Answer:
the probability of no defects in 10 feet of steel = 0.1353
Step-by-step explanation:
GIven that:
A roll of steel is manufactured on a processing line. The anticipated number of defects in a 10-foot segment of this roll is two.
Let consider β to be the average value for defecting
So;
β = 2
Assuming Y to be the random variable which signifies the anticipated number of defects in a 10-foot segment of this roll.
Thus, y follows a poisson distribution as number of defect is infinite with the average value of β = 2
i.e
[tex]Y \sim P( \beta = 2)[/tex]
the probability mass function can be represented as follows:
[tex]\mathtt{P(y) = \dfrac{e^{- \beta} \ \beta^ \ y}{y!}}[/tex]
where;
y = 0,1,2,3 ...
Hence, the probability of no defects in 10 feet of steel
y = 0
[tex]\mathtt{P(y =0) = \dfrac{e^{- 2} \ 2^ \ 0}{0!}}[/tex]
[tex]\mathtt{P(y =0) = \dfrac{0.1353 \times 1}{1}}[/tex]
P(y =0) = 0.1353
Put the following equation of a line into slope-intercept form, simplifying all
fractions.
3x + 3y = -9
Answer:
[tex]y = -x - 3[/tex]
Step-by-step explanation:
We are trying to get the equation [tex]3x + 3y = -9[/tex] into the form [tex]y = mx+b[/tex], aka slope-intercept form.
To do this we are trying to isolate y.
[tex]3x + 3y = -9[/tex]
Subtract 3x from both sides:
[tex]3y = -9 - 3x[/tex]
Rearrange the terms:
[tex]3y = -3x - 9[/tex]
Divide both sides by 3:
[tex]y = -x - 3[/tex]
Hope this helped!
60 is x% of 12. Find the value of x.
Answer:
20
Step-by-step explanation:
We can set up a percentage proportion to find the value of x.
[tex]\frac{12}{x} = \frac{60}{100}[/tex]
Now we cross multiply:
[tex]100\cdot12=1200\\\\1200\div60=20[/tex]
Hope this helped!
Tessa’s employee benefits include family health care coverage. She contributes 18% of the cost. Tessa gets paid biweekly and $108.00 is taken out of each paycheck for family health care coverage. How much does her employer contribute annually for the family coverage? Clearly show your work.
The answer is $12792
Explanation:
It is known Tessa pays $108.00 to contribute to family coverage every two weeks and this represents 18% of the total payment. This implies the employer pays the 82% missing (100% - 18% = 82%). Additionally, with this information, it is possible to know the amount the employer has to pay every two weeks that represents 82%. The process is shown below:
1. Write the values you know and use x to represent the value you need to find
108 = 18
x = 82
3. Cross multiply
x 18 = 8856
4. Find the value of x by solving this simple equation
x = 8856 ÷ 18
x = 492 - Amount the employer pays every two weeks for Tessa's family coverage
Now that we know the money the employer pays every two weeks, it is possible to calculate the annual amount of money. Follow the process below.
1. Consider one year has a total of 52 weeks and divide this number of weeks by 2 because the payment for the family coverage occurs every 2 weeks
52 ÷ 2 = 26
2. Finally, multiply the money paid by the employer every two weeks by 26
26 weeks x $492 = $12792- This is the total the employer pays annually
Select the correct answer from each drop-down menu.
The function f is given by the table of values as shown below.
x 1 2 3 4 5
f(x) 13 19 37 91 253
Use the given table to complete the statements.
The parent function of the function represented in the table is
.
If function f was translated down 4 units, the
-values would be
.
A point in the table for the transformed function would be
.
Answer:
3^x9, 15, 33, 87, 249(4, 87) for exampleStep-by-step explanation:
a) First differences of the f(x) values in the table are ...
19 -13 = 6, 37 -19 = 18, 91 -37 = 54, 253 -91 = 162
The second differences are not constant:
18 -6 = 12, 54 -18 = 36, 162 -54 = 108
But, we notice that both the first and second differences have a common ratio. This is characteristic of an exponential function. The common ratio is 18/6 = 3, so the parent function is 3^x.
