Complete Question
A population has a mean mu μ equals = 77 and a standard deviation σ = 14. Find the mean and standard deviation of a sampling distribution of sample means with sample size n equals = 26
Answer:
The mean of sampling distribution of the sample mean ( [tex]\= x[/tex]) is [tex]\mu_{\= x } = 77[/tex]
The standard deviation of sampling distribution of the sample mean ( [tex]\= x[/tex]) is
[tex]\sigma _{\= x} = 2.746[/tex]
Step-by-step explanation:
From the question we are told that
The population mean is [tex]\mu = 77[/tex]
The standard deviation is [tex]\sigma = 14[/tex]
The sample size is [tex]n = 26[/tex]
Generally the standard deviation of sampling distribution of the sample mean ( [tex]\= x[/tex]) is mathematically represented as
[tex]\sigma _{\= x} = \frac{ \sigma }{ \sqrt{n} }[/tex]
substituting values
[tex]\sigma _{\= x} = \frac{ 14}{ \sqrt{26} }[/tex]
[tex]\sigma _{\= x} = 2.746[/tex]
Generally the mean of sampling distribution of the sample mean ( [tex]\= x[/tex]) is equivalent to the population mean i.e
[tex]\mu_{\= x } = \mu[/tex]
[tex]\mu_{\= x } = 77[/tex]
CALC 1: Spud's mom is going to make him a round birthday cake, and has asked for your help. Spud is a bit weird, and has already
announced that when he slices the cake, your slice will have a perimeter of 16 inches, because you're his favorite friend, and
that's his favorite number. Since you're helping his mom with the baking, what diameter cake will you recommend she makes
so that you end up with the most possible cake at weird Spud's party? (Hint: you can ignore the thickness df the cake, since
this will be the same, regardless of its diameter.)
10.1
in
Answer:
15.7 in
Step-by-step explanation:
A slice of a round pie is a sector of a circle.
The perimeter of a slice is the arc length s plus twice the radius r.
P = s + 2r
s = rθ = r(16/360) = r/22.5. So,
16 = (r/22.5) + 2r = (r + 45r)/22.5 = 46r/22.5
16 × 22.5 = 46r
360 = 46r
r = 7.826
D = 2r = 2 × 7.826 = 15.7 in
The diameter of the cake should be 15.7 in.
Check:
[tex]\begin{array}{rcl}P & = & s + 2r\\& = & \dfrac{r}{22.5} + 2r\\\\16 & = & \dfrac{7.826}{22.5} + 2 \times 7.826\\\\16 & = & 0.35 + 15.65\\16 & = & 16.00\\\end{array}[/tex]
It checks.
What does the tape measure say Measurement # 3 is? *
Answer:
5 and 3/32 of an inch.
Help me solve this!!!
Answer:
54°
Step-by-step explanation:
Let ∠CYX=x
AB║CD
∠AXE=∠CYX (corresponding angles)
∠AXE=3∠CYX-108
x=3x-108
3x-x=108
2x=108
x=108/2=54°
∠AXE=∠CYX=x=54°
∠BXY=∠AXE=54° (Vertically opposite angles)
suppose a chemical engineer randomly selects 3 catalysts for testing from a group of 10 catalysts, 6 of which have low acidity & 4 have high acidity. What is the probability that exactly2 lower acidic catalysts are selected?
Step-by-step explanation:
Total catalysts = 10
Probability of 2 lower acidic catalysts = 2/10 = 1/5
in the factory 25 men working 26 hour can produce 1300 radios . how manny hours must the same group of men work to produce 450 radios
Answer:
9 hours
Step-by-step explanation:
Since the group of men remains the same, number of hours is proportional to number of radios.
