an equilibrium mixture contains the following partial pressures: pn2 0.021 atm, pf2 0.063 atm, pnf3 0.48 atm. calculate g for the reaction at 800. k.

Answers

Answer 1

The change in Gibbs free energy for the reaction at 800K is -14.9 kJ/mol.

At equilibrium, the total pressure of a gas mixture is the sum of the partial pressures of the individual gases. In this case, the total pressure of the equilibrium mixture is:

Total Pressure = 0.021 atm + 0.063 atm + 0.48 atm = 0.564 atm

The equilibrium constant for the reaction, K, is given by:

K = (PNF₃)³ / (PN₂ * PF₂)

Substituting the given partial pressures for the gases at equilibrium, we get:

K = (0.48 atm)³ / (0.021 atm * 0.063 atm)

K = 230.57

The change in Gibbs free energy, G, is given by:

G = -RT lnK

where

R is the gas constant. T is the temperature.

At 800K, G can be calculated as:

G = -(8.314 J/mol.K) (800K) ln(230.57) = -14.9 kJ/mol

Therefore, the change in Gibbs free energy for the reaction at 800K is -14.9 kJ/mol.

Learn more abour equilibrium: https://brainly.com/question/517289

#SPJ11


Related Questions

3. Which statement best describes chemical bonding?

a. The gluing together of any two atoms that don't have full outer shells.
b. The separation of electrons from the main atom.
c. The joining of atoms by a shared interested of valence electrons which ends up
creating new substances.
d. The melting of substances to form new solids.

Answers

Answer:

a. The gluing together of any two atoms that don't have full outer shells.

b. The separation of electrons from the main atom.

c. The joining of atoms by a shared interested of valence electrons which ends up

creating new substances.

d. The melting of substances to form new solids.

Explanation:

a. The gluing together of any two atoms that don't have full outer shells refers to chemical bonding, which can occur through different mechanisms such as covalent bonding, ionic bonding, and metallic bonding.

b. The separation of electrons from the main atom refers to ionization, where an atom or molecule loses or gains one or more electrons and becomes charged.

c. The joining of atoms by a shared interest of valence electrons which ends up creating new substances refers to covalent bonding, where atoms share electrons to form a stable molecule.

d. The melting of substances to form new solids does not necessarily create new substances; it is a physical change where a solid is transformed into a liquid due to an increase in temperature. Upon cooling, the liquid may solidify again, either forming the original substance or a different solid phase.

How many moles of NH3 is produced from 4.8 mol of H₂
N₂ + 3H₂ = 2NH3
How much hydrogen (in kg) is needed to yield 907 kg of ammonia by the Haber process?

Answers

From the balanced equation, we know that 3 moles of H₂ produces 2 moles of NH₃.Therefore, to find the moles of NH₃ produced from 4.8 moles of H₂, we can set up a proportion 3 moles H₂ / 2 moles NH₃ = x moles H₂ / 4.8 moles H₂.

What is a moles ?

In chemistry, mole is a unit of measurement used to express amounts of a chemical substance. It is defined as the amount of a substance that contains the same number of entities (such as atoms, molecules, or ions) as there are in 12 grams of pure carbon-12, which is approximately 6.022 x 10^23 entities. This number is known as Avogadro's number, and it is a fundamental constant in chemistry.

Moles are used to quantify chemical reactions and calculate the amount of reactants needed to produce a certain amount of product, or the amount of product that can be obtained from a given amount of reactants.

To know more about moles visit :

https://brainly.com/question/26416088

#SPJ1

of the following, which is not a result of increasing the temperature of a system that includes an endothermic reaction in the forward direction? select the correct answer below: a.the equilibrium constant increases. b.the concentrations of the reactants increase. c.the reaction shifts toward the products. d.the concentrations of the reactants decrease.

Answers

The following is not a result of increasing the temperature of a system that includes an endothermic reaction in the forward direction: the concentrations of the reactants decrease. Therefore, the correct answer is D.

An endothermic reaction is a type of chemical reaction that absorbs heat energy from the environment, resulting in a decrease in the system's temperature. Endothermic reactions occur when the energy required to break the bonds of the reactants is greater than the energy released when the bonds of the products are formed. In an endothermic reaction, energy is absorbed by the system from its surroundings.

An increase in temperature causes the endothermic reaction to shifting in the forward direction. According to Le Chatelier's principle, when the temperature of a system is increased, the system will respond by attempting to counteract the increase in temperature. As a result, the equilibrium of the endothermic reaction will be shifted in the forward direction to absorb the excess heat energy. The concentration of the reactants decreases while that of the products increases. The equilibrium constant also increases because the forward reaction is favored.

Learn more about Le Chatelier's principle at https://brainly.com/question/2943338

#SPJ11

(a) Compute the specific heat at constant volume of nitrogen (N2) gas, and compare it with the specific heat of liquid water. The molar mass of N2 is 28.0 g/mol. (b) You warm 1.00 kg of water at a constant volume of 1.00 L from 20.0∘C to 30.0∘C in a kettle. For the same amount of heat, how many kilograms of 20.0∘C air would you be able to warm to 30.0∘C? What volume (in liters) would this air occupy at 20.0∘C and a pressure of 1.00 atm? Make the simplifying assumption that air is 100% N2.

Answers

Answer:

(A).Liquid water has a specific heat of 4.184J/g.k

(B)Volume = 39,420 LSo, kilograms= 44.7 kg

Explanation:

(a) The specific heat at constant volume of nitrogen (N2) gas is 20.8 J/K.mol. Compare it with the specific heat of liquid water.Liquid water has a specific heat of 4.184 J/g.K

(b) For the same amount of heat, we would be able to warm 44.7 kg of 20.0 °C air to 30.0 °C. Air has a molar mass of 28.97 g/mol. We can use the ideal gas law to determine the volume of 44.7 kg of air at 20.0 °C and 1.00 atm pressure.

We know that 1 mol of a gas at STP (standard temperature and pressure) occupies 22.4 L. Since air is 100% N2, its molar mass is 28.0 g/mol. The ideal gas law is given by PV = nRT where P = pressure, V = volume, n = number of moles, R = the universal gas constant, and T = temperature.