__
b) Translating a function down 4 units subtracts 4 from each y-value. The values of f(x) in the table would be ...
9, 15, 33, 87, 249
__
c) The x-values of the function stay the same for a vertical translation, so the points in the table of the transformed function are ...
(x, f(x)) = (1, 9), (2, 15), (3, 33), (4, 87), (5, 249)
Answer: I think this is it:
The parent function of the function represented in the table is exponential. If function f was translated down 4 units, the f(x)-values would be decreased by 4. A point in the table for the transformed function would be (4,87)
Step-by-step explanation: I got it right on Edmentum!
Find the value of x.
x=2.86
Step-by-step explanation:
[tex] {a}^{2} + {b}^{2} = {c}^{2} [/tex]
[tex] {24}^{2} + {32}^{2} = 40[/tex]
[tex]c = 40[/tex]
[tex]6x + 6 + 9x - 9 = 40[/tex]
[tex](6x + 9x) + (6 - 9) = 40[/tex]
[tex]15x - 3 = 40[/tex]
[tex]15x = 43[/tex]
[tex]x = 2.866[/tex]
[tex]23.16 + 16.74 = 39.9[/tex]
the
[tex]6(2.86) + 6 = 23.16[/tex]
[tex]9(2.86) - 9 = 16.74[/tex]
Determine if the matrix below is invertible. Use as few calculations as possible. Justify your answer. [Start 4 By 4 Matrix 1st Row 1st Column 4 2nd Column 5 3rd Column 7 4st Column 5 2nd Row 1st Column 0 2nd Column 1 3rd Column 4 4st Column 6 3rd Row 1st Column 0 2nd Column 0 3rd Column 3 4st Column 8 4st Row 1st Column 0 2nd Column 0 3rd Column 0 4st Column 1 EndMatrix ]
Answer:
Yes, it is invertible
Step-by-step explanation:
We need to find in the matrix determinant is different from zero, since iif it is, that the matrix is invertible.
Let's use co-factor expansion to find the determinant of this 4x4 matrix, using the column that has more zeroes in it as the co-factor, so we reduce the number of determinant calculations for the obtained sub-matrices.We pick the first column for that since it has three zeros!
Then the determinant of this matrix becomes:
[tex]4\,*Det\left[\begin{array}{ccc}1&4&6\\0&3&8\\0&0&1\end{array}\right] +0+0+0[/tex]
And the determinant of these 3x3 matrix is very simple because most of the cross multiplications render zero:
[tex]Det\left[\begin{array}{ccc}1&4&6\\0&3&8\\0&0&1\end{array}\right] =1 \,(3\,*\,1-0)+4\,(0-0)+6\,(0-0)=3[/tex]
Therefore, the Det of the initial matrix is : 4 * 3 = 12
and then the matrix is invertible
Determine whether the normal sampling distribution can be used. The claim is p < 0.015 and the sample size is n
Complete Question
Determine whether the normal sampling distribution can be used. The claim is p < 0.015 and the sample size is n=150
Answer:
Normal sampling distribution can not be used
Step-by-step explanation:
From the question we are told that
The null hypothesis is [tex]H_o : p = 0.015[/tex]
The alternative hypothesis is [tex]H_a : p < 0.015[/tex]
The sample size is n= 150
Generally in order to use normal sampling distribution
The value [tex]np \ge 5[/tex]
So
[tex]np = 0.015 * 150[/tex]
[tex]np = 2.25[/tex]
Given that [tex]np < 5[/tex] normal sampling distribution can not be used
Based on the normal sampling assumption, the product of the sample size and the proportion must be greater than or equal to 5. Hence, since, the condition isn't met, then the normal sampling cannot be used.
Given the Parameters :
Proportion, p = 0.015Sample size, n = 150Test if np ≥ 5 :
(150 × 0.015) = 2.252.25 < 5
Hence, np < 5 ;
Hence, the normal sampling distribution cannot be used.