1300/26 = 450/h
h = 26 * 450 / 1300 = 9 hours
An economist is interested in studying the income of consumers in a particular region. The population standard deviation is known to be $1,000. A random sample of 50 individuals resulted in an average income of $15,000. What is the width of the 90% confidence interval
Answer:
The width is [tex]w = 282.8[/tex]
Step-by-step explanation:
From the question we are told that
The sample size is n = 50
The population standard deviation is [tex]\sigma = \$ 1000[/tex]
The sample size is [tex]\= x = \$ 15,000[/tex]
Given that the confidence level is 90% then the level of significance can be mathematically represented as
[tex]\alpha = 100 - 90[/tex]
[tex]\alpha = 10 \%[/tex]
[tex]\alpha = 0.10[/tex]
Next we obtain the critical value of [tex]\frac{\alpha }{2}[/tex] from the normal distribution table, the value is
[tex]Z_{\frac{0.10 }{2} } = 1.645[/tex]
Generally the margin of error is mathematically represented as
[tex]E = Z_{\frac{0.10}{2} } * \frac{\sigma }{\sqrt{n} }[/tex]
substituting values
[tex]E = 1.645 * \frac{1000 }{\sqrt{50 }}[/tex]
=> [tex]E = 141.42[/tex]
The width of the 90% confidence level is mathematically represented as
[tex]w = 2 * E[/tex]
substituting values
[tex]w = 2 * 141.42[/tex]
[tex]w = 282.8[/tex]
Given a sample of 35, what is the sample standard deviation of a pair of jeans if the 90% confidence interval is [37.14, 42.86]
Answer:
10.295Step-by-step explanation:
Using the value for calculating the confidence interval as given;
CI = xbar + Z*σ/√n
xbar is the mean = 37.14+42.86/2
xbar= 80/2
xbar = 40
Z is the z-score at the 90% confidence = 1.645
σ is the standard deviation
n is the sample size = 35
Given the confidence interval CI as [37.14, 42.86]
Using the maximum value of the confidence interval to get the value of the standard deviation, we will have;
42.86 = xbar + Z*σ/√n
42.86 = 40 + 1.645* σ/√35
42.86-40 = 1.645*σ/√35
2.86 = 1.645*σ/√35
2.86/1.645 = σ/√35
1.739 = σ/√35
1.739 = σ/5.92
σ= 1.739*5.92
σ = 10.295
Hence, the sample standard deviation of a pair of jeans is 10.295
someone please help me
Answer:
3 mL
Step-by-step explanation:
The fluid level is called the concave meniscus. The adhesive force causes it to crawl up on the sides, but you should ignore that while reading the level.
Find the sum to infinity of the series 2+5/4+11/16+23/64+..........up to the infinity.
infinity
We have
[tex]2+\dfrac54+\dfrac{11}{16}+\dfrac{23}{64}+\cdots=\displaystyle\sum_{n=0}^\infty\frac{3\cdot2^n-1}{4^n}[/tex]
(notice that each denominator is a power of 4, and each numerator is one less than some multiple of 3, in particular 3 times some power of 2)
Recall for [tex]|x|<1[/tex], we have
[tex]\displaystyle\frac1{1-x}=\sum_{n=0}^\infty x^n[/tex]
So we have
[tex]\displaystyle\sum_{n=0}^\infty\frac{3\cdot2^n-1}4=3\sum_{n=0}^\infty\left(\frac12\right)^n-\sum_{n=0}^\infty\left(\frac14\right)^n=\frac3{1-\frac12}-\frac1{1-\frac14}=\boxed{\frac{14}3}[/tex]
About 25% of young Americans have delayed starting a family due to the continued economic slump. Determine if the following statements are true or false, and explain your reasoning.a. The distribution of sample proportions of young Americans who have delayed starting a family due to the continued economic slump in random samples of size 12 is right skewed.b. In order for the distribution of sample proportions of young Americans who have delayed starting a family due to the continued economic slump to be approximatly normal, we need random samples where the sample size is at least 40.c. A random sample of 50 young Americans where 20% have delayed starting a family due to the continued economic slump would be considered unusual.d. A random sample of 150 young Americans where 20% have delayed starting a family due to the continued economic slump would be considered unusual.e. Tripling the sample size will reduce the standard error of the sample proportion by one-third.
Answer:
a. True
b. true
c. false
d. false
e. false
Step-by-step explanation:
a. true
polutation = 25% = 0.25
sample = n= 12
n x p
= 12 x o. 25 = 3 and 3 is less than 10
12(1 - p)
= 12 x 0.75
= 9 and is less than 10
b. True
the sample distribution of the population is normal when
sample size x population > or equal to 10
40 x 0.75
= 30 and 30 is greater than 10
c. false
50 x 0.25 = 12.5
50 x 0.20 = 10
z = 10 - 12.5/sqrt(12.5)
= -2.5/3.54
= -0.70
H0: Young american family who delayed
H1: young american family who did not delay
p(z = -0.70)
0.2420>0.005
therefore we accept the null hypothesis
d. false
150 x 0.20 = 30
150 x 0.75 = 37.5
z = 30 - 37.5/sqrt(37.5) = -7.5/6.12 = -1.22
p(z = -1.22) = 0.1112 > 0.05
therefore we do not reject the null hypothesis
e. false
se1 = sqrt(p(1-p)/n
se2 = sqrt(p(1-p)/3n
se2 = 1/sqrt(3)se2
I need help with these
Answer:
2. 20 oranges
3. 18 yellow tulips
4. 23 students
(4 points) Determine whether each of these functions is O(x 2 ). Proof is not required but it may be good to try to justify it (a) 100x + 1000 (b) 100x 2 + 1000 (c) x 3 100 − 1000x 2 (d) x log x (2) (2 points) U
Answer:
(a) O(x²)
(b) O(x²)
(c) O(x²)
(d) Not O(x²)
Step-by-step explanation:
If a function is O(x²), then the highest power of x in the function ia greater or equal to 2.
(a) 100x + 1000
This is O(x), not O(x²)
(b) 100x² + 1000
This is O(x²)
(c) x³.100 − 1000x²
This is O(x²)
(d) x log x²
This is not O(x²)
Given the sequence 38, 32, 26, 20, 14, ..., find the explicit formula. A. an=44−6n B. an=41−6n C. an=35−6n D. an=43−6n
Answer:
The answer is option AStep-by-step explanation:
The sequence above is an arithmetic sequence
For an nth term in an arithmetic sequence
A(n) = a + ( n - 1)d
where a is the first term
n is the number of terms
d is the common difference
From the question
a = 38
d = 32 - 38 = - 6 or 20 - 26 = - 6
Substitute the values into the above formula
A(n) = 38 + (n - 1)-6
= 38 - 6n + 6
We have the final answer as
A(n) = 44 - 6nHope this helps you
Answer:
a
Step-by-step explanation:
you're welcome!
Will mark the brainliest
And thank you:)
[tex]\sf{\implies Range = Highest \: - lowest }[/tex]
→ Range of Lewistown = 74 - 64
→ Range of Lewistown = 10 .
→ Range of Hamersville = 71 - 55
→ Range of Hamersville = 16 .
☆ Range of Hamersville - Range of Lewistown
→ 16 - 10
→ 6
Answer → The range for Hamersville is 6 more than the range for Lewistown .
PLEASE HELP- MATH
simplify the fraction
5bc/10b^2
[tex]\dfrac{5bc}{10b^2}=\dfrac{\not 5\cdot \not b\cdot c}{2\cdot \not 5\cdot \not b\cdot b}=\dfrac{c}{2b}[/tex]
Answer:
c / ( 2b)
Step-by-step explanation:
5bc/10b^2
Lets look at the numbers first
5/10 = 1/2
Then the variable b
b / b^2 = 1/b
Then the variable c
c/1 = c
Putting them back together
1/2 * 1/b * c/1
c/ 2b
In a lottery game, a player picks 6 numbers from 1 to 50. If 5 of the 6 numbers match those drawn, the player wins second prize. What is the probability of winning this prize
Answer:
1/254,251,200 Or 0.000000003933118
Step-by-step explanation:
1/50x1/49x1/48x1/47x1/46=1/254,251,200
What is the approximate area of the unshaded region under the standard normal curve below? Use the portion of the standard normal table given to help answer the question.
A normal curve with a peak at 0 is shown. The area under the curve shaded is 1 to 2.
z
Probability
0.00
0.5000
1.00
0.8413
2.00
0.9772
3.00
0.9987
0.14
0.16
0.86
0.98
Answer:
0.14
Step-by-step explanation:
The z score is a score used in statistics to determine by how many standard deviations ti the raw score above or below the mean. If the raw score is above the mean then the z score is positive while If the raw score is below the mean then the z score is negative, It is given by:
[tex]z=\frac{x-\mu}{\sigma}[/tex]
From the normal distribution table, The area under the curve shaded is 1 to 2 = P(1 < z < 2) = P(z < 2) - P(z < 1) = 0.9772 - 0.8413 = 0.1359 ≈ 0.14
The area under the curve shaded is 1 to 2 is 0.14
What are probabilities?Probabilities are used to determine the chances of an event
The shaded region represents the probability of the z-scores
The shaded region 1 to 2 is represented as:
P(1 < z < 2) =
Using the probability of z-score, we have the formula
P(1 < z < 2) = P(z < 2) - P(z < 1)
From the given standard normal table:
P(z < 2) = 0.9772
P(z < 1) = 0.8413
So, we have:
P(1 < z < 2) = 0.9772 - 0.8413
P(1 < z < 2) = 0.1359
Approximate
P(1 < z < 2) = 0.14
Hence, the area under the curve shaded is 1 to 2 is 0.14
Read more about normal distribution at:
https://brainly.com/question/4079902
a family spent $93 at a carnival.
*they spent $18 on tickets and $30 on food. they spent the rest of the money on games.
which equation can be used to to find "g", the amount of money used on games.
Answer: 93-(18+30)=g
93-48=g
45=g
Step-by-step explanation: yup
The answer is 93-18-30-g=0 or 18+30+g=93
A student wrote the following equation and solution. Explain the error and correctly solve the equation: √p = 9/16 p = 3/4
Answer:
see below
Step-by-step explanation:
√p = 9/16
We need to square each side, not take the square root
(√p)^2 =( 9/16)^2
p = 81/256
Evaluate the double integral ∬Ry2x2+y2dA, where R is the region that lies between the circles x2+y2=16 and x2+y2=121, by changing to polar coordinates.
Answer:
See answer and graph below
Step-by-step explanation:
∬Ry2x2+y2dA
=∫Ry.2x.2+y.2dA
=A(2y+4Ryx)+c
=∫Ry.2x.2+y.2dA
Integral of a constant ∫pdx=px
=(2x+2.2Ryx)A
=A(2y+4Ryx)
=A(2y+4Ryx)+c
The graph of y=A(2y+4Ryx)+c assuming A=1 and c=2
The evaluation of the double integral is [tex]\mathbf{ \dfrac{105}{2}\pi }[/tex]
The double integral [tex]\mathbf{\int \int _R\ \dfrac{y^2}{x^2+y^2} \ dA}[/tex], where R is the region that lies between
the circles [tex]\mathbf{x^2 +y^2 = 16 \ and \ x^2 + y^2 = 121}[/tex].
Let consider x = rcosθ and y = rsinθ because x² + y² = r²;
Now, the double integral can be written in polar coordinates as:
[tex]\mathbf{\implies \int \int _R\ \dfrac{y^2}{x^2+y^2} \ dxdy}[/tex]
[tex]\mathbf{\implies \int \int _R\ \dfrac{r^2 \ sin^2 \theta}{r^2} \ rdrd\theta}[/tex]
[tex]\mathbf{\implies \int \int _R\ \ sin^2 \theta \ r \ drd\theta}[/tex]
Thus, the integral becomes:
[tex]\mathbf{=\int^{2 \pi}_{0} sin^2 \theta d\theta \int ^{11}_{4} rdr }[/tex]
since 2sin² = 1 - cos2θ∴
[tex]\mathbf{=\int^{2 \pi}_{0} \dfrac{1-cos 2 \theta }{2} \ \theta \ d\theta\dfrac{r}{2} \Big|^{11}_{4}dr }[/tex]
[tex]\mathbf{\implies \dfrac{1}{2} \Big[\theta - \dfrac{sin \ 2 \theta}{2}\Big]^{2 \pi}_{0} \ \times\Big[ \dfrac{11^2-4^2}{2}\Big]}[/tex]
[tex]\mathbf{\implies \dfrac{\pi}{2} \times\Big[ 121-16\Big]}[/tex]
[tex]\mathbf{\implies \dfrac{105}{2}\pi }[/tex]
Learn more about double integral here:
https://brainly.com/question/19756166
What is the approximate value of x in –2 ln (x + 1) − 3 = 7?
Answer:
x = 1/e^-5 - 1
Step-by-step explanation:
–2 ln (x + 1) − 3 = 7
–2 ln (x + 1) = 10
ln (x + 1) = –5
x + 1 = e^-5
x = e^-5 - 1
x = 1/e^-5 - 1
the approximate value of x in the equation -2 ln(x + 1) - 3 = 7 is x ≈ -0.9933.
To solve the equation -2 ln(x + 1) - 3 = 7 for the approximate value of x, we will follow these steps:
1. Begin with the given equation: -2 ln(x + 1) - 3 = 7.
2. Move the constant term to the other side of the equation: -2 ln(x + 1) = 7 + 3.
3. Simplify: -2 ln(x + 1) = 10.
4. Divide both sides of the equation by -2 to isolate the natural logarithm term: ln(x + 1) = -5.
5. Rewrite the equation using the exponential form of natural logarithm: e⁻⁵ = x + 1.
6. Calculate the value of e⁻⁵: e⁻⁵ ≈ 0.0067.
7. Subtract 1 from both sides of the equation: x = 0.0067 - 1.
8. Simplify: x ≈ -0.9933.
Therefore, the approximate value of x in the equation -2 ln(x + 1) - 3 = 7 is x ≈ -0.9933.
Learn more about equation here
https://brainly.com/question/32549431
#SPJ2
An amusement park is open 7 days a week. The park has 8 ticket booths, and each booth has a ticket seller from 10am to 6pm. On average, ticket sellers work 30 hours per week. Write and equation that can be used to find "t", the minimum number of ticket sellers the park needs. show work if possible.
Answer:
t = (448 hrs/ week) / (30 hrs / week)
Step-by-step explanation:
Number of times park opens in a week = 7
Number of ticket booth = 8
Opening hours = 10am - 6pm = 8 hours per day
Max working hours per ticket seller per week = 30 hours
Therefore each booth works for 8 hours per day,
Then ( 8 * 7) = 56 hours per week.
All 8 booths work for (56 * 8) = 448 hours per week
If Max working hours per ticket seller per week = 30 hours,
Then muninim number of workers required (t) :
Total working hours of all booth / maximum number of working hours per worker per week
t = (448 hrs/ week) / (30 hrs / week)
limit chapter~ anyone can help me with these questions?
please gimme clear explanation :)
Step-by-step explanation:
I(S) = aS / (S + c)
As S approaches infinity, S becomes much larger than c. So S + c is approximately equal to just S.
lim(S→∞) I(S)
= lim(S→∞) aS / (S + c)
= lim(S→∞) aS / S
= lim(S→∞) a
= a
As S approaches infinity, I(S) approaches a.
HELP PLEASE!! I have been working on this for about three hours!!
Answer:
see below
Step-by-step explanation:
First we need to find the slope
m = ( y2-y1)/ ( x2-x1)
= (60-64)/( 10-0)
= -6/10
= -2/5
The y intercept is (0,64)
The slope intercept form of the equation is
y = mx+b where m is the slope and b is the y intercept
y = -2/5 x + 64 where y is in the thousands of feet
m = -2/5 * 1000 = -400 ft / minute
The height decreases since the sign is negative
The height decreases 400 ft per minute
The y intercept is (0,64)
64 is in the thousands of ft
64*1000 = 64,000 ft
When it starts, it is at 64,000 ft
The descent starts at a cruising altitude of 64,000 ft
What is the area of polygon EFGH?
Two balls are drawn in succession out of a box containing 5 red and 4 white balls. Find the probability that at least 1 ball was red, given that the first ball was (Upper A )Replaced before the second draw. (Upper B )Not replaced before the second draw. (A) Find the probability that at least 1 ball was red, given that the first ball was replaced before the second draw. StartFraction 24 Over 49 EndFraction (Simplify your answer. Type an integer or a fraction.) (B) Find the probability that at least 1 ball was red, given that the first ball was not replaced before the second draw.
Answer:
The answer is below
Step-by-step explanation:
The box contains 5 red and 4 white balls.
A) The probability that at least 1 ball was red = P(both are red) + P(first is red and second is white) + P(first is white second is red)
Given that the first ball was (Upper A )Replaced before the second draw:
P(both are red) = P(red) × P(red) = 5/9 × 5/9 = 25/81
P(first is red and second is white) = P(red) × P(white) = 5/9 × 4/9 = 20/81
P(first is white and second is red) = P(white) × P(red) = 4/9 × 5/9 = 20/81
The probability that at least 1 ball was red = 25/81 + 20/81 + 20/81 = 65/81
B) The probability that at least 1 ball was red = P(both are red) + P(first is red and second is white) + P(first is white second is red)
Given that the first ball was not Replaced before the second draw:
P(both are red) = P(red) × P(red) = 5/9 × 4/8 = 20/72 (since it was not replaced after the first draw the number of red ball remaining would be 4 and the total ball remaining would be 8)
P(first is red second is white) = P(red) × P(white) = 5/9 × 4/8 = 20/72
P(first is white and second is red) = P(white) × P(red) = 4/9 × 5/8 = 20/72
The probability that at least 1 ball was red = 20/72 + 20/72 + 20/72 = 60/72
A total of n bar magnets are placed end to end in a line with random independent orientations. Adjacent like poles repel while ends with opposite polarities join to form blocks. Let X be the number of blocks of joined magnets. Find E(X) and Var(X).
Answer:
E(x) [tex]= \frac{n+1}{2}[/tex]
Var(x) [tex]= \frac{1}{4} [ n - 1 ][/tex]
Step-by-step explanation:
Hint x = 1 + x1 + ......... Xn-1
[tex]X_{i} = \left \{ {{1} if the ith adjacent pair of magnets repel each other \atop {0} if ith adjacent pair of magnets join} \right.[/tex]
attached below is the detailed solutioN
usually like poles of magnets repel each other and unlike poles of magnets attract each other forming a block
There are 47 contestants at a national dog show. How many different ways can contestants fill the first place, second place, and third place positions?
Answer:
97290
Step-by-step explanation:
47 different people can win first
47
Now there are only 46 people left
46 different people can win second
46
45 different people can win third
47*46*45
97290
A health insurer has determined that the "reasonable and customary" fee for a certain medical procedure is $1200. They suspect that the average fee charged by one particular clinic for this procedure is higher than $1200.
Explain in context the conclusion of the test if H0 is rejected.
Answer:
For the null hypothesis to be rejected , then the conclusion of the test is that the absolute values of the z-statistic and/or the t-test statistic is greater than the critical value
Step-by-step explanation:
Here, we want to explain the conclusion of the test given that the null hypothesis is rejected.
Mathematically, the null hypothesis is as expressed as below;
H0: μ = 1,200
The alternative hypothesis H1 would be;
H1: μ > 1,200
Now, before we can reject or accept the null hypothesis, we will need a sample size and thus calculate the test statistics and the z statistics
For us to reject the null hypothesis, one of two things, or two things must have occurred.
The absolute value of the z statistic |z| or the test statistic |t| must be greater than the critical value.
If this happens, then we can make a rejection of the null hypothesis
find the unknown angles
Answer:
y=135
x=45
Step-by-step explanation:
x= 45
It is an isosceles so
180-90=90
90/2= 45
y=135
angles on a straight line add up to 180 so
180-45=135
Hope this helps!