For a point E inside the rectangle the following property hold true:
[tex]AE^2+CE^2=BE^2+DE^2[/tex]
Putting the given values to find the value of DE:
[tex]6^2+8^2=7^2+DE^2\\\Rightarrow 26+64=49+DE^2\\\Rightarrow DE^2=100-49\\\Rightarrow DE^2=51\\\Rightarrow \bold{DE = \sqrt{51}\ units}[/tex]
The one-sample z ‑statistic for Thomas' statistical test has a value of −1.73346 , and Thomas calculates a P-value of 0.0830 . Should Thomas conclude that telephone surveys provide adequate coverage with respect to p ? Why or why not? Select all correct statements about his decision and conclusion.
Answer:
Thomas should not reject the null hypothesis.
Step-by-step explanation:
The null hypothesis is rejected or accepted on the basis of level of significance. When the p-value is greater than level of significance we fail to reject the null hypothesis and null hypothesis is then accepted. It is not necessary that all null hypothesis will be rejected at 10% level of significance. To determine the criteria for accepting or rejecting a null hypothesis we should also consider p-value. Here in this question the test value is -1.73346 and p-value is 0.0830. The p value is greater than the test value therefore the null hypothesis should be accepted.
i need help asap please
Answer:
[tex]x = -\frac{3}{2}[/tex] or [tex]x = 1[/tex]
Step-by-step explanation:
Using the zero product property, first step is to set the given equation, [tex] 2x^2 + x - 1 = 2 [/tex] , to zero. Then factorise the left side.
Thus,
[tex] 2x^2 + x - 1 = 2 [/tex]
Subtract 2 from both sides
[tex] 2x^2 + x - 1 - 2 = 2 - 2 [/tex]
[tex] 2x^2 + x - 3 = 0 [/tex]
Factorise the left side
[tex] 2x^2 + 3x - 2x - 3 = 0 [/tex]
[tex] x(2x + 3) - 1(2x + 3) = 0 [/tex]
[tex] (x - 1)(2x + 3) = 0 [/tex]
Find the solution
[tex] x - 1 = 0 [/tex]
Or
[tex]2x + 3 = 0[/tex]
[tex] x = 1 [/tex]
Or
[tex]2x + 3 = 0[/tex]
[tex]2x = -3[/tex]
[tex]x = -\frac{3}{2}[/tex]
The answer is: [tex] x = 1 [/tex] or [tex]x = -\frac{3}{2}[/tex]
Evaluate the expresión 6c-d when c=2 and d=10 I need help?
Answer:
the answer is 18
Step-by-step explanation:
8 is the answer
Given the graph, find an equation for the parabola.
Answer:
[tex]\Large \boxed{\sf \bf \ \ y=\dfrac{1}{16}(a-3)^2-2 \ \ }[/tex]
Step-by-step explanation:
Hello, please consider the following.
When the parabola equation is like
[tex]y=a(x-h)^2+k[/tex]
The vertex is the point (h,k) and the focus is the point (h, k+1/(4a))
As the vertex is (3,-2) we can say that h = 3 and k = -2.
We need to find a.
The focus is (3,2) so we can say.
[tex]2=-2+\dfrac{1}{4a}\\\\\text{*** We add 2. ***}\\\\\dfrac{1}{4a}=2+2=4\\\\\text{*** We multiply by 4a. ***}\\\\16a=1\\\\\text{*** We divide by 16. ***}\\\\a=\dfrac{1}{16}[/tex]
So an equation for the parabola is.
[tex]\large \boxed{\sf y=\dfrac{1}{16}(a-3)^2-2 }[/tex]
Hope this helps.
Do not hesitate if you need further explanation.
Thank you
the angle theta is in the second quadrant and cos theta = -2/√29 determine possible coordinates for point P on the terminal arm of theta a. (2,5) b. (-2,√29) c. (-5,2) d. (-2,5)
[tex] \cos(\theta)=-\frac{2}{\sqrt{29}}[/tex] and $\theta$ lies in $2^{\text{th}}$ quadrant.
where, $x-$ coordinate is negative, and $y-$ coordinate is positive
so it can't a.
now, cosine means, side adjacent over the hypotenuse, in Cartesian plane, that will be $x-$ coordinate over the distance from origin.
Assume the triangle , with base $2$ units and hypotenuse $\sqrt{29}$ and it's in second quadrant. (so [tex] \cos(\theta)=-\frac{2}{\sqrt{29}}[/tex])
now, the leftmost point on $x-$ axis is , obviously $(-2,0)$
and by Pythagoras theorem, we can find the perpendicular side, that will be $y^2=(\sqrt{29})^2-(2)^2\implies y=5$
so the coordinates of the upper vertex is $(-2,5)$, each point lying on this "ray" should have equal ratio of respective coordinates. i.e. $\frac25=\left|\frac xy\right| $
and it should lie on second quadrant, so $x<0 \, y>0$
Option d satisfies this.
Kent Co. manufactures a product that sells for $60.00. Fixed costs are $285,000 and variable costs are $35.00 per unit. Kent can buy a new production machine that will increase fixed costs by $15,900 per year, but will decrease variable costs by $4.50 per unit. What effect would the purchase of the new machine have on Kent's break-even point in units?
0riginal break even point:
285000/ 60/35 = $166,250
New break even point = new fixed costs / ( selling price - variable cost/ selling price)
New break even point = 285,000 + 15,900. / ( 60-( 35-4.50)/60
300,900 / 60-30.50/60 = $612,000
The new break even point increases.