Learn more : https://brainly.com/question/19338417
The number of chocolate chips in a bag of chocolate chip cookies is approximately normally distributed with a mean of 1262 chips and a standard deviation of 118 chips.
Required:
a. Determine the 26th percentile for the number of chocolate chips in a bag.
b. Determine the number of chocolate chps in a bag that make up the middle 96% of bags.
Answer:
(a) The 26th percentile for the number of chocolate chips in a bag is 1185
(b) The number of chocolate chips in a bag that makes up the middle 96% of the bags is between 1020 and 1504
Step-by-step explanation:
From the question, we have the following values:
μ =1262 and σ =118
(a) Let the value of x represents the 26th percentile. So the 26th percentile means 26% data is less than x. We can use the standard normal table to get the particular z-value that corresponds to this percentile.
P( Z<-0.65 )=0.2578 which is approximately 0.26
So for 26th percentile z-score will be -0.65.
Mathematically;
z-score = (x-mean)/SD
-0.65 = (x-1262)/118
-76.7 = x -1262
x = 1262-76.7 = 1185.3
This value is approximately 1,185
(b) Using a graph of standard normal distribution curve, if middle is 96% , then at both tails 2% each.
From z-table, we can find the closest probability;
P(-2.05<z<2.05) = 0.96
So we have two x values to get from the individual z-scores
-2.05 = (x-1262)/118
x = 1020(approximately)
For 2.05, we have
2.05 = (x-1262)/118
x = 1262 + 2.05(118) = 1504 (approximately)
The Brooklyn Burn is a small company that makes and sells hot sauces. The profit that The
Brooklyn Burn makes in a month from its “Buckingham Burn" hot sauce can be measured using
the following function:
y=6x - 200
where x is the number of bottles of "Buckingham Burn" hot
sauce sold, and y is the profit in dollars for the month.
Using this function and its context involving sales of hot
sauce), describe the meaning of the numbers shown in the
table at the right.
150
700
Answer:
I know the answer
Step-by-step explanation:
If we use 150 the answer would be 6(150) - 200 = 700. The answer is 200.
Brooklyn Burn sold 150 bottles of hot sauce every month, 700 is the profit they make eachmonth.
The data set {3, 7, 5, 4, 1} consists of the lengths, in minutes, of a sample of speeches at an awards banquet. Use a formula to find the standard deviation of the sample, and label it with the correct variable.
Answer:
Standard deviation = 2.2360679774998
Step-by-step explanation:
We are asked to find the Standard deviation of a samples of speeches as an awards.
The formula for sample standard deviation is given as:
√[(x - μ)²/N - 1 ]
Step 1
We find the mean (μ)
The mean of the sample =>
= Sum of term/ Number of terms
= (3 + 7 + 5 + 4 + 1)/5
= 20/5
= 4
Step 2
Find the Standard deviation of the sample
√[(x - μ)²/N - 1 ]
N = number of samples or terms = 5
= √[(3 - 4) ² + (7 - 4)² + (5 - 4)² +(4 - 4)² +(1 - 4)²/ 4]
= √ (1 ² + 3² + -1² + 0² + -3²/4)
= √( 1 + 9 + 1 + 0 + 9/4)
= √20/5 - 1
= √5
= 2.2360679774998
The standard deviation of the sample = 2.2360679774998
(Algebra) PLZ HELP ASAP!
Answer: Rational, integer, whole, natural, real
So basically everything but irrational
====================================================
Explanation:
109 is a rational number because 109 = 109/1. Any rational number is a fraction of two integers. Because of this, it cannot be irrational as "irrational" means "not rational".
An integer is anything that does not have a fractional or decimal part. So it involves the set of positive and negative whole numbers, and zero as well. So we can see that 109 is an integer.
A whole number is very similar to an integer, but we're referring to the set {0, 1, 2, 3, ..} meaning we ignore the negative integers. This makes 109 a whole number as well.
A natural number is from the set {1, 2, 3, ...}. We've kicked 0 out from the set of whole numbers. This is the set of counting numbers. So 109 is also a natural number.