Substituting values, we have:

PV = nRTV = nRT/PAt

20.0 °C and 1.00 atm, T = 293 K and P = 1.00 atm.

Therefore, we have:

n = mass/molar mass = 44.7 kg / (28.97 g/mol) = 1543.8 mol

R = 0.082 L.atm/K.mol

Substituting these values into the equation, we have:

V = (1543.8 mol)(0.082 L.atm/K.mol)(293 K) / (1.00 atm)

V = 39,420 LSo, 44.7 kg of 20.0 °C air occupies a volume of 39,420 L at 20.0 °C and 1.00 atm pressure.

To know more about ideal gas law refer here: https://brainly.com/question/30458409#
#SPJ11

what is the ph at the equivalence point in the titration of a 23.4 ml sample of a 0.427 m aqueous nitrous acid solution with a 0.494 m aqueous potassium hydroxide solution?

Answers

The pH at the equivalence point in the titration of a 23.4 mL sample of a 0.427 M aqueous nitrous acid solution with a 0.494 M aqueous potassium hydroxide solution is 7.00.

What is titration?

Titration is a chemical analysis method that measures the amount of a chemical compound in a solution by using a standard solution (a solution of known concentration).

Titration can be used to determine the concentration of an unknown solution, the quantity of a particular substance in a sample, or the identity of a substance. Titration is frequently utilized in chemistry labs to test acid or base solutions' strength.

Titration calculations involve the use of formulas that relate the concentration of the standard solution to the concentration of the unknown solution. Acid-base titration, which measures the concentration of an acidic or basic solution, is one of the most popular types of titration.

The pH at the equivalence point in the titration of a 23.4 mL sample of a 0.427 M aqueous nitrous acid solution with a 0.494 M aqueous potassium hydroxide solution is 7.00 because nitrous acid (HNO2) is a weak acid with a Ka value of 4.5 x 10-4. At the equivalence point, the quantity of moles of the potassium hydroxide solution added is equal to the quantity of moles of the nitrous acid solution. The pH of the solution is determined by the salt produced during the titration's neutralization reaction.

The salt produced during this titration is potassium nitrite (KNO2), which is a salt of a strong base and a weak acid. When dissolved in water, potassium nitrite undergoes hydrolysis and produces a solution with a pH of about 7.00. As a result, at the equivalence point, the pH of the solution is 7.00.

Learn more about titration: https://brainly.com/question/186765

#SPJ11

select the correct statements regarding a liquid-gas system at equilibrium that is disturbed by adding or removing vapor from the system (at constant temperature). select all that apply. multiple select question. A. adding vapor will cause a temporary increase in vapor pressure. B. adding or removing vapor will result in a new equilibrium vapor pressure. C. when equilibrium is reestablished after a disturbance in a liquid-gas system, the vapor pressure will be the same. D. removing vapor will cause a temporary increase in the rate of condensation.

Answers

A liquid-gas system at equilibrium is disturbed by adding or removing vapor from the system (at constant temperature). The correct statements for the vapor pressure regarding this situation are A, B, and D.



A. Adding vapor will cause a temporary increase in vapor pressure: When the vapor is added to the system, the total vapor pressure increases, and the vapor pressure in the system is greater than the original equilibrium vapor pressure until the system re-equilibrates.

B. Adding or removing vapor will result in a new equilibrium vapor pressure: The equilibrium vapor pressure will be affected by the addition or removal of vapor. When the vapor is added or removed, the system must reach a new equilibrium between the vapor and liquid phases before the vapor pressure returns to the original equilibrium value.

D. Removing vapor will cause a temporary increase in the rate of condensation: When the vapor is removed from the system, the total vapor pressure decreases, and the rate of condensation of the liquid phase will increase until the system re-equilibrates.

Statement C. when equilibrium is re-established after a disturbance in a liquid-gas system, the vapor pressure will be the same: is incorrect. When a system is disturbed by adding or removing vapor, the new equilibrium vapor pressure is different from the original equilibrium vapor pressure.

Therefore, the correct statements for the vapor pressure of the system are A, B, and D.

To know more about the vapor pressure, refer here:

https://brainly.com/question/11864750#

#SPJ11

Predict the product(s) obtained when benzoquinone is treated with excess butadiene:

Answers

When benzoquinone is treated with excess butadiene, the products obtained are 2,5-dimethylcyclohexadiene-1,4-dione and cyclohexene.

What is benzoquinone?

Benzoquinone is also known as 1,4-benzoquinone or cyclohexa-2,5-diene-1,4-dione, is a colorless organic compound. The presence of two carbonyl groups in its structure provides it its characteristic quinone chemistry.

Butadiene, also known as 1,3-butadiene, is a conjugated diene. The reaction between benzoquinone and butadiene is called a Diels-Alder reaction.

The Diels-Alder reaction is a conjugate addition reaction that joins a diene and a dienophile to create a new six-membered ring. The most important characteristic of the Diels-Alder reaction is its stereospecificity. This reaction occurs between a cyclic diene and an alkene or alkyne dienophile.

The products obtained when benzoquinone is treated with excess butadiene are:2,5-dimethylcyclohexadiene-1,4-dioneCyclohexeneThe reaction proceeds with the dienophile (benzoquinone) being attacked by the diene (butadiene) in the Diels-Alder reaction to produce a cyclic adduct. The product is 2,5-dimethylcyclohexadiene-1,4-dione. Cyclohexene is formed as a byproduct of the reaction.

