Answer:
The answer is
[tex]y = \frac{1}{5} x + 4[/tex]Step-by-step explanation:
Equation of a line is y = mx + c
where
m is the slope
c is the y intercept
To find the line perpendicular to
y = -5x + 5 we must first find the slope of
Comparing with the general equation above
Slope = - 5
The slope of the perpendicular line is the negative inverse of the slope of the original line
Slope of perpendicular line = 1/5
Equation of the line using point (5,5) and slope 1/5 is
[tex]y - 5 = \frac{1}{5} (x - 5)[/tex][tex]y - 5 = \frac{1}{5} x - 1[/tex][tex]y = \frac{1}{5} x - 1 + 5[/tex]We have the final answer as
[tex]y = \frac{1}{5} x + 4[/tex]Hope this helps you
Answer:
y=0.2x+4 or y=1/5 x+4.
Step-by-step explanation:
When one line is perpendicular to another, you have to find the opposite reciprocal for the slope of the given equation.
For instance, if you have the number 5, the reciprocal of 5 is 1/5 or 0.2. The opposite of positive is negative. Therefore, it is -0.2.
Therefore, if the slope of the first equation is -5, the slope for the next equation is 1/5. Reciprocal of -5 is -1/5. The opposite of -1/5 is positive 1/5. Or, the opposite of negative is positive. Therefore, it would be 1/5x.
However, we are not done.
Since we are given that the line passes through the point (5,5), we need to find the y-intercept of this equation.
The formula for slope-intercept is y=mx+b.
M is your slope
B is your y-intercept.
We can find the y-intercept by actually plugging in the point (5,5) into the new equation.
5=0.2(5)+b.
5 is x and 5 is also y.
(x,y).
Simplify the equation by multiplying 0.2 times 5. That is equal to 1.
We now have 5=1+b.
Isolate for the letter "b" by subtracting 1 from both sides.
1-1 is 0.
5-1 is 4.
Therefore, b=4.
Finally, we can plug in the y-intercept into the new equation.
y=0.2 or 1/5x+4.
I hope this helps! I also hope you have a great rest of your day!
Point E lies within rectangle ABCD. If AE = 6, BE = 7, and CE = 8, what is the length of DE?
Answer:
[tex]\sqrt{51}[/tex] units.
Step-by-step explanation:
Point E is inside a rectangle ABCD.
Please refer to the attached image for the given statement and dimensions.
Given that:
Sides AE = 6 units
BE = 7 units and
CE = 8 units
To find:
DE = ?
Solution:
For a point E inside the rectangle the following property hold true:
[tex]AE^2+CE^2=BE^2+DE^2[/tex]
Putting the given values to find the value of DE:
[tex]6^2+8^2=7^2+DE^2\\\Rightarrow 26+64=49+DE^2\\\Rightarrow DE^2=100-49\\\Rightarrow DE^2=51\\\Rightarrow \bold{DE = \sqrt{51}\ units}[/tex]
Please help me with this question
Answer:
0 ≤ x ≤ 10
Step-by-step explanation:
The domain of f(x) is the set of values of x for which the function is defined. Here, the square root function is only defined for non-negative arguments, so we require ...
-x^2 +10x ≥ 0
x(10 -x) ≥ 0
The two factors in this product will both be positive only for values ...
0 ≤ x ≤ 10 . . . . the domain of f(x)
THE PRICE OF AN ITEM FROM $10 TO $17. WHAT WAS THE PERCENT INCREASE IN THE PRICE OF THE ITEM?
Answer:
70%
Step-by-step explanation:
The method to find out percentage increase is by subtracting the original price from the increased price and making it into a fractional form with the denominator as 10 (out of 100%). So it results to this.
(original price - increased price) / 10
(17 - 10) / 10 = 7/10
7/10 can be converted from its fractional form to 70% i.e.its percentage.
Hope this helps and please mark as the brainliest.
Suppose that the height (in centimeters) of a candle is a linear function of the amount of time (in hours) it has been burning. After 9 hours of burning, a candle has a height of 25.4 centimeters. After 23 hours of burning, its height is 19.8 centimeters. What is the height of the candle after 22 hours?
Answer:
Suppose that the height (in centimeters) of a candle is a linear function of
the amount of time (in hours) it has been burning.
After 11 hours of burning, a candle has a height of 23.4 centimeters.
After 30 hours of burning, its height is 12 centimeters.