A real number is any number you have encountered so far assuming your teacher has not introduced complex and imaginary numbers yet. Effectively a real number is any number that can be written as decimal. This makes 109 to be a real number.
A speedboat moves at a rate of 25 km/hr in still water. How long will it take
someone to ride the boat 87 km downstream if the river's current moves at a rate of
4 km/hr?
Answer:
3 hours
Step-by-step explanation:
Downstream, the speeds add up:
25 + 4 = 29 km/hIt will take:
87/29= 3 hrsTo ride 87 km.
pt 2 4-7 please helppp
Answer:
f = 16
Step-by-step explanation:
8
8 x 2 = _f_ x
8
f = 16
Hi there! Hopefully this helps!
-----------------------------------------------------------------------------------------------------
Answer: f = 16~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[tex]2 = \frac{f}{8}[/tex]
Multiply both sides by 8.
[tex]2 \times 8 = f[/tex]
Multiply 2 and 8 to get 16.
[tex]16 = f[/tex]
Swap sides so that all variable terms are on the left hand side.
[tex]f = 16[/tex]
In the diagram, XY bisects ZWXZ.
1
z
2
w
(5x + 3)
(7x - Y
х
mWYZ
type your answer.
In provided diagram angle WXY = angle YXZ
Angle WXY =( 7x-7)°
Angle YXZ = ( 5x +3)°
We have to find out the value of Angle WXZ
→ 7x-7 = 5x +3
→ 7x - 5x = 7+3
→ 2x = 10
→ x = 10/2
→ x = 5 .
Putting the value of x .
→ Angle WXY = 7(2)-7
→ 14-7 = 7°
→ Angle YXZ = 5(2)+3
→ 10+3 = 13°
Angle WXZ = 13° + 7 ° → 20°
So 20° is the required answer .
Answer:
SI
Step-by-step explanation:
Combine like terms to create an equivalent expression. 1/7 - 3 (3/7n - 2/7)
━━━━━━━☆☆━━━━━━━
▹ Answer
1 - 9/7n
▹ Step-by-Step Explanation
1/7 - 3(3/7n - 2/7)
Remove the parentheses (Distribute -3 among the parentheses):
1/7 - 9/7n + 6/7
Calculate:
1 - 9/7n
Hope this helps!
CloutAnswers ❁
━━━━━━━☆☆━━━━━━━
Answer:
1-9/7n
Step-by-step explanation:
[tex]\frac{1}{7}-3(\frac{3}{7}n-\frac{2}{7} ) \\=\frac{1}{7}-\frac{9}{7}n +\frac{6}{7} \\=\frac{1-9n+6}{7} \\=\frac{7-9n}{7}\\=1-\frac{9}{7}n[/tex]
#2. Given the following conditional statement; which answer is
represents the biconditional statement: "If Mr. Anderson is a ninja, then
he can run like Naruto."
Mr. Anderson is a ninja iff he can run like Naruto.
Mr. Anderson can run like Naruto iff he is a ninja.
Mr. Anderson is Naruto iff he can run like a ninja.
Answer:
Mr. Anderson can run like Naruto iff he is a ninja.
Step-by-step explanation:
This is because, in the statement "If Mr. Anderson is a ninja, then he can run like Naruto.", the sub-statement, "he can run like Naruto.", depends on the sub-statement 'If Mr Anderson is a Ninja'. This means that although Mr. Anderson is a Ninja, he can only run like Naruto if and only if he is a Ninja implying that if Mr Anderson is not a Ninja, he cannot run like Naruto.