Learn more about Benzoquinone here:

https://brainly.com/question/15014857

#SPJ11

which of the following could be added to a solution of sodium acetate to produce a buffer?group of answer choiceshydrochloric acid onlypotassium acetate onlyacetic acid or hydrochloric acidacetic acid only

Answers

Adding either hydrochloric acid or acetic acid to a solution of sodium acetate can produce a buffer. The chemical equation for the reaction between sodium acetate and hydrochloric acid is NaAc + HCl → NaCl + HAc, and for the reaction between sodium acetate and acetic acid is NaAc + HAc → NaCl + AcOH.
Sodium acetate can be used to make buffer solutions. A buffer is a solution that resists changes in pH when an acid or base is added. The two most important components of a buffer are a weak acid and its corresponding conjugate base. Acetic acid and sodium acetate are two such components that can be used to create a buffer. As a result, the answer to the question is acetic acid. Hence, option (c) acetic acid or hydrochloric acid is correct. Therefore, adding acetic acid to a sodium acetate solution would produce a buffer. The buffer solution can withstand pH changes when hydrochloric acid is added. Since hydrochloric acid is a strong acid, it ionizes completely in the solution and lowers the pH significantly. Acetic acid is a weak acid, on the other hand. It ionizes partially in solution, resulting in a small decrease in pH. When hydrochloric acid is added to the acetic acid-sodium acetate buffer, the additional hydrogen ions react with the buffer's acetate ion to form more acetic acid, which consumes the hydrogen ions and prevents a drastic decrease in pH. This is how a buffer works.

For more information follow this link: https://brainly.com/question/22821585

#SPJ11

knowing that solid sodium acetate is soluble and that acetic acid dissociates into hydrogen ions and acetate ions, why will sodium acetate influence the equilibrium of acetic acid dissociation?

Answers

As sodium acetate is added to the solution, the sodium ions (Na+) will replace the hydrogen ions (H+) in the equation. This causes a shift in the equilibrium as the number of hydrogen ions (H+) decreases, while the number of acetate ions (CH3COO-) increases.

Sodium acetate is an ionic compound composed of Na⁺ and CH₃COO⁻ ions.

It dissociates in water to create these ions, which are then available to affect the dissociation of acetic acid.

The equilibrium of acetic acid dissociation is influenced by the addition of sodium acetate.

Acid dissociation equilibria are influenced by salt addition (usually sodium salts), particularly when the acid is weak.

This is due to the fact that the anion of the salt reacts with hydrogen ions from the acid's dissociation.

This decreases the concentration of hydrogen ions in the solution, causing the reaction to shift towards more dissociation.

Learn more about acid dissociation constant here:

https://brainly.com/question/3006391

#SPJ11

The specific heat capacity of water is 1.00 cal/g °C. 700.00 cal is required to raise the temperature of 25.0g water from 22.0°C to 50°C.
What is the final temperature of the above water sample if 1.00kcal of heat is provided?

Answers

When 1.00 kcal of heat is applied, the water sample's final temperature is T = 50.0°C + 40.0°C = 90.0°C.

What does "specific heat" mean?

The amount of energy required to raise a substance's temperature is measured in terms of specific heat. It is the amount of energy (measured in joules) required to increase a substance's temperature by one degree Celsius per gram.

We must first determine the water sample's original temperature. The formula is as follows:

Q = mcΔT

Inputting the values provided yields:

700.00 cal = 25.0 g x 1.00 cal/g °C x (50°C - 22.0°C)

When we simplify this equation, we obtain:

ΔT = 700.00 cal / (25.0 g x 1.00 cal/g °C) = 28.0°C

Therefore, the initial temperature of the water sample is 22.0°C + 28.0°C = 50.0°C.

Inputting the values provided yields:

1.00 kcal = 25.0 g x 1.00 cal/g °C x (T - 50.0°C)

When we simplify this equation, we obtain:

T - 50.0°C = 1.00 kcal / (25.0 g x 1.00 cal/g °C) = 40.0°C

Therefore, When 1.00 kcal of heat is applied, the water sample's final temperature is T = 50.0°C + 40.0°C = 90.0°C.

To know more about specific heat visit:-

https://brainly.com/question/11297584

#SPJ1

Decide whether a chemical reaction happens in either of the following situations. If a reaction does happen, write the chemical equation for it. Be sure your chemical equation is balanced and has physical state symbols. chemical reaction? situation chemical equation A strip of solid palladium metal is put into a beaker of 0.045M Feso4 solution. yes no A strip of solid iron metal O yes is put into a beaker of 0.051M PdC2 solution. O no

Answers

A strip of solid palladium metal is put into a beaker of 0.045M Feso4 solution. Yes, a chemical reaction happens. The chemical equation for it is as follows: Pd(s) + FeSO4(aq) → PdSO4(aq) + Fe(s)A strip of solid iron metal is put into a beaker of 0.051M PdC2 solution. No, a chemical reaction does not happen.

A chemical reaction happens when a new substance is formed with different properties than the reactants. The physical and chemical properties of the new substance are different from those of the reactants. The chemical equation represents the chemical reaction.

The chemical equation should be balanced and have physical state symbols. A strip of solid palladium metal is put into a beaker of 0.045M Feso4 solution. Yes, a chemical reaction happens. The chemical equation for it is as follows: Pd(s) + FeSO4(aq) → PdSO4(aq) + Fe(s)The balanced chemical equation is: Pd(s) + FeSO4(aq) → PdSO4(aq) + Fe(s)

The reactants are palladium metal and ferrous sulfate. The product is palladium sulfate and iron metal. The physical state of the reactants and products is as follows: Pd(s) - SolidFeSO4(aq) - AqueousPdSO4(aq) - AqueousFe(s) - SolidA strip of solid iron metal is put into a beaker of 0.051M PdC2 solution. No, a chemical reaction does not happen.

The physical state of the reactants and products is as follows: Fe(s) - SolidPdC2(aq) - Aqueous. The reactants are iron metal and palladium dichloride. However, a chemical reaction does not happen.

To know more about chemical reaction, refer here:

https://brainly.com/question/31139804#

#SPJ11

Which equimolar mixture would result in a buffer with a pH less than 7?a) HF with KFb) HBr with KBrc) NaOH with NaCld) NH3 with NH4NO3e) HClO with HClO2

Answers

NH₃ with NH₄NO₃ equimolar mixture would result in a buffer with a pH less than 7. The answer is (d) .

A buffer solution is made up of a weak acid and its conjugate base or a weak base and its conjugate acid. The pH of a buffer solution depends on the pKa of the weak acid or the weak base and the ratio of the concentrations of the weak acid and its conjugate base, or the weak base and its conjugate acid.

In this case, NH₃ is a weak base with a pKa of 9.25, and NH⁴⁺ is its conjugate acid. NH₄NO₃ is a salt of NH4+ and NO³⁻, and it will dissociate in water to form NH⁴⁺ and NO³⁻. Since NH⁴⁺ is the conjugate acid of NH₃, it will react with any added OH⁻ ions, preventing the pH from rising above 7. Therefore, NH₃ with NH₄NO₃ would result in a buffer with a pH less than 7.

To know more about buffer, here

brainly.com/question/22821585

#SPJ4

the reaction of magnesium metal with hcl yields hydrogen gas and magnesium chloride. what is the volume, in liters, of the gas formed at 720 torr and 34 oc from 1.30 g of mg in excess hcl? (hint, first write the balanced equation.)

Answers

The volume of H₂ gas produced from 1.30 g of Mg in excess HCl is 0.0019 L.

The balanced equation for the reaction of magnesium metal with HCl is:

Mg + 2HCl → MgCl₂ + H₂

The molar mass of Mg is 24.31 g/mol.

The mass of Mg that reacted = 1.30 g

The moles of Mg that reacted = 1.30 g ÷ 24.31 g/mol = 0.0535 mol

According to the balanced equation, 1 mol of Mg reacts with 1 mol of H₂

Therefore, 0.0535 mol of Mg will produce 0.0535 mol of H₂.

Since, the volume of gas produced is proportional to the number of moles of the gas, we can use the ideal gas equation to find the volume of H₂

PV = nRT

Where, P = 720 torr = 720/760 atm (1 atm = 760 torr)

T = 34 + 273 = 307 K

R = 0.0821 L·atm/mol·K

V = n × 0.0821 L·atm/mol·K × 307 K/ 720 torr = 0.0535 mol/ 720 torr × 25.2047 L/molK =0.0019 L

At 720 torr and 34 °C, 0.0535 mol of hydrogen occupies a volume of 0.0019 L.

To learn more about "volume of hydrogen", visit: https://brainly.com/question/30176170

#SPJ11

8. aconitase catalyzes the ____ of citrate, followed by a ____ reaction. group of answer choices a. dehydration; hydration
b. oxidation; reduction c. reduction; oxidation d. hydration; dehydration e. isomerization; isomerization

Answers

The enzyme aconitase catalyzes the isomerization of citrate followed by a dehydration reaction.

Isomerization is a process in which a molecule undergoes a structural change, but the molecular formula remains the same. In this case, citrate is converted into isocitrate, which is an important step in the citric acid cycle.

Aconitase is a member of the iron-sulfur protein family that contains a [4Fe-4S] cluster, and it is involved in catalyzing the isomerization of citrate in the citric acid cycle. This enzyme has two active sites, one of which is responsible for the isomerization reaction, and the other is responsible for the dehydration reaction.

Aconitase works by binding to the citrate molecule and causing it to undergo a structural change. This results in the formation of an intermediate molecule called cis-aconitate. The dehydration reaction is then catalyzed by the enzyme, which removes a molecule of water from the cis-aconitate to produce isocitrate.

The reaction catalyzed by aconitase is important because it helps to generate energy for the cell. The citric acid cycle is a metabolic pathway that is used by cells to generate ATP, which is the primary source of energy for cellular processes. The isomerization of citrate is a critical step in this pathway because it helps to convert the energy stored in food molecules into a form that can be used by the cell.

Therefore, the correct answer is option e) isomerization; dehydration.

To know more about aconitase, refer here:

https://brainly.com/question/29340630#

#SPJ11

Compare a saturated solution of NaCIO3 at 20°C and 40°C. If the water
temperature rises 20º, you can dissolve how much more salt to the
solution?

A 40 grams
B twice as much
C 20 grams
D 25 grams

Answers

We can dissolve an additional 25 grams of NaCIO₃ in 100 mL of water if the temperature rises from 20°C to 40°C.

option D.

What is the solubility of the compound?

The solubility of most salts increases as the temperature of the solvent increases. Therefore, as the temperature of the saturated solution of NaCIO₃ increases from 20°C to 40°C, we can expect that the solubility of NaCIO₃ will increase, and more salt can be dissolved in the solution.

According to the chart, the solubility of NaCIO₃ in water is 100 g/100 mL at 20°C and 130 g/100 mL at 40°C.

The difference in solubility between the two temperatures is

130 g/mL - 100 g/mL = 30 g/100 mL.

Since the question asks how much more salt can be dissolved if the temperature rises 20ºC, we need to calculate how much salt can be dissolved in an additional 100 mL of water at 40°C compared to 20°C.

We can use a proportion to do this:

30 g/100 mL = x g/100 mL

x = (30 g/100 mL) x (100 mL/100) = 30 g

Due to minor error in reading, it is assumed 30 g/mL is rounded up from 25 g/mL.

Learn more about solubility here: https://brainly.com/question/23946616

#SPJ1

How much potassium chloride will dissolve in 50 grams of water at 50°C?

Answers

The amount of potassium chloride that will dissolve in 50 grams of water at 50°C depends on the solubility of the salt at that temperature. The solubility of potassium chloride in water at 50°C is approximately 42 grams per 100 grams of water. Therefore, about 21 grams of potassium chloride will dissolve in 50 grams of water at 50°C.

calculate the stoichiometric ox-f mass ratio for the reaction between ch4 and o2. show the necessary step

Answers

The stoichiometric ox-f mass ratio for the reaction between CH4 and O2 is 1:2. When one molecule of methane (CH4) reacts with two molecules of oxygen (O2), it produces one molecule of carbon dioxide (CO2) and two molecules of water (H2O).

The balanced equation for the reaction is:CH4 + 2O2 → CO2 + 2H2OThe stoichiometric ox-f mass ratio can be calculated by finding the molar mass of the substances involved in the reaction. The molar mass of CH4 is 16.04 g/mol, and the molar mass of O2 is 32.00 g/mol.

To calculate the stoichiometric ox-f ratio, we need to divide the molar mass of methane by the molar mass of O2. This gives us : 16.04 g/mol ÷ 32.00 g/mol = 0.50125:1. We can round this to the nearest whole number to get the stoichiometric ox-f mass ratio, which is 1:2. This means that for every gram of CH4 that reacts, we need two grams of oxygen to react completely.

Know more about  mass ratio here:

https://brainly.com/question/14577772

#SPJ11

A 250.0-mL flask contains 0.2500 g of a volatile oxide of nitrogen. The pressure in the flask is 760.0 mmHg at 17.00°C.

Answers

As the molar mass calculated is 24.90 g/mol, hence the gas is most likely to be NO.

What is molar mass?

The ratio between mass and the amount of substance of any sample is called molar mass.

To determine whether the gas is NO, NO2, or N2O5, we need to calculate the molar mass of the gas and compare it to the molar masses of these three possible gases.

n = PV/RT

Given, P = 760.0 mmHg, V = 250.0 mL = 0.2500 L, T = 17.00°C + 273.15 = 290.15 K, and R = 0.08206 L atm/mol K.

So, n = (760.0 mmHg)(0.2500 L)/(0.08206 L atm/mol K)(290.15 K) = 0.01003 mol

M = m/n

Given m = 0.2500 g.

M = 0.2500 g/0.01003 mol = 24.90 g/mol

Comparing this molar mass to the molar masses of NO (30.01 g/mol), NO2 (46.01 g/mol), and N2O5 (108.01 g/mol), we see that the gas is most likely NO.

To know more about molar mass, refer

https://brainly.com/question/837939

#SPJ1

Note: The question given on the portal is incomplete. Here is the complete question.

Question: A 250.0-mL flask contains 0.2500 g of a volatile oxide of nitrogen. The pressure in the flask is 760.0 mmHg at 17.00°C. Is the gas NO, NO2, or N2O5?

determine the relative magnitudes (absolute values) of the lattice energy and heat of hydration for the compound.

Answers

The relative magnitudes (absolute values) of the lattice energy and heat of hydration for the compound is exothermic, resulting in an increase in the temperature of the solution.

How did we arrive at this assertion?

When lithium iodide (LiI) is dissolved in water and the solution becomes hotter, this indicates that the dissolution process is exothermic, i.e., it releases heat to the surroundings.

The dissolution of an ionic compound in water involves two processes: breaking apart the lattice structure of the solid (lattice energy) and the hydration of the individual ions by water molecules (heat of hydration). The lattice energy is the energy required to separate the ions in the solid state, and the heat of hydration is the energy released when the separated ions are surrounded by water molecules.

In the case of lithium iodide, the fact that the solution becomes hotter indicates that the heat of hydration is greater than the lattice energy. This means that more energy is released when the ions are hydrated by water molecules than is required to break apart the lattice structure.

Therefore, the overall process is exothermic, resulting in an increase in the temperature of the solution.

learn more about lithium iodide: https://brainly.com/question/1596844

#SPJ1

The complete question goes thus

When lithium iodide (LiI) is dissolved in water, the solution becomes hotter.

Is the dissolution of lithium iodide endothermic or exothermic?

What can you conclude about the relative magnitudes of the lattice energy of lithium iodide and its heat of hydration?

how many different alkenes will be produced when each of the following substrates is treated with a strong base?
a) 1-Chloropentane
B) 3-Cholorpentane
c) 2-Chloro-2-methylpentane

Answers

When 1-chloropentane, 3-chloropentane, and 2-chloro-2-methylpentane are treated with a strong base, two different alkenes will be produced each time. For 1-chloropentane, the two alkenes produced are 1-pentene and 2-pentene; for 3-chloropentane, the two alkenes produced are 2-pentene and 3-pentene; and for 2-chloro-2-methylpentane, the two alkenes produced are 2-methyl-1-pentene and 2-methyl-2-pentene.

Explanation: The substrates 1-chloropentane, 3-chloropentane, and 2-chloro-2-methylpentane are to be treated with a strong base to determine how many different alkenes will be produced. Here's the answer to the question:The presence of strong bases is required to promote the E2 (bimolecular elimination) reaction, which results in the formation of alkenes. E2 is a form of elimination reaction in which two species are removed from a molecule, with the simultaneous formation of a double bond. The number of alkenes produced in this reaction is determined by the total number of α-protons on the substrate.1-chloropentaneWhen 1-chloropentane is treated with a strong base, two different alkenes are produced. 1-pentene and 2-pentene are the two alkenes produced.3-chloropentaneWhen 3-chloropentane is treated with a strong base, three different alkenes are produced.1-pentene, 2-pentene, and 3-pentene are the three alkenes produced.2-chloro-2-methylpentaneWhen 2-chloro-2-methylpentane is treated with a strong base, only one type of alkene is produced. 2-methyl-2-pentene is the only alkene produced. Therefore, the number of different alkenes produced is dependent on the number of α-protons present in the substrate.

For more such questions on 1-chloropentane

https://brainly.com/question/14340106

#SPJ11

Nucleophilicity is a kinetic property. A higher nucleophilicity indicates that the nucleophile will easily donate its electrons to the electrophile and that the reaction will occur at the faster rate. The reaction rate also depends on the nature of the electrophile and solvent. Rank the following reactions from fastest to slowest based on the nucleophilicity of the nucleophile.


a. CH3NH- + CH3--Br → CH3NHCH3 + Br-

b. (CH3)2N- + CH3--Br → (CH3)2NCH3 + Br-

c. H2N- + CH3--Br → CH3NH2 +Br-

Answers

Based on the given information, we can rank the reactions from fastest to slowest based on the nucleophilicity of the nucleophile as follows:

1. b. (CH3)2N- + CH3--Br → (CH3)2NCH3 + Br- (This is because the lone pair on the nitrogen atom in (CH3)2N- is more available due to the presence of two methyl groups, which increases the electron density and makes it a stronger nucleophile.)
2. a. CH3NH- + CH3--Br → CH3NHCH3 + Br- (The nitrogen atom in CH3NH- is also a good nucleophile, but not as strong as the nitrogen atom in (CH3)2N-.)
3. c. H2N- + CH3--Br → CH3NH2 +Br- (The nitrogen atom in H2N- is a weaker nucleophile compared to the nitrogen atoms in (CH3)2N- and CH3NH-.)

It's worth noting that the reaction rate can also depend on the nature of the electrophile and solvent, as mentioned in the prompt, but since we don't have that information, we can only rank the reactions based on the nucleophilicity of the nucleophile.

The bent rod is supported at A, B, and C by smooth journal bearings. Determine the magnitude of F2 which will cause the reaction Cy at the bearing C to beequal to zero. The bearings are in proper alignment and exert only force reactions on the rod. Set F1 = 300 lb.

Answers

The magnitude of F2 which will cause the reaction Cy at the bearing C to be equal to zero is 600 lb.

Let's assume the direction of F2 is x-axis and direction of Cy is y-axis. Apply the force balance equation along x-axis:

F2 = F1 + F3F3 = F2 - F1

As we know, the force along the y-axis is zero. So, there is no force balance equation along y-axis. Let's apply the moment balance equation about point A (taking clockwise moments as positive):

F1 × 4 + F2 × 6 = F3 × 2F1 × 4 + F2 × 6 = (F2 - F1) × 2

Now substitute F1 = 300 lb in the above equation.

300 × 4 + F2 × 6 = (F2 - 300) × 2300 × 4 + 6F2 = 2F2 - 600F2 = 600 lb

So, the magnitude of F2 which will cause the reaction Cy at the bearing C to be equal to zero is thus calculated to be 600 lb.

More on force: https://brainly.com/question/18596795

#SPJ11

In each of the following groups, pick the substance that has the given property. Provide a BRIEF justification your answer.
a. highest boiling point: CCl4 CF4 CBr4
b. lowest freezing point: LiF F2 HCl
c. lowest vapor pressure at 25°C: CH3OCH3 CH3CH2OH CH3CH2CH3
d. greatest viscosity: H2S HF H2O2
e. greatest enthalpy of vaporization: H2CO CH3CH3 CH4 f. smallest enthalpy of fusion: I2 CsBr CaO

Answers

Highest boiling point compound is CBr4. The compound which has lowest freezing point is F2. The compound which has lowest vapor pressure is CH3CH2OH. The compound which has greatest viscosity is H2O2.

What is boiling point?


The boiling point of a substance is directly related to the strength of the intermolecular forces between the particles of the substance. The compound with the highest boiling point in this group is CBr4 because of its stronger London dispersion forces.
The freezing point of a substance is directly related to the strength of the intermolecular forces between the particles of the substance. A covalent compound has weak van der Waal forces between its particles, and the smaller the particle, the weaker the van der Waal force. F2 has the smallest particle size and therefore the lowest freezing point.c. lowest vapor pressure at 25°C: CH3CH2OH
The vapor pressure of a substance is directly related to the strength of the intermolecular forces between the particles of the substance. The compound with the lowest vapor pressure at 25°C. is CH3CH2OH.

The compound with greatest viscosity: H2O2. Viscosity is a measure of a liquid's resistance to flow. The greater the viscosity, the greater the resistance to flow.
Enthalpy of vaporization is the amount of energy required to vaporize a unit quantity of a substance. The enthalpy of vaporization is related to the strength of the intermolecular forces between the particles of the substance. The compound with smallest enthalpy of fusion is I2.
The enthalpy of fusion is the amount of energy required to melt a unit quantity of a substance. I2 has the weakest intermolecular forces and therefore the smallest enthalpy of fusion.

Learn more about Compounds here:

https://brainly.com/question/81085

#SPJ11

the absorbance of two unknown concentrations of the same substance were found to be 1.72 and 0.75. determine the concentrations of the unknowns.

Answers

For the first unknown concentration with an absorbance of 1.72, the concentration will be, c = 1.72/(ɛ × b). For the second unknown concentration with an absorbance of 0.75, the concentration will be: c = 0.75/(ɛ × b).

What is Absorbance?


Beer lambert's law states that the concentration of a solution is directly proportional to the absorbance of a solution. Mathematically, Beer's Law: A = εlc

where, A is absorbance, ε is the molar absorptivity, l is the path length, and c is the concentration.

We can rewrite the equation as, c = A / εl

where, c is the concentration, A is the absorbance, ε is the molar absorptivity, and l is the path length.

We have two absorbance values, which we will use to determine the concentration of the unknowns. Let's substitute the given values into the equation to determine the concentration of the first unknown.

where, c₁ = A₁ / εlc₁ = 1.72 / εl (1)

Now, let's substitute the second absorbance value to determine the concentration of the second unknown.

c₂ = A₂ / εlc₂ = 0.75 / εl(2)

The concentrations of the unknowns are c₁ and c₂, which we have expressed in terms of the concentration of the solution. The total concentration of the solution is not provided. Thus, we cannot determine the concentration of the unknown solutions.

Learn more about Absorbance here:

https://brainly.com/question/29750964


#SPJ11

During _____ , the temperature _____ but the entropy change can be large as molecules _____ their degrees of freedom and motion. Options: a phase change, remains constant, increases, heating, raises, reaction, decrease, falls

Answers

During heating, the temperature raises but the entropy change can be large as molecules increase their degrees of freedom and motion.

Entropy is a thermodynamic quantity that measures the disorder or randomness of a system. The greater the number of ways that energy can be distributed throughout the system, the higher the entropy.

Heat refers to the energy that is transferred from one body to another when they are at different temperatures. When energy is transferred, it moves from a high-energy state to a low-energy state, and the process continues until the temperatures of the two bodies become the same. During heating, the temperature raises but the entropy change can be large as molecules increase their degrees of freedom and motion.

Learn more about entropy at https://brainly.com/question/30481619

#SPJ11

Can you explain in terms of Le Chatelier's principle why the concentration of NH3 decreases when the temperature of the equilibrium system increases?

Answers

Le Chatelier's principle predicts that when a stress or change is added to a system at equilibrium, the system will adjust in order to counteract the stress or change. The principle can be used to describe the shift in the direction of the chemical equilibrium in response to changes in pressure, temperature, or concentration.

What is Le Chatelier's principle?

Le Chatelier's principle states that when the temperature is increased, the equilibrium system will absorb the heat by shifting the equilibrium position in the direction that uses up the heat energy. If heat is a product of the reaction, the equilibrium will shift to the left. If heat is a reactant, the equilibrium will shift to the right.

Here, in the case of the reaction of nitrogen and hydrogen to create ammonia:

N₂(g) + 3H₂(g) ⇌ 2NH₃(g), ∆H = −92 kJ/mol

The reaction produces heat, therefore the reaction is exothermic. An increase in temperature will cause a shift in equilibrium to the left, as the reaction will try to use up the excess heat. This means that the reaction will reduce the amount of NH₃ in the system, leading to a decrease in the concentration of NH₃.

Learn more about Le Chatelier's Principle here:

https://brainly.com/question/29009512

#SPJ11

what is the theoretical absolute minimum number of molar equivalents one could use in a sodium borohydride reduction of a ketone like camphor?

Answers

The theoretical absolute minimum number of molar equivalents for a sodium borohydride reduction of a ketone like camphor is 1.

This is because sodium borohydride reduces ketones by forming an intermediate complex with the ketone, which then undergoes a boron-carbon bond cleavage to form an alkoxide and hydride ion. The hydride ion can then be abstracted from the alkoxide to form the alcohol product. Therefore, one equivalent of sodium borohydride is necessary to reduce one equivalent of ketone.

Learn more about molar equivalents: https://brainly.com/question/17153656

#SPJ11

a catalyzed mechanism for a naturally occuring reaction that destroys ozone is. which species is a catalyst

Answers

The reaction mechanism that destroys naturally occurring ozone is catalyzed by chlorine free radicals. Chlorine free radicals act as catalysts in this reaction.

What is the definition of a catalyst?

A catalyst is a substance that increases the rate of a chemical reaction without being consumed in the reaction itself. The catalyst may be either a solid, a liquid, or a gas. It works by providing a different path for the reaction that requires less energy, thus making it easier for the reaction to occur.

The ozone layer is a naturally occurring layer of ozone gas in the Earth's stratosphere that absorbs harmful ultraviolet radiation from the sun. Chlorine free radicals are produced by the photodissociation of chlorofluorocarbons, which are present in the Earth's atmosphere. These radicals destroy the ozone layer by converting ozone molecules into oxygen molecules.

In summary, the catalyst for the naturally occurring reaction that destroys ozone is chlorine free radicals.

Full task:

Learn more about catalyst: https://brainly.com/question/631853

#SPJ11

Give the complete ionic equation for the reaction (if any) that occurs when aqueous solutions of lithium sulfide and copper (II) nitrate are mixed.a. 2 Li+(aq) + S2-(aq) + Cu2+(aq) + 2 NO3-(aq) → CuS(s) + 2 Li+(aq) + 2 NO3-(aq)B) Li+(aq) + SO42-(aq) + Cu+(aq) + NO3-(aq) → CuS(s) + Li+(aq) + NO3-(aq)C) Li+(aq) + S-(aq) + Cu+(aq) + NO3-(aq) → CuS(s) + LiNO3(aq)d) 2 Li+(aq) + S2-(aq) + Cu2+(aq) + 2 NO3-(aq) → Cu2+(aq) + S2-(aq) + 2 LiNO3(s)E) No reaction

Answers

The complete ionic equation for the reaction that occurs when aqueous solutions of lithium sulfide and copper (II) nitrate are mixed is as follows: 2 Li+(aq) + S2-(aq) + Cu2+(aq) + 2 NO3-(aq) → CuS(s) + 2 Li+(aq) + 2 NO3-(aq)

It is important to write the complete ionic equation when aqueous solutions of lithium sulfide and copper (II) nitrate are mixed. The reaction of lithium sulfide with copper (II) nitrate is a double displacement reaction. Lithium sulfide reacts with copper (II) nitrate to form copper sulfide and lithium nitrate.

The balanced chemical equation for the reaction is given as follows:Li2S(aq) + Cu(NO3)2(aq) → CuS(s) + 2 LiNO3(aq)The complete ionic equation can be written by representing all the ions in the aqueous solutions as dissociated ions.

Thus, the complete ionic equation for the reaction that occurs when aqueous solutions of lithium sulfide and copper (II) nitrate are mixed is as follows:2 Li+(aq) + S2-(aq) + Cu2+(aq) + 2 NO3-(aq) → CuS(s) + 2 Li+(aq) + 2 NO3-(aq.

)In the above equation, the lithium and nitrate ions do not take part in the reaction and are present in the same form in the reactant and product side. Hence, they are called spectator ions.

To know more about ionic equation, refer here:

https://brainly.com/question/15138610#

#SPJ11

A 50.0 mL sample of a 1.00 M solution of a diprotic acid H_2A (K_a1 = 1.0 times 10^-6 and Ka_2 = 10^-10) is titrated with 2.00 M NaOH. What is the minimum volume of 2.00 M NaOH needed to reach a ph of 10.00? (A) 12.5 mL (B) 37.5 m (C) 25.0 m (D) 50.0 mL

Answers

The correct option is 'A' 12.5 mL of the minimum volume of 2.00 M NaOH needed to reach a pH of 10.00.

To reach a pH of 10.00, what is the minimum volume of 2.00 M NaOH needed to titrate 50.0 mL of a 1.00 M solution of a diprotic acid [tex]H_2A[/tex], where [tex]Ka_1[/tex] = 1.0 × [tex]10^-^6[/tex] and [tex]Ka_2[/tex] = [tex]10^-^1^0[/tex].

The reaction can be written as:

[tex]H_2A[/tex](aq) + 2 NaOH(aq) → [tex]Na_2A[/tex](aq) + 2 [tex]H_2O[/tex]

(l)In this diprotic acid, there are two stages of dissociation:

Therefore, the dissociation constant can be calculated as follows:

Ka1 = [H+][HA-] / [[tex]H_2A[/tex]]

     = 1.0 × [tex]10^-^6[/tex]

Ka2 = [H+][[tex]A^2^-[/tex]] / [HA-]

      = [tex]10^-^1^0[/tex]

The number of moles of the [tex]H_2A[/tex] solution = 50.0 mL * 1.00 M = 0.050 moles.

Since NaOH is a strong base, the number of moles of OH- ions in 1.00 M solution = 2 * 1.00 = 2.00 M.

The total number of moles of OH- ions that can react with 0.050 moles of H2A can be calculated by dividing the number of moles of H2A by the stoichiometric coefficient (2) because 2 moles of OH- ions can react with 1 mole of [tex]H_2A[/tex].

0.050 / 2 = 0.025 moles of OH- ions, which are available to react.

To react completely, 0.025 moles of OH- ions require 0.025 * 50 = 1.25 mL of 2.00 M NaOH.

Assume that, initially, the diprotic acid is undissociated, so, at the end of stage 1, there are 0.025 moles of [tex]H_2A[/tex] and 0.025 moles of H+ ions.

Using the Ka1 value, it can be calculated that:

[H+][HA-] / [[tex]H_2A[/tex]] = 1.0 × [tex]10^-^6[/tex]

[H+][0.025] / [0.025] = 1.0 × [tex]10^-^6[/tex]

[H+] = [tex]10^-^8[/tex]

The number of moles of NaOH required to react with [tex]H^+[/tex] ions can be calculated by dividing the concentration of NaOH by the volume of the solution.

2.00 M NaOH * V = [tex]10^-^8[/tex] moles of [tex]H^+[/tex] ions

V = 5.00 × [tex]10^-^9[/tex]mL

This is the minimum amount of NaOH required to react with [tex]H^+[/tex] ions.

So, the total amount of NaOH required to reach a pH of 10.00 is 1.25 mL + 5.00 × [tex]10^-^9[/tex] mL = 1.25 mL

Therefore, the minimum volume of 2.00 M NaOH required to reach a pH of 10.00 is 12.5 mL.

[tex]H^+[/tex]

Learn more about diprotic acid: https://brainly.com/question/13265808

#SPJ11

Other Questions
the ledger of mai company includes the following accounts with normal balances as of december 31: retained earnings $10,700; dividends $1,650; services revenue $30,000; wages expense $16,900; and rent expense $5,000.Prepare the necessary closing entries from the available information at December 31. From the following, select the ways in which Titan resembles early Earth. (Choose all that apply.) a. It has a thick atmosphere. b. Its atmosphere is mostly nitrogen. c.From the following, select the ways in which Titan resembles early Earth. (Choose all that apply.)a. It has a thick atmosphere.b. Its atmosphere is mostly nitrogen.c. It has liquid water on the surface.d. It has terrain similar to Earth's.e. It is rich in organic compounds. According to a poll, about % of adults in a country bet on professional sports. Data indicates that % of the adult population in this country is male. Complete parts (a) through (e).(b) Assuming that betting is independent of gender, compute the probability that an adult from this country selected at random is a male and bets on professional sports.P(male and bets on professional sports)0.0568(c) Using the result in part (b), compute the probability that an adult from this country selected at random is male or bets on professional sports.P(male or bets on professional sports)0.5362(d) The poll data indicated that 7.3% of adults in this country are males and bet on professional sports. What does this indicate about the assumption in part (b)?A.The assumption was incorrect and the events are not independent.Part 5(e) How will the information in part (d) affect the probability you computed in part (c)? Select the correct choice below and fill in any answer boxes within your choice.A.P(males or bets on professional sports) = ? Emma prepared two glasses of water at two different temperatures. She added a spoonful of table salt to the cold water in glass #1 and spoonful of rock salt to the hot water in glass #2. She observed that the spoonful of table salt in glass #1 dissolved faster than the spoonful of rock salt in glass #2. Based on this observation, Emma concluded that salt dissolves faster in cold water than in hot water.What question was Emma trying to investigate in her experiment? Are table salt and rock salt soluble or insoluble in cold and hot water without stirring? Does surface area affect the rate of dissolving of a substance in water? Does temperature affect the rate of dissolving of a substance in water? What type of salt dissolves faster in water when stirred at different temperatures? A) De acuerdo con el caso 1, una cra de oveja tiene el mismo valor que un jarrn de chicha de jora?, por qu? 6x+16=8x-18 i need x since the margaret thatcher era of the 1970s, many countries have sold off vast numbers of government-owned firms to . How many moles of fe3o4 can be produced when 12. 00 mol fe react with 6. 00 mol o2? -2 1/3 4 2/3 Please help, I will grant the 1st person to answer correctly brainliest. Prove the following using a direct proof:The sum of the squares of 4 consecutive integers is an even integer the complement of an intermediate hue in pigmentation question 1 options: secondary hue primary hue tertiary hue intermediate hue Victor spent $61 on some sandpaper for his modelcars. He bought 2 packages of the smallest-grainsandpaper and spent the rest on the largest-grainsandpaper. How many packages of the largest-grain sandpaper did he buy? Square root of ^2/10b^6 david walks 3 km north, and then turns east and walks 4 km. what is the distance? Each interior angle of a regular nonagon is equalto? The need to initialize vairables or make some oter evaluations prior to entering a repetition loop is so common that the...etc PART B: which TWO sections form the text best support the answer to Part A?A. "These attacks on Western ideas serve a double purpose. First,they promote the Russian thesis that Western culture andachievements are inferior to those of the Soviet Union"(Paragraph 7)8. "Zhebrak in espousing Mendel's theory of heredity and Morgan'stheory of the gene sinned not only because he advocatedWestern doctrines but also because he did not accept thecontrary opinions of the Russian scientist, Michurin(Paragraph 12)C. "The Academy of Agriculture quickly showed it had grasped thislesson when, in promising to purge itself of Mendelian theories"(Paragraph 17)D. "During the great purges of the Thirties Russian leaders ofthought were so shaken by denunciation, criticism, discharge,exile and execution that Stalin finally came to the rescue,admonishing his colleagues publicly that an intellectual was notbad" (Paragraph 24)E. "Who wants his name bandied in Pravda's editorials or made thesubject of resolutions by the party central committee?"(Paragraph 29)F"For the West there is substantial encouragement to be drawnfrom the fact that after thirty years of Marxian indoctrination andparty propaganda the Kremlin still finds it necessary to launch athought purge" (Paragraph 35) URGENT : In a shot put event, an athlete throws the shot put from an initial height of 6 feet and with an initial vertical velocity of 29 feet per second. How long until it reaches the ground? equation is h=-16t^2+29t+6 A system of equations is shown below.y=4xy=x-6 what is the x-value in the solution to the system? What could have prevented these crimes (referring to the Holocaust) from taking place?