What is the height of the candle after 13 hours?
:
Assign the given values as follows:
x1 = 11; y1 = 23.4
x2 = 30; y2 = 12
:
Find the slope using: m = %28y2-y1%29%2F%28x2-x1%29
m = %2812-23.4%29%2F%2830-11%29 = %28-11.4%29%2F19
:
Find the equation using the point/slope formula: y - y1 = m(x - x1)
y - 23.4 = -11.4%2F19(x - 11)
y - 23.4 = -11.4%2F19x + 125.4%2F19
y = -11.4%2F19x + 125.4%2F19 + 23.4
y = -11.4%2F19x + 125.4%2F19 + 23.4
y = -11.4%2F19x + 125.4%2F19 + 444.6%2F19
y = -11.4%2F19x + 570%2F19
y = -11.4%2F19x + 30, is the equation
:
What is the height of the candle after 13 hours?
x = 13
y = -11.4%2F19(13) + 30
y = -148.2%2F19 + 30
y = -7.8 + 30
y = 22.2 cm after 13 hrs
Solve for y:1(y+3)=2(y+−4)+−7
Answer:
[tex]\large \boxed{{y=18}}[/tex]
Step-by-step explanation:
[tex]1(y+3)=2(y+-4)+- 7[/tex]
Expand brackets.
[tex]y+3=2y-8+- 7[/tex]
Simplify.
[tex]y+3=2y-15[/tex]
Add -y and 15 on both sides.
[tex]y+3-y+15=2y-15-y+15[/tex]
Simplify.
[tex]3+15=2y-y[/tex]
[tex]18=y[/tex]
Answer:
18
Step-by-step explanation:
● 1 (y+3) = 2 (y+(-4) )+ (-7)
When you multiply by 1 you get the same result.
● y+3 = 2 (y+(-4))+(-7)
When you have a + sign with a - sign write -.
● y+3 = 2(y-4)-7
Multiply 2 by (y-4) and simplify
● y+3 = (2y-8)-7
● y+3 = 2y -8-7
● y+3 = 2y -15
Add 15 to both sides
● y +3+15 = 2y-15 +15
● y + 18 = 2y
Sibstract y from both sides
● y +18 - y = 2y -y
● 18 = y
I NEED HELP WITH THESE 4 ASAP
Answer:
I'm confused by this. What do they mean by prove?
Step-by-step explanation:
The length of a rectangle is twice its width.
If the area of the rectangle is 200 yd?, find its perimeter.
Answer:
The answer is 60cmStep-by-step explanation:
Perimeter of a rectangle = 2l + 2w
Area of rectangle = l × w
where
l is the length
w is the width
From the question
The length is twice its width is written as
l = 2w
Substitute this into the formula for finding the area of the rectangle
Area = 200 yd²
200 = 2w²
Divide both sides by 2
w² = 100
Find the square root of both sides
width = 10cm
Substitute this value into l = 2w
That's
l = 2(10)
length = 20cm
Perimeter of the rectangle is
2(20) + 2(10)
= 40 + 20
= 60cmHope this helps you
Lisa built a rectangular flower garden that is 4 meters wide and has a perimeter of 26 meters.
What is the length of Lisa's flower garden?
Answer:
9 m
Step-by-step explanation:
Given that
Width of rectangular flower garden, w = 4 m
Perimeter of rectangular flower garden, p = 26 m
To find:
Length of Lisa's flower garden = ?
Solution:
First of all, let us understand perimeter, length and width of a rectangle.
Let ABCD be a rectangle. Please refer to the attached image.
Opposite sides of a rectangle are equal to each other.
AB = CD = Length
Let the length be [tex]l[/tex] m.
BC = DA = Width = 4 m
Perimeter of a closed image is equal to the sum of all the sides of the image.
So, perimeter of ABCD:
[tex]p = AB + BC + CD + DA \\\Rightarrow \bold{ p = 2 \times (Length +Width)}[/tex]
[tex]26 = 2 \times (l +4)\\\Rightarrow 2l =26-8\\\Rightarrow \bold{l = 9 m}[/tex]
i need help asap please
Answer:
[tex]x = -\frac{3}{2}[/tex] or [tex]x = 1[/tex]
Step-by-step explanation:
Using the zero product property, first step is to set the given equation, [tex] 2x^2 + x - 1 = 2 [/tex] , to zero. Then factorise the left side.
Thus,
[tex] 2x^2 + x - 1 = 2 [/tex]
Subtract 2 from both sides
[tex] 2x^2 + x - 1 - 2 = 2 - 2 [/tex]
[tex] 2x^2 + x - 3 = 0 [/tex]
Factorise the left side
[tex] 2x^2 + 3x - 2x - 3 = 0 [/tex]
[tex] x(2x + 3) - 1(2x + 3) = 0 [/tex]
[tex] (x - 1)(2x + 3) = 0 [/tex]
Find the solution
[tex] x - 1 = 0 [/tex]
Or
[tex]2x + 3 = 0[/tex]
[tex] x = 1 [/tex]
Or
[tex]2x + 3 = 0[/tex]
[tex]2x = -3[/tex]
[tex]x = -\frac{3}{2}[/tex]
The answer is: [tex] x = 1 [/tex] or [tex]x = -\frac{3}{2}[/tex]
log 7 (x^2 + 11) = log 7 15
Answer:
x = ±2
Step-by-step explanation:
log 7 (x^2 + 11) = log 7 15
We know that log a ( b) = log a(c) means b =c
x^2 + 11 = 15
Subtract 11 from each side
x^2 = 15-11
x^2 =4
Take the square root of each side
sqrt(x^2) =±sqrt(4)
x = ±2
If an image of a triangle is congruent to the pre-image, what is the scale factor of the dilation? 0.1 1 10
Answer:
1
Step-by-step explanation: diliation is like multiplilcation if you were to do 3*1 =3. simply congruent means all sides and angles are the same.
Given that the image and the preimage of the triangle are congruent, their
dimensions are the same.
The scale factor of dilation of an image of a triangle that is congruent to the pre-image is; 1Reasons:
Let ΔABC represent the preimage, and let ΔA'B'C' represent the image.
Given that the image and the preimage are congruent, we have;
AB ≅ A'B'
BC ≅ B'C'
AC ≅ A'C'
By definition of congruency, we have;
AB = A'B'
BC = B'C'
AC = A'C'
The scale factor of dilation is given as follows;
[tex]\displaystyle Scale \ factor = \mathbf{ \frac{A'B'}{AB}} = \frac{AB}{AB} = 1[/tex]Therefore;
If the image is congruent to the pre-image, the scale factor of dilation is; 1Learn more about dilation transformation here:
https://brainly.com/question/5453159
Complete parts (a) through (c) below.
(a) Determine the critical value(s) for a right-tailed test of a population mean at the alpha = 0.10 level of significance with 15 degrees of freedom.
(b) Determine the critical value(s) for a left-tailed test of a population mean at the alpha = 0.01 level of significance based on a sample size of n = 20.
(c) Determine the critical value(s) for a two-tailed test of a population mean at the alpha = 0.05 level of significance based on a sample size of n = 14.
Answer:
(a) 1.341
(b) -2.539
(c) -2.160 and 2.160
Step-by-step explanation:
(a) We have to find the critical value(s) for a right-tailed test of a population mean at the alpha = 0.10 level of significance with 15 degrees of freedom.
Since the degrees of freedom are included here, so we will use t table here for a population mean test.
In the table there are two values given, one is the degrees of freedom and another is the value of P.
P is the level of significance at which the critical values are calculated.
So, here the degrees of freedom (n - 1) = 15 and the level of significance for a right-tailed test is 0.10, i.e. P = 10%
Now, looking in the t table with P = 10% and [tex]\nu[/tex] = 15, we get the critical value of 1.341.
(b) We have to find the critical value(s) for a left-tailed test of a population mean at the alpha = 0.01 based on a sample size of n = 20.
Since the degrees of freedom are included here, so we will use t table here for a population mean test.
In the table there are two values given, one is the degrees of freedom and another is the value of P.
P is the level of significance at which the critical values are calculated.
So, here the degrees of freedom (n - 1) = 20 - 1 = 19 and the level of significance for a left-tailed test is 0.01, i.e. P = 1%
Now, looking in the t table with P = 1% and [tex]\nu[/tex] = 19, we get the critical value of 2.539. But since it is a left-tailed test, so the critical value will be -2.539.
(c) We have to find the critical value(s) for a two-tailed test of a population mean at the alpha = 0.05 level of significance based on a sample size of n = 14.
Since the degrees of freedom are included here, so we will use t table here for a population mean test.
In the table there are two values given, one is the degrees of freedom and another is the value of P.
P is the level of significance at which the critical values are calculated.
So, here the degrees of freedom (n - 1) = 14 - 1 = 13 and the level of significance for a two-tailed test is [tex]\frac{0.05}{2}[/tex] is 0.025, i.e. P = 2.5%.
Now, looking in the t table with P = 2.5% and [tex]\nu[/tex] = 13, we get the critical value of -2.160 and 2.160 for a two-tailed test.
Kent Co. manufactures a product that sells for $60.00. Fixed costs are $285,000 and variable costs are $35.00 per unit. Kent can buy a new production machine that will increase fixed costs by $15,900 per year, but will decrease variable costs by $4.50 per unit. What effect would the purchase of the new machine have on Kent's break-even point in units?
0riginal break even point:
285000/ 60/35 = $166,250
New break even point = new fixed costs / ( selling price - variable cost/ selling price)
New break even point = 285,000 + 15,900. / ( 60-( 35-4.50)/60
300,900 / 60-30.50/60 = $612,000
The new break even point increases.
Billy has x marbles. Write an expression for the number of marbles the following have… a) Charlie has 5 more than Billy b) Danny has 8 fewer than Billy c) Eric has three times as many as Billy
Answer:
Charlie: 5 + xDanny: x - 8Eric: x × 3Quadrilateral RSTV is dilated with respect to the origin by a scale factor of 1.5 to produce quadrilateral R'S'T'V' . Vertex R is located at (6, -9). Which ordered pair represents R' after the dilation?
Answer:
(9, -13.5)
Step-by-step explanation:
It's given in the question that a quadrilateral RSTV is dilated with a scale factor of 1.5 with respect to the origin to form R'S'T'V'.
Rule for dilation is,
(x, y) → (kx, ky)
where 'k' is the scale factor.
If vertex R of the quadrilateral is (6, -9),
By the given rule of dilation,
R(6, 9) → R'[(1.5 × 6), -(1.5 × 9)]
→ R'(9, -13.5)
Therefore, Option given in bottom right (9, -13.5) will be the answer.
1+2x=6x+11 PLS HELP URGENT
Answer:
x = -5/2
Step-by-step explanation:
1+2x=6x+11
Subtract 2x from each side
1+2x-2x=6x-2x+11
1 = 4x+11
Subtract 11 from each side
1-11 = 4x
-10 =4x
Divide by 4
-10/4 = 4x/4
-5/2 =x
Answer:
[tex]\boxed{x=-\frac{5}{2}}\\[/tex]
Step-by-step explanation:
To begin, get the variable on one side of the equation - preferably the left for standard solution notation (for this equation, it is easier to place it on the right side to avoid negative values). Do this by subtracting 2x from both sides of the equation. Then, subtract 11. Finally, divide by 4 and get the answer in terms of x.
1 + 2x = 6x + 11
1 = 4x + 11
-10 = 4x
[tex]\boxed{x=-\frac{5}{2}}[/tex]
At Jefferson Middle School, eighty-two students were asked which sports they plan to participate in for the coming year. Twenty students plan to participate in track and cross country; six students in cross country and basketball; and eight students in track and basketball. Twelve students plan to participate in all three sports. A total of thirty students plan to participate in basketball, and a total of forty students plan to participate in cross country. Ten students don't plan to participate in any of the three sports. How many students plan to just participate in cross country? 2 4 40 30
Answer:
40
Step-by-step explanation:
In the question only lies the answer:
"and a total of forty students plan to participate in cross country."
Answer:
2
Step-by-step explanation:
2
Complete each equation with a number that makes it true. 5⋅______=15 4⋅______=32 6⋅______=9 12⋅______=3
Answer: blank 1: 3 Blank 2: 8 blank 3: 1.5 blank 4: 0.25
Step-by-step explanation:
5 times 8=15
4 times 8=32
6 times 1.5=9
12 times 0.25=3
The complete equation is
5⋅____3__=15
4⋅___8___=32
6⋅___1.5___=9
12⋅__0.25____=3
What is Multiplication?Multiplication is an operation that represents the basic idea of repeated addition of the same number. The numbers that are multiplied are called the factors and the result that is obtained after the multiplication of two or more numbers is known as the product of those numbers. Multiplication is used to simplify the task of repeated addition of the same number.
Multiplication Formula
The multiplication formula is expressed as, Multiplicand × Multiplier = Product; where:
Multiplicand: The first number (factor).Multiplier: The second number (factor).Product: The final result after multiplying the multiplicand and multiplier.Multiplication symbol: '×' (which connects the entire expression)5 * 3=154 * 8=326 * 1.5=912 * 0.25=3Learn more about multiplication here:
https://brainly.com/question/5992872
#SPJ2
area please it's easy plzzzzzzzzzz
a ) Now as you can see, the white region is composed of a triangle and a rectangle. This triangle has a height of 5, as it is composed of the respective blank triangles. It's base is 5 meters as well, by properties of a rectangle - which is sufficient information to solve for the area of the triangle.
Area of Triangle : 1 / 2 [tex]*[/tex] 4 [tex]*[/tex] 5 = 2 [tex]*[/tex] 5 = 10 m²
The area of this rectangle will be 3 [tex]*[/tex] 4 = 12 m², considering it's given dimensions are 3 by 4. Therefore the area of this white region will be 10 + 12 = 22 m²
b ) Now this striped region will be the remaining area, or the area of the white region subtracted from the area of the outer rectangle.
Area of Outer Rectangle : 10 [tex]*[/tex] 4 = 40 m²,
Area of Striped Region : 40 - 22 = 18 m²
Calculate, correct to one decimal plice
the acute angle between the lines
3x - 4y + 5 = 0 and 2x + 3y -1 = 0
A. 70.69
B. 50.2
C. 39.8
D. 19.4
Answer:
A. 70.69 is the correct answer.
Step-by-step explanation:
Given:
Two lines:
[tex]3x - 4y + 5 = 0 \\2x + 3y -1 = 0[/tex]
To find:
Angle between the two lines = ?
Solution:
Acute Angle between two lines can be found by using the below formula:
[tex]tan \theta = |\dfrac{(m_1 - m_2)}{ (1 + m_1m_2)}|[/tex]
Where [tex]\theta[/tex] is the acute angle between two lines.
[tex]m_1, m_2[/tex] are the slopes of two lines.
Slope of a line represented by [tex]ax+by+c=0[/tex] is given as:
[tex]m = -\dfrac{a}{b }[/tex]
So,
[tex]m_1 = -\dfrac{3}{- 4} = \dfrac{3}{4}[/tex]
[tex]m_2 = -\dfrac{2}{ 3}[/tex]
Putting the values in the formula:
[tex]tan \theta = |\dfrac{(\dfrac{3}{4}- (-\dfrac{2}{3}))}{ (1 + \dfrac{3}{4}\times (-\dfrac{2}{3 }))}|\\\Rightarrow tan \theta = |\dfrac{\dfrac{3}{4}+\dfrac{2}{3}}{ (1 -\dfrac{1}{2})}|\\\Rightarrow tan \theta = |\dfrac{\dfrac{17}{12}}{ \dfrac{1}{2}}|\\\Rightarrow tan \theta = \dfrac{17}{6}\\\Rightarrow \theta = tan^{-1}(\frac{17}{6})\\\Rightarrow \theta = \bold{70.69^\circ}[/tex]
So, correct answer is A. 70.69
How many pepperoni pizzas did they buy if they bought 6 cheese pizzas
Answer:
Question is incomplete but use below
Step-by-step explanation:
you can do total = (price of cheese pizza) ( amount of cheese pizzas bought)+(price of pepperoni pizza) ( amount of pepperoni pizzas bought)
The graph of the function f(x) = (x − 3)(x + 1) is shown.
On a coordinate plane, a parabola opens up. It goes through (negative 1, 0), has a vertex at (1, negative 4), and goes through (3, 0).
Which describes all of the values for which the graph is positive and decreasing?
all real values of x where x < −1
all real values of x where x < 1
all real values of x where 1 < x < 3
all real values of x where x > 3
Answer:
x < -1
Step-by-step explanation:
Since the parabola opens upward, it is positive and decreasing where the left branch is above the x-axis: all points to the left of x=-1.
all real values of x where x < -1
Evaluate the expresión 6c-d when c=2 and d=10 I need help?
Answer:
the answer is 18
Step-by-step explanation:
8 is the answer
the angle theta is in the second quadrant and cos theta = -2/√29 determine possible coordinates for point P on the terminal arm of theta a. (2,5) b. (-2,√29) c. (-5,2) d. (-2,5)
[tex] \cos(\theta)=-\frac{2}{\sqrt{29}}[/tex] and $\theta$ lies in $2^{\text{th}}$ quadrant.
where, $x-$ coordinate is negative, and $y-$ coordinate is positive
so it can't a.
now, cosine means, side adjacent over the hypotenuse, in Cartesian plane, that will be $x-$ coordinate over the distance from origin.
Assume the triangle , with base $2$ units and hypotenuse $\sqrt{29}$ and it's in second quadrant. (so [tex] \cos(\theta)=-\frac{2}{\sqrt{29}}[/tex])
now, the leftmost point on $x-$ axis is , obviously $(-2,0)$
and by Pythagoras theorem, we can find the perpendicular side, that will be $y^2=(\sqrt{29})^2-(2)^2\implies y=5$
so the coordinates of the upper vertex is $(-2,5)$, each point lying on this "ray" should have equal ratio of respective coordinates. i.e. $\frac25=\left|\frac xy\right| $
and it should lie on second quadrant, so $x<0 \, y>0$
Option d satisfies this.
Which of the following is the graph of the quadratic parent function
This is the graph of y = x^2. It is a parabola that opens upward and has its vertex at the origin. Applying various transformations to the parent function will allow us to produce any parabolic graph we want. In effect, the parent function is like the most basic building block.
If the area of the square is A(s) = s², find the formula for the area as a function of time, and then determine A(s(3)).
A(t) = 100t^2 + 500t + 625
3,025 square pixels
Answer:
A(t) equals 100t²+ 500t + 625.
The area of the square image after 3 seconds is 3,025 square pixels.
Cases Prudence has a special (cubic) die. The values on its face are the integers from 1 to 6, but they are not arranged ae in a normal die. When Prudence first tosses the die, the sum of the values on the four side faces is 15. In her second toss, the sum of these values is 12. Find what value appears in the face opposite 6 on Prudence’s special die. (Hint: what are possible values for the top and bottom face when the sum of the side faces is 12).
Answer: 3
Step-by-step explanation:
first, we know that:
1 + 2 + 3 + 4 +5 +6 = 21
Now, which two numbers we should take out in order to have 15?
we can remove the 2 and the 4, or the 1 and the 5.
so here we have two possibilities, 2 and 4 are opposite, or 1 and 5 are opposite (they are located in opposite faces of the die)
in the other arrange, we have that removing two numbers we should get 12.
in order to reach 12, we should remove two numbers that add 9 together.
those can be 4 and 5, or 6 and 3.
Now, notice that in the first restriction we have that:
Or 2 and 4 are opposite,
or 1 and 5 are opposite.
So 4 and 5 can never be opposite, so we should have that 6 and 3 are opposite.
Then we can affirm that the value that appears in the face opposite to the 6, is the 3.
Please help me understand this question!
Answer:
C
Step-by-step explanation:
The first sentence basically sets up the equation which is given, so we can read it for knowledge but it is not crucial to solve the problem.
We start here:
we are given: $120 - 0.2($120)
= 120 - (0.2)(120) (factoring out 120)
= 120 (1 - 0.2)
= 120 (0.8)
= 0.8 (120) (answer c)
PLS HELP !!
Define two terms, each containing the variables x and y, with exponents on each. (For Example : 10x³y–⁵)Find the quotient of the two terms. Explain step-by-step how you found the quotient
Answer:
Step-by-step explanation:
Two such terms are 7x^3*y^9 and -3x*y^5
Their quotient is
7x^3*y^9
--------------
-3x*y^5
This can be simplified as follows:
The numerical coefficients become -7/3.
x^3/x = x^3*x^1 = x^(3 - 1) = x^2 (we subtract the exponent of x in the denominator from the exponent of x in the numerator).
Next, y^9*y^5 = y^4.
The quotient in final reduced form is then (-7/3)x^2*y^4
What is the correct alternate hypothesis if the pilots' average gain score due to alcohol is indicated in the hypothesis statement by
Answer:
Ha : Pilots average gain score not due to alcohol.
Step-by-step explanation:
Null hypothesis is a statement that is to be tested against the alternative hypothesis and then decision is taken whether to accept or reject the null hypothesis. Here the null hypothesis is that pilots average gain due to alcohol. Then if there is no alcohol what is pilots average gain. This thing will be tested as alternative hypothesis.