So, Mr Anderson can run like Naruto iff he is a Ninja is the correct answer
Answer:
1
Step-by-step explanation:
. Simplify the sum. (2u3 + 6u2 + 2) + (7u3 – 7u + 4)
Answer:
9u^3 + 6u^2 - 7u + 6
Step-by-step explanation:
A young sumo wrestler decided to go on a special high-protein diet to gain weight rapidly. When he started his diet, he weighed 79.5 kilograms. He gained weight at a rate of 5.5 kilograms per month. Let y represent the sumo wrestler's weight (in kilograms) after x months. Which of the following could be the graph of the relationship? graph of an increasing linear function in quadrant 1 with a positive y-intercept (Choice B) B graph of an increasing linear function in quadrants 1 and 4 with a positive x-intercept and negative y-intercept (Choice C) C graph of a decreasing linear function in quadrants 1 and 4 with a positive x-intercept and positive y-intercept (Choice D) D graph of a decreasing linear function in quadrant 4 with a negative y-intercept
Answer:
(Choice A) A graph of an increasing linear function in quadrant 1 with a positive y-intercept.
Step-by-step explanation:
The weight of the sumo wrestler starts at a positive value of 79.5 kilograms, and we are given that the sumo wrestler gains a linear amount of weight per month at 5.5 kilograms per month.
If we were to graph this relationship, the sumo wrestler's weight would be represented on the y-axis, and the amount of time on the x-axis.
So the initial weight would occur at (0, 79.5) which is the positive y-intercept.
And since his weight is increasing at 5.5 kilograms per month, the slope of the linear function is positive.
Hence, the graph of the linear increasing function in quadrant 1 with a positive y-intercept.
Cheers.
Find an equation of the tangent plane to the given surface at the specified point. z = ln(x − 8y), (9, 1, 0)
Answer:
x - 8y - z = 1
Step-by-step explanation:
Data provided according to the question is as follows
f(x,y) = z = ln(x - 8y)
Now the equation for the tangent plane to the surface
For z = f (x,y) at the point P [tex](x_0,y_0,z_0)[/tex] is
[tex]z - z_0 = f_x(x_0,y_0)(x-x_0) + f_y(x_0,y_0)(y-y_0)\\[/tex]
Now the partial derivatives of f are
[tex]f_x(x,y) = \frac{1}{x-8y} \\\\f_y(x,y) = \frac{8}{x-8y} \\\\P(x_0,y_0,z_0) = (9,1,0)\\\\f_z(9,1,0) = (\frac{1}{x-8y})_^{(9,1,0)}[/tex]
[tex]\\\\=\frac{1}{9-8}[/tex]
= 1
Now
[tex]f_y(9,1,0)=(\frac{8}{x-8y})_{(9,1,0)}\\\\ = -\frac{8}{9 - 8}[/tex]
= -8
So, the tangent equation is
[tex]z - 0 = 1\times (x - 9) -8\times (y - 1)[/tex]
Now after solving this, the following equation arise
z = x - 9 - 8y + 8
z = x - 8y - 1
Therefore
x - 8y - z = 1
The equation of the tangent plane is [tex]x-8y-z=1[/tex]
Tangent Plane:An equation of the tangent plane to the given surface at the point [tex]P(x_0,y_0,z_0)[/tex] is,
[tex]z-z_0=f_x(x_0,y_0)(x-x_0)+f_y(x_0,y_0)(y-y_0)[/tex]
The function is,
[tex]z = ln(x-8y)[/tex]
And the point is (9,1,0)
Now, calculating [tex]f_x,f_y[/tex]
[tex]f_x(x,y)=\frac{1}{x-8y}\\ f_y(x,y)=\frac{x-8}{x-8y}[/tex]
Now, substituting the given points into the above functions we get,
[tex]f_x(9,1)=\frac{1}{9-8(1)}=1\\ f_y(x,y)=\frac{-8}{9-8(1)}=-8[/tex]
So, the equation of the tangent plane is,
[tex]z-0=1(x-9)-8(y-1)\\z=x-8y-1\\x-8y-z=1[/tex]
Learn more about the topic tangent plane:
https://brainly.com/question/14850585
Identify whether the sampling method is simple random, systematic, stratified, cluster, or convenience. Explain.
In a nationwide study of registered voters conducted by The New York Times, 390 people are randomly selected out of those registered as Republicans, 430 people are randomly selected out of those registered as Democrats, and 180 people are randomly selected out of those registered as Independents.
Answer: stratified
Step-by-step explanation:
In stratified sampling, you divide the population into subgroups, or strata, with similar characteristics, like here we have divided the population into subgroups that depend on their political alignment. This is used when you can expect that the results have a noticeable variation between the different subgroups. Usually, you want to have the same number of population for eac subgroup, but sometimes it is hard for different reasons (not enough people in one subgroup, for example)
In cluster sampling we also use subgroups, but the subgroup itself is the unit of the sampling, while in this case, we are randomly selecting individuals of the given subgroups.
So this would be a "stratified sampling".
Quick! Andrew has to play 15 games in a chess tournament. At some point during the tournament he has won half of the games he has played, he has lost one-third of the games he has played and two have ended in a draw. How many games has Andrew still to play?
[tex]x[/tex] - the number of the games he played
[tex]\dfrac{x}{2}[/tex] - the number of the games he won
[tex]\dfrac{x}{3}[/tex] - the number of the games he lost
[tex]x=\dfrac{x}{2}+\dfrac{x}{3}+2\Big|\cdot6\\6x=3x+2x+12\\x=12[/tex]
[tex]15-12=3[/tex]
so, he has still 3 games to play
A rectangular city is 3 miles long and 10 miles wide. What is the distance between opposite corners of the city? The exact distance is ______ miles How far is it to the closest tenth of a mile? Answer: The distance is approximately ______ miles.
Answer:
The exact distance is [tex]\sqrt{109}[/tex] miles.
The distance is approximately 10.4 miles.
Step-by-step explanation:
It is given that a rectangular city is 3 miles long and 10 miles wide. So,
Length = 3 miles
Width = 10 miles
We need to find the distance between opposite corners of the city. It means, we need to find the length of the diagonal of the rectangle.
Using Pythagoras theorem, the length of diagonal is
[tex]d=\sqrt{l^2+w^2}[/tex]
where, l is length and w is width.
Substitute l=3 and w=10.
[tex]d=\sqrt{(3)^2+(10)^2}[/tex]
[tex]d=\sqrt{9+100}[/tex]
[tex]d=\sqrt{109}[/tex]
The exact distance is [tex]\sqrt{109}[/tex] miles.
Now,
[tex]d=\sqrt{109}[/tex]
[tex]d=10.4403065[/tex]
[tex]d\approx 10.4[/tex]
The distance is approximately 10.4 miles.
Which quadratic equation would be used to solve for the unknown dimensions?
0 = 2w2
512 = w2
512 = 2w2
512 = 2l + 2w
Answer:
C
Step-by-step explanation:
Answer:
C: 512 = 2w2
Step-by-step explanation:
on edge
Try to get to every number from 1 to 10 using four 4's and any number of arithmetic operations (+, −, ×, ÷). You may also you parentheses.
Answer:
Step-by-step explanation:
1. 4/4+4-4=1
2. 4/4+4/4=2
3. 4+4/4-4=3
4. 4 × (4 − 4) + 4=4
5. (4 × 4 + 4) / 4=5
6. 44 / 4 − 4=6
7. 4+4-4/4=7
8. 4+4+4-4=8
9. 4+4+4/9=9
10. 44 / 4.4=10
Answer:
1 = (4 x 4)/(4 x 4) or (4 + 4)/(4 + 4) or (4 / 4) x (4 / 4) or (4 / 4)/(4 / 4)
2= (4 x 4)/(4 + 4) or 4 / ((4+4)/4)
3= (4 + 4 + 4)/4 or (4 x 4 - 4)/4
4 = 4 - (4 - 4)/4
5 = (4 x 4 + 4)/4
6 = 4 + (4 + 4)/4
7 = 4 - (4/4) + 4
8 = 4 + (4 x 4)/4
9 = 4 + 4 + (4/4)
10 - I tried the best. You might need ! or sqrt operator to get 4.
Updated:
I forgot we could use 4, 44, 444, or 4444, so that 10 could be expressed as:
10 = (44 - 4)/4
Find the area of the shape shown below.
3.5
2
2
Answer:
26.75 units²
Step-by-step explanation:
Cube Area: A = l²
Triangle Area: A = 1/2bh
Step 1: Find area of biggest triangle
A = 1/2(3.5)(2 + 2 + 5)
A = 1.75(9)
A = 15.75
Step 2: Find area of 2nd biggest triangle
A = 1/2(5)(2)
A = 1/2(10)
A = 5
Step 3: Find area of smallest triangle
A = 1/2(2)(2)
A = 1/2(4)
A = 2
Step 4: Find area of cube
A = 2²
A = 4
Step 5: Add all the values together
A = 15.75 + 5 + 2 + 4
A = 20.75 + 2 + 4
A = 22.75 + 4
A = 26.75
Monique makes $11 per hour delivering pizzas. Monique works Monday
through Friday, and on average she earns $20 a day in tips. If Monique
made no less than $450 for one week, find an inequality for the number
of hours she worked
Answer:
x > 39 hours
Step-by-step explanation:
Let x be the number of hours she worked.
11x - is how much she would get paid for working for x hours
11x + 20 > 450
11x > 430
x > 39 hours
Hope that helped!!! k
To the nearest tenth, what is the value of P(C|Y)? 0.4 0.5 0.7 0.8
Answer:
P(C|Y) = 0.5.
Step-by-step explanation:
We are given the following table below;
X Y Z Total
A 32 10 28 70
B 6 5 25 36
C 18 15 7 40
Total 56 30 60 146
Now, we have to find the probability of P(C/Y).
As we know that the conditional probability formula of P(A/B) is given by;
P(A/B) = [tex]\frac{P(A \bigcap B)}{P(B)}[/tex]
So, according to our question;
P(C/Y) = [tex]\frac{P(C \bigcap Y)}{P(Y)}[/tex]
Here, P(Y) = [tex]\frac{30}{146}[/tex] and P(C [tex]\bigcap[/tex] Y) = [tex]\frac{15}{146}[/tex] {by seeing third row and second column}
Hence, P(C/Y) = [tex]\frac{\frac{15}{146} }{\frac{30}{146} }[/tex]
= [tex]\frac{15}{30}[/tex] = 0.5.
Answer: 0.5
Step-by-step explanation:
edge
. line containing ( −3, 4 ) ( −2, 0)
Answer:
The equation is y= -4x -8
Step-by-step explanation:
The -4 is the slope and the -8 is the y intercept
Answer:
Slope: -4
Line type: Straight and diagonal from left to right going down.
Rate of change: a decrease by 4 for every x vaule
y-intercept is: (0,-8)
x-intercept is: (-2,0)
Step-by-step explanation:
Slope calculations:
y2 - y1 over x2 - x1
0 - 4
-2 - ( -3) or -2 + 3
=
-4/1 =
-4
More slope info on my answer here: https://brainly.com/question/17148844
Hope this helps, and have a good day.
What is the solution to X+9 = 24?
A. x = 33
B. x= 15
C. x= 18
D. x= 9
Answer:
X+9=24
Or,x=24-9
:.x=15
Step-by-step explanation:
Answer:
B. x=15
Step-by-step explanation:
To find the solution to the equation, we must get x by itself on one side of the equation.
[tex]x+9=24[/tex]
9 is being added to x. The inverse of addition is subtraction. Subtract 9 from both sides of the equation.
[tex]x+9-9=24-9[/tex]
[tex]x=24-9[/tex]
[tex]x=15[/tex]
Let's check our solution. Plug 15 in for x.
[tex]x+9=24 (x=15)[/tex]
[tex]15+9=24[/tex]
[tex]24=24[/tex]
This checks out, so we know our solution is correct. The answer is B. x=15
The function fix) = (x - 4)(x - 2) is shown.
What is the range of the function?
8
all real numbers less than or equal to 3
all real numbers less than or equal to -1
all real numbers greater than or equal to 3
all real numbers greater than or equal to - 1
6
2
16
2
14
COL
40
8
G D
Answer:
The range of the function f(x)= (x-4)(x-2) is all real numbers greater than or equal to -1
Step-by-step explanation: