Which property of equality was used to solve this equation? x − 5 = -14 x − 5 + 5 = -14 + 5 x = -9 A. addition property of equality B. subtraction property of equality C. multiplication property of equality D. division property of equality

Answers

Answer 1

Answer:

A

Step-by-step explanation:

In the second step, they added 5 to both sides to get rid of the -5 on the left side. Since the same thing was done to both sides (addition), the answer is the addition property of equality.

Answer 2

Answer:

Addition property of equality

Step-by-step explanation:

The equation is like:

=> x - 5 = -14

=> x - 5 + 5 = -14 + 5

=> x = -9

Since, we add 5 to both sides to solve for "x", the answer is "Addition Property of Equality".

Hope this helps.


Related Questions

A research center claims that ​% of adults in a certain country would travel into space on a commercial flight if they could afford it. In a random sample of adults in that​ country, ​% say that they would travel into space on a commercial flight if they could afford it. At ​, is there enough evidence to reject the research

Answers

Complete Question

A research center claims that ​30% of adults in a certain country would travel into space on a commercial flight if they could afford it. In a random sample of 700 adults in that​ country, ​34% say that they would travel into space on a commercial flight if they could afford it. At ​, is there enough evidence to reject the research center's claim

Answer:

Yes there is  sufficient evidence to reject the research center's claim.

Step-by-step explanation:

From the question we are told that

     The population proportion is  p = 0.30

      The sample proportion is  [tex]\r p = 0.34[/tex]

       The  sample size is  n = 700

The null hypothesis is  [tex]H_o : p = 0.30[/tex]

 The  alternative hypothesis is  [tex]H_a : p \ne 0.30[/tex]

Here we are going to be making use of  level of significance  =  0.05 to carry out this test

Now we will obtain the critical value of  [tex]Z_{\alpha }[/tex] from the normal distribution table , the value is  [tex]Z_{\alpha } = 1.645[/tex]

 Generally the test statistics is mathematically represented as

            [tex]t = \frac{ \r p - p }{ \sqrt{ \frac{ p (1-p)}{n} } }[/tex]

substituting values

              [tex]t = \frac{ 0.34 - 0.30 }{ \sqrt{ \frac{ 0.30 (1-0.30 )}{ 700} } }[/tex]

              [tex]t = 2.31[/tex]

Looking at the values of t  and  [tex]Z_{\alpha }[/tex] we see that [tex]t > Z_{\alpha }[/tex] hence the null hypothesis is rejected

 Thus we can conclude that there is  sufficient evidence to reject the research center's claim.

Findℒ{f(t)}by first using a trigonometric identity. (Write your answer as a function of s.)f(t) = 12 cost −π6

Answers

Answer:

[tex]L(f(t)) = \dfrac{6}{S^2+1} [\sqrt{3} \ S +1 ][/tex]

Step-by-step explanation:

Given that:

[tex]f(t) = 12 cos (t- \dfrac{\pi}{6})[/tex]

recall that:

cos (A-B) = cos AcosB + sin A sin B

[tex]f(t) = 12 [cos\ t \ cos \dfrac{\pi}{6}+ sin \ t \ sin \dfrac{\pi}{6}][/tex]

[tex]f(t) = 12 [cos \ t \ \dfrac{3}{2}+ sin \ t \ sin \dfrac{1}{2}][/tex]

[tex]f(t) = 6 \sqrt{3} \ cos \ (t) + 6 \ sin \ (t)[/tex]

[tex]L(f(t)) = L ( 6 \sqrt{3} \ cos \ (t) + 6 \ sin \ (t) ][/tex]

[tex]L(f(t)) = 6 \sqrt{3} \ L [cos \ (t) ] + 6\ L [ sin \ (t) ][/tex]

[tex]L(f(t)) = 6 \sqrt{3} \dfrac{S}{S^2 + 1^2}+ 6 \dfrac{1}{S^2 +1^2}[/tex]

[tex]L(f(t)) = \dfrac{6 \sqrt{3} +6 }{S^2+1}[/tex]

[tex]L(f(t)) = \dfrac{6( \sqrt{3} \ S +1 }{S^2+1}[/tex]

[tex]L(f(t)) = \dfrac{6}{S^2+1} [\sqrt{3} \ S +1 ][/tex]

The cost of a daily rental car is as follows: The initial fee is $39.99 for the car, and it costs $0.20 per mile. If Julie's final bill was $100.00 before taxes, how many miles did she drive?

Answers

Answer:

300.05 miles

Step-by-step explanation:

initial fee= $39.99

final bill = $ 100

cost =$ 0.20 per mile

remaining amount = $ 60.01

solution,

she drive = remaining amount / cost

=60.01/0.20

=300.05 miles

Answer:

500 miles

Step-by-step explanation:

Let us use cross multiplication to find the unknown amount.

Given:

1) Cost for 1 mile=$0.20

2)Cost for x miles=$100

Solution:

No of miles                             Cost

1) 1                                             $0.20

2)x                                             $100

By cross multiplying,

100 x 1= 0.20x

x=100/0.20

x=500 miles

Thank you!

The cost, C, in United States Dollars ($), of cleaning up x percent of an oil spill along the Gulf Coast of the United States increases tremendously as x approaches 100. One equation for determining the cost (in millions $) is:

Answers

Complete Question

On the uploaded image is a similar question that will explain the given question

Answer:

The value of k is  [tex]k = 214285.7[/tex]

The percentage  of the oil that will be cleaned is [tex]x = 80.77\%[/tex]

Step-by-step explanation:

From the question we are told that

   The  cost of cleaning up the spillage is  [tex]C = \frac{ k x }{100 - x }[/tex]  [tex]x \le x \le 100[/tex]

     The  cost of cleaning x =  70% of the oil is  [tex]C = \$500,000[/tex]

   

Now at  [tex]C = \$500,000[/tex] we have  

       [tex]\$ 500000 = \frac{ k * 70 }{100 - 70 }[/tex]

       [tex]\$ 500000 = \frac{ k * 70 }{30 }[/tex]

      [tex]\$ 500000 = \frac{ k * 70 }{30 }[/tex]

      [tex]k = 214285.7[/tex]

Now  When  [tex]C = \$900,000[/tex]

       [tex]x = 80.77\%[/tex]

       

 

5x+4(-x-2)=-5x+2(x-1)+12

Answers

Answer:

x=9/2

Step-by-step explanation:

Let's solve your equation step-by-step.

5x+4(−x−2)=−5x+2(x−1)+12

Step 1: Simplify both sides of the equation.

5x+4(−x−2)=−5x+2(x−1)+12

5x+(4)(−x)+(4)(−2)=−5x+(2)(x)+(2)(−1)+12 (Distribute)

5x+−4x+−8=−5x+2x+−2+12

(5x+−4x)+(−8)=(−5x+2x)+(−2+12) (Combine Like Terms)

x+−8=−3x+10

x−8=−3x+10

Step 2: Add 3x to both sides.

x−8+3x=−3x+10+3x

4x−8=10

Step 3: Add 8 to both sides.

4x−8+8=10+8

4x=18

Step 4: Divide both sides by 4.

4x/4=18/4

x=9/2

Use the two highlighted points to find the
equation of a trend line in slope-intercept
form.

Answers

Answer: y=(4/3)x+2/3

Step-by-step explanation:

Slope-intercept form is expressed as y=mx+b

First, find the slope (m):

m= rise/run or vertical/horizontal or y/x (found between the highlighted points)

m = 4/3

Second, find b:

Use one of the highlighted points for (x, y)

2=4/3(1)+b

6/3=4/3+b

2/3=b

b=2/3

Plug it into the equation:

You get y=(4/3)x+2/3 :)

find the perimeter of a square of sides 10.5cm​

Answers

Answer:

Perimeter = 42 cm

Step-by-step explanation:

A square has all equal sides so you would just add 10.5 + 10.5 + 10.5 + 10.5 to get 42 cm.

Answer:

42 cm

Step-by-step explanation:

Side of square = 10.5 cm (given)

Perimeter of square = Side X 4

                                  = 10.5 X 4

                                  = 42 cm

HOPE THIS HELPED YOU !

:)

Let X denote the day she gets enrolled in her first class and let Y denote the day she gets enrolled in both the classes. What is the distribution of X

Answers

Answer:

X is uniformly distributed.

Step-by-step explanation:

Uniform Distribution:

This is the type of distribution where all outcome of a certain event have equal likeliness of occurrence.

Example of Uniform Distribution is - tossing a coin. The probability of getting a head is the same as the probability of getting a tail. The have equal likeliness of occurrence.

solve for x: -3(x + 1)= -3(x + 1) - 5

Answers

Answer:

No solution : 0= -5

Step-by-step explanation:

[tex]-3\left(x+1\right)=-3\left(x+1\right)-5\\\\\mathrm{Add\:}3\left(x+1\right)\mathrm{\:to\:both\:sides}\\\\-3\left(x+1\right)+3\left(x+1\right)=-3\left(x+1\right)-5+3\left(x+1\right)\\\\\mathrm{Simplify}\\\\0=-5\\\\\mathrm{The\:sides\:are\:not\:equal}\\\\\mathrm{No\:Solution}[/tex]

Question 1: A triangle has sides with lengths 5, 6, and 7. Is the triangle right, acute, or obtuse?
A)Right
B)Obtuse
C)Can't be determined
D) Acute

Question 2: A 15-foot statue casts a 20-foot shadow. How tall is a person who casts a 4-foot-long shadow?
A)0.33 feet
B)3.75 feet
C)3 feet
D)5 feet

Question 3: A triangle has sides with lengths 17, 12, and 9. Is the triangle right, acute, or obtuse?
A)Acute
B)Right
C)Can't be determined
D)Obtuse

Question 4: Two friends are standing at opposite corners of a rectangular courtyard. The dimensions of the courtyard are 12 ft. by 25 ft. How far apart are the friends?
A)21.34 ft.
B)21.93 ft.
C)27.73 ft.
D)19.21 ft.

Answers

Answer:

Question 1 = D) Acute

Question 2 = C)3 feet

Question 3 = D) Obtuse

Question 4 = C)27.73 ft.

Step-by-step explanation:

Question 1: A triangle has sides with lengths 5, 6, and 7. Is the triangle right, acute, or obtuse?

In order to be able to accurately classify that a triangle with 3 given sides is either a right , acute or obtuse angle, we use the Pythagoras Theorem

Where:

If a² + b² = c² = Right angle triangle

If a² +b² > c² = Acute triangle.

If a² +b² < c² = Obtuse triangle.

It is important to note that the length ‘‘c′′ is always the longest.

Therefore, for the above question, we have lengths

5 = a, 6 = b and c = 7

a² + b² = c²

5² + 6² = 7²

25 + 36 = 49

61 = 49

61 ≠ 49, Hence 61 > 49

Therefore, this is an Acute Triangle

Question 2: A 15-foot statue casts a 20-foot shadow. How tall is a person who casts a 4-foot-long shadow?

This is question that deals with proportion.

The formula to solve for this:

Height of the statue/ Length of the shadow of the person = Height of the person/ Length of the shadow of the person

Height of the statue = 15 feet

Length of the shadow of the person = 20 feet

Height of the person = unknown

Length of the shadow of the person = 4

15/ 20 = Height of the person/4

Cross Multiply

15 × 4 = 20 × Height of the person

Height of the person = 15 × 4/20

= 60/20

Height of the person = 3 feet

Therefore, the person is 3 feet tall.

Question 3: A triangle has sides with lengths 17, 12, and 9. Is the triangle right, acute, or obtuse?

In order to be able to accurately classify that a triangle with 3 given sides is either a right , acute or obtuse angle, we use the Pythagoras Theorem

Where:

If a² + b² = c² = Right angle triangle

If a² +b² > c² = Acute triangle.

If a² +b² < c² = Obtuse triangle.

It is important to note that the length ‘‘c′′ is always the longest.

Therefore, for the above question, we have lengths 17, 12, 9

9 = a, 12 = b and c = 17

a² + b² = c²

9² + 12² = 17²

81 + 144 = 289

225 = 289

225 ≠ 289

225 < 289

Hence, This is an Obtuse Triangle.

Question 4: Two friends are standing at opposite corners of a rectangular courtyard. The dimensions of the courtyard are 12 ft. by 25 ft. How far apart are the friends?

To calculate how far apart the two friends are we use the formula

Distance = √ ( Length² + Breadth²)

We are given dimensions: 12ft by 25ft

Length = 12ft

Breadth = 25ft

Distance = √(12ft)² + (25ft)²

Distance = √144ft²+ 625ft²

Distance = √769ft²

Distance = 27.730849248ft

Approximately ≈27.73ft

Therefore, the friends are 27.73ft apart.

Find a cubic polynomial with integer coefficients that has $\sqrt[3]{2} + \sqrt[3]{4}$ as a root.

Answers

Find the powers [tex]a=\sqrt{2}+\sqrt{3}[/tex]

$a^{2}=5+2 \sqrt{6}$

$a^{3}=11 \sqrt{2}+9 \sqrt{3}$

The cubic term gives us a clue, we can use a linear combination to eliminate the root 3 term $a^{3}-9 a=2 \sqrt{2}$ Square $\left(a^{3}-9 a\right)^{2}=8$ which gives one solution. Expand we have $a^{6}-18 a^{4}-81 a^{2}=8$ Hence the polynomial $x^{6}-18 x^{4}-81 x^{2}-8$ will have a as a solution.

Note this is not the simplest solution as $x^{6}-18 x^{4}-81 x^{2}-8=\left(x^{2}-8\right)\left(x^{4}-10 x^{2}+1\right)$

so fits with the other answers.

Answer:

[tex]y^3 -6y-6[/tex]

88 feet/second = 60 miles/hour. How many feet per second is 1 mile/hour? (Hint: divide both sides of the equation
by the same amount.)
Round to the nearest thousandth.
One mile per hour is equivalent to
ao feet/second

Answers

Answer: 1ft/sec = 0.618 mi/hr

Explanation:

88 ft/sec = 60 mi/hr
88/88 ft/sec = 60/88 mi/hr (divide both sides by 88)
1 ft/sec = 60/88 mi/hr
1 ft/sec = 15/22 mi/hr
1 ft/sec = 0.681 mi/hr

Hey market sales six cans of food for every seven boxes of food the market sold a total of 26 cans and boxes today how many of each kind did the market sale

Answers

Answer:

It sold 14 cans boxes of food and 12 cans of food.

Step-by-step explanation:

The factor for the food cans depend upon every seven food boxes .So, the same no. of sets of food cans will be sold.

Let the no. of sets of food boxes be x.

According to the question,

6x+7x=26

13x=26

x=26/13

x=2

No. of food cans =6x=6×2=12 cans

No. of food boxes=7x=7×2=14 boxes

Please mark brainliest ,if it is truly the best ! Thank you!

Time

(minutes)

Water

(gallons)

1

16.50

1.5

24.75

2

33

find the constant of proportionality for the second and third row

Answers

Answer:

16.50

Step-by-step explanation:

Constant of proportionality = no of gallons of water per 1 minute.

In the first row, we have 16.50 gallons of water per 1 minute.

In the 2nd row, we have 24.75 gallons of water in 1.5 minutes. In 1 minute, we will have 24.75 ÷ 1.5 = 16.50 gallons

In the 3rd row, we have 33 gallons in 2 minutes. In 1 minute, we will have 33 ÷ 2 = 16.50 gallons.

We can see that there seems to be the same constant of proportionality for the 2nd and 3rd row, which is 16.50.

Thus, a relationship between gallons of water (w) and time (t), considering the constant, 16.50, can be written as: [tex] w = 16.50t [/tex]

This means the constant of proportionality, 16.50, is same for all rows.

Foram prescritos 500mg de dipirona para uma criança com febre.Na unidade tem disponivel ampola de 1g/2ml.Quantos g vão ser administrados no paciente

Answers

De acordo com a disponibilidade da unidade, há apenas a seguinte dosagem: 1g/2mL - ou seja, uma grama de dipirona a cada 2mL

O enunciado está meio mal formulado, pois é dito que foram prescritos 500mg de dipirona e é essa quantidade de farmaco que a criança tem que tomar. Deseja-se saber quantos mL deverao ser administrados.

Fazendo a classica regra de 3, podemos chegar no volume desejado:

(atentar que 500mg = 0,5g)

     g               mL

     1    ---------   2

    0,5  ---------  X    

1 . X = 0,5 . 2

X = 1mL

one third multiplied by the sum of a and b

Answers

Answer:

1/3(a+b)

hope it helps :>

a+b/3
This is the answer of ur question

Use Lagrange multipliers to minimize the function subject to the following two constraints. Assume that x, y, and z are nonnegative. Question 18 options: a) 192 b) 384 c) 576 d) 128 e) 64

Answers

Complete Question

The complete question is shown on the first uploaded image

Answer:

Option C is the correct option

Step-by-step explanation:

From the question we are told that

   The equation is  [tex]f (x, y , z ) = x^2 +y^2 + z^2[/tex]

    The constraint is  [tex]P(x, y , z) = x + y + z - 24 = 0[/tex]

Now using Lagrange multipliers  we have that  

   [tex]\lambda = \frac{ \delta f }{ \delta x } = 2 x[/tex]  

   [tex]\lambda = \frac{ \delta f }{ \delta y } = y[/tex]  

   [tex]\lambda = \frac{ \delta f }{ \delta z } = 2 z[/tex]

=>       [tex]x = \frac{ \lambda }{2}[/tex]

          [tex]y = \frac{ \lambda }{2}[/tex]

         [tex]z = \frac{ \lambda }{2}[/tex]

From the constraint  we have

      [tex]\frac{\lambda }{2} + \frac{\lambda }{2} + \frac{\lambda }{2} = 24[/tex]

=>   [tex]\frac{3 \lambda }{2} = 24[/tex]

=>   [tex]\lambda = 16[/tex]

substituting for x, y, z

=>   x =  8

=>  y =  8

=>   z =  8        

Hence

    [tex]f (8, 8 , 8 ) = 8^2 +8^2 + 8^2[/tex]

    [tex]f (8, 8 , 8 ) = 192[/tex]

 

Consider population data with μ = 30 and σ = 3. (a) Compute the coefficient of variation. (b) Compute an 88.9% Chebyshev interval around the population mean. Lower Limit Upper Limit

Answers

Answer:

A. 10%

B. Lower limit= 21

Upper limit = 39

Step-by-step explanation:

Mean = 30

SD = 3

a. COV = SD/|x| × 100

= 3/30 × 100

= 10%

= 0.1

B. For 88.9 chevbychev interval:

= (1 - 1/K²) = 0.889

= 1/K² = 1 - 0.889

= 1/K² = 0.111

= K² = 1/0.111

= K² = 9

= K = √9

K = 3

Lower limit = 30 - 3(3)

Lower limit = 21

Upper limit = 30 + 3(3)

Upper limit = 39

Therefore lower limit is 21 and upper limit is 39

10) How many possible outfit combinations come from six shirts, three
slacks, and five ties? *
A 15
B 18
C 30
D 90

Answers

Answer:

The answer is D)90

Hope I helped

Max believes that the sales of coffee at his coffee shop depend upon the weather. He has taken a sample of 5 days. Below you are given the results of the sample.
Cups of Coffee Sold Temperature
350 50
200 60
210 70
100 80
60 90
40 100
A. Which variable is the dependent variable?
B. Compute the least squares estimated line.
C. Compute the correlation coefficient between temperature and the sales of coffee.
D. Predict sales of a 90 degree day.

Answers

Answer:

1. cups of coffee sold

2.Y = 605.7 - 5.943x

3. -0.952

4. 70.84

Step-by-step explanation:

1. the dependent variable in this question is the cups of coffee sold

2. least square estimation line

Y = a+bx

we have y as the cups of coffee sold

x as temperature.

first we will have to solve for a and then b

∑X = 450

∑Y = 960

∑XY = 61600

∑X² = 35500

∑Y² = 221800

a = ∑y∑x²-∑x∑xy/n∑x²-(∑x)²

a = 960 * 35500-450*61600/6*35500-450²

a = 6360000/10500

= 605.7

b = n∑xy - ∑x∑y/n∑x²-(∑x)²

= 6*61600 - 450*960/6*35500 - 450²

= -5.943

the regression line

Y = a + bx

Y = 605.7 - 5.943x

3. we are to find correlation coefficient

r = n∑xy - ∑x∑y multiplied by√(n∑x²-(∑x)² * (n∑y² - (∑y)²)

= 6*61600 -960*450/√(6*35500 - 450²)*(6*221800 - 960²)

=-62400/√4296600000

= -62400/65548.5

= -0.952

4. we have to predict sales of a 90 degree day fro the regression line

Y = 605.7 - 5.943x

y = 605.7 - 5.943(90)

y = 605.7 - 534.87

= 70.84

I NEED this answered within the next 30 minutes! Please it is simple. There is an error in this. What is it?

Answers

Answer:

(a). x = 80°

(b). x = 7.2 units

Step-by-step explanation:

Angle formed between the tangents from a point outside the circle measure the half of the difference of intercepted arcs.

(a). Here the intercepted arcs are,

    Measure of major arc = 360° - 100°

                                        = 260°

    Measure of minor arc = 100°

   x° = [tex]\frac{1}{2}[m(\text{Major arc})-m(\text{Minor arc})][/tex]

       = [tex]\frac{1}{2}(260-100)[/tex]

    x = 80°

(b). If a secant and tangent are drawn form a point outside the circle, then square of the measure of tangent is equal to the product of the measures of the secant segment and and its external segment.

x² = 4(4 + 9)

x² = 4 × 13

x² = 52

x = √52

x = 7.211 ≈ 7.2 units

Find the interest on a Principal Balance of $10,000 over the course of eight years with an interest rate of 5.5%. Do this for: Simple Interest.

Answers

Answer:

Simple Interest : $ 4400

Step-by-step explanation:

We want to calculate the interest on $ 10,000, at 5.5% interest rate per year, over a course of 8 years.

We can use the simple interest formula here, or :

I = P × r × t,

Where P is the principle amount, $ 10,000, r is the interest rate, 5.5% each year, or in decimal form 5.5 / 100 = 0.055. t is the time, 8 years.

Simple Interest : 10000 × 0.055 × 8 =  $4400.00

Then again the interest can be added to the principal amount ( $10,000 ) to receive some new amount after 8 years, which is $ 14,000. However the simple interest earned in 8 years at a rate of 5.5% should be $4400.

The simple interest earned on the amount is $4,400

Interest is the total amount that would be paid or earned from making an investment or taking a loan over a period of time.

Simple Interest  = principal x time x interest rate

principal = amount borrowed = $10,000

time = 8 years

Interest rate = 5.5%

10,000 x 0.055 x 8 = $4,400

To learn more about simple interest, please check: https://brainly.com/question/9352088?referrer=searchResults

A machine used to fill​ gallon-sized paint cans is regulated so that the amount of paint dispensed has a mean of ounces and a standard deviation of ounce. You randomly select cans and carefully measure the contents. The sample mean of the cans is ounces. Does the machine need to be​ reset? Explain your reasoning. ▼ Yes No ​, it is ▼ very unlikely likely that you would have randomly sampled cans with a mean equal to ​ounces, because it ▼ lies does not lie within the range of a usual​ event, namely within ▼ 1 standard deviation 2 standard deviations 3 standard deviations of the mean of the sample means.

Answers

Complete question is;

A machine used to fill gallon-sized paint cans is regulated so that the amount of paint dispensed has a mean of 128 ounces and a standard deviation of 0.20 ounce. You randomly select 35 cans and carefully measure the contents. The sample mean of the cans is 127.9 ounces. Does the machine need to be? reset? Explain your reasoning.

(yes/no)?, it is (very unlikely/ likely) that you would have randomly sampled 35 cans with a mean equal to 127.9 ?ounces, because it (lies/ does not lie) within the range of a usual? event, namely within (1 standard deviation, 2 standard deviations 3 standard deviations) of the mean of the sample means.

Answer:

Yes, we should reset the machine because it is unusual to have a mean equal to 127.9 from a random sample of 35 as the mean of 127.9 doesn't fall within range of a usual event with 2 standard deviations of the mean of the sample means.

Step-by-step explanation:

We are given;

Mean: μ = 128

Standard deviation; σ = 0.2

n = 35

Now, formula for standard error of mean is given as;

se = σ/√n

se = 0.2/√35

se = 0.0338

Normally, the range of values should be within 2 standard deviations of mean. In this case, normal range of values will be;

μ ± 2se = 128 ± 0.0338

This gives; 127.9662, 128.0338

So, Yes, we should reset the machine because it is unusual to have a mean equal to 127.9 from a random sample of 35 as the mean of 127.9 doesn't fall within range of a usual event with 2 standard deviations of the mean of the sample means.

Salaries of 42 college graduates who took a statistics course in college have a​ mean, ​, of . Assuming a standard​ deviation, ​, of ​$​, construct a ​% confidence interval for estimating the population mean .

Answers

Answer:

The 99% confidence interval for estimating the population mean μ is ($60,112.60, $68087.40).

Step-by-step explanation:

The complete question is:

Salaries of 42 college graduates who took a statistics course in college have a​ mean, [tex]\bar x[/tex] of, $64, 100. Assuming a standard​ deviation, σ of ​$10​,016 construct a ​99% confidence interval for estimating the population mean μ.

Solution:

The (1 - α)% confidence interval for estimating the population mean μ is:

[tex]CI=\bar x\pm z_{\alpha/2}\frac{\sigma}{\sqrt{n}}[/tex]

The critical value of z for 99% confidence interval is:

[tex]z_{\alpha/2}=z_{0.01/2}=z_{0.005}=2.57[/tex]

Compute the 99% confidence interval for estimating the population mean μ as follows:

[tex]CI=\bar x\pm z_{\alpha/2}\frac{\sigma}{\sqrt{n}}[/tex]

     [tex]=64100\pm 2.58\times\frac{10016}{\sqrt{42}}\\\\=64100+3987.3961\\\\=(60112.6039, 68087.3961)\\\\\approx (60112.60, 68087.40)[/tex]

Thus, the 99% confidence interval for estimating the population mean μ is ($60,112.60, $68087.40).

You are studying for your final exam of the semester up to this point you received 3 exam scores of 61% 62% and 86% to receive a grade of c and the class you must have an average exam score between 70% and 79% for all four exams including the final find the widest range of scores that you can get on the final exam in order to receive a grade of C for the class 63 to 100% 71 to 100% 68 to 97

Answers

There will be a total of 4 test scores including the final exam. To get a 70, the 4 tests need to equal 4 x 70 = 280 points , to be 79, they have to equal 4 x 79 = 316 points.

The 3 already done = 61 + 62 + 86 = 209 points.

The final exam needs to be between :

280 -209 = 71

316 -209 = 107. The answer would be between 71 and 100%

Transform the given parametric equations into rectangular form. Then identify the conic.

Answers

Answer:

Solution : Option B

Step-by-Step Explanation:

We have the following system of equations at hand here.

{ x = 5 cot(t), y = - 3csc(t) + 4 }

Now instead of isolating the t from either equation, let's isolate cot(t) and csc(t) --- Step #1,

x = 5 cot(t) ⇒ x - 5 = cot(t),

y = - 3csc(t) + 4 ⇒ y - 4 = - 3csc(t) ⇒ y - 4 / - 3 = csc(t)

Now let's square these two equations. We know that csc²θ - cot²θ = 1, so let's subtract the equations  as well. --- Step #2

 

( y - 4 / - 3 )² = (csc(t))²

- ( x - 5 / 1 )² = (cot(t))²  

___________________

(y - 4)² / 9 - x² / 25 = 1

And as we are subtracting the two expressions, this is an example of a hyperbola. Therefore your solution is option b.

The heat evolved in calories per gram of a cement mixture is approximately normally distributed. The mean is thought to be 100, and the standard deviation is 2. You wish to test H0: μ = 100 versus H1: μ ≠ 100 with a sample of n = 9 specimens.
A. If the acceptance region is defined as 98.5 le x- 101.5, find the type I error probability alpha.
B. Find beta for the case where the true mean heat evolved is 103.
C. Find beta for the case where the true mean heat evolved is 105. This value of beta is smaller than the one found in part (b) above. Why?

Answers

Answer:

A.the type 1 error probability is [tex]\mathbf{\alpha = 0.0244 }[/tex]

B. β  = 0.0122

C. β  = 0.0000

Step-by-step explanation:

Given that:

Mean = 100

standard deviation = 2

sample size = 9

The null and the alternative hypothesis can be computed as follows:

[tex]\mathtt{H_o: \mu = 100}[/tex]

[tex]\mathtt{H_1: \mu \neq 100}[/tex]

A. If the acceptance region is defined as [tex]98.5 < \overline x > 101.5[/tex] , find the type I error probability [tex]\alpha[/tex] .

Assuming the critical region lies within [tex]\overline x < 98.5[/tex] or [tex]\overline x > 101.5[/tex], for a type 1 error to take place, then the sample average x will be within the critical region when the true mean heat evolved is [tex]\mu = 100[/tex]

[tex]\mathtt{\alpha = P( type \ 1 \ error ) = P( reject \ H_o)}[/tex]

[tex]\mathtt{\alpha = P( \overline x < 98.5 ) + P( \overline x > 101.5 )}[/tex]

when  [tex]\mu = 100[/tex]

[tex]\mathtt{\alpha = P \begin {pmatrix} \dfrac{\overline X - \mu}{\dfrac{\sigma}{\sqrt{n}}} < \dfrac{\overline 98.5 - 100}{\dfrac{2}{\sqrt{9}}} \end {pmatrix} + \begin {pmatrix}P(\dfrac{\overline X - \mu}{\dfrac{\sigma}{\sqrt{n}}} > \dfrac{101.5 - 100}{\dfrac{2}{\sqrt{9}}} \end {pmatrix} }[/tex]

[tex]\mathtt{\alpha = P ( Z < \dfrac{-1.5}{\dfrac{2}{3}} ) + P(Z > \dfrac{1.5}{\dfrac{2}{3}}) }[/tex]

[tex]\mathtt{\alpha = P ( Z <-2.25 ) + P(Z > 2.25) }[/tex]

[tex]\mathtt{\alpha = P ( Z <-2.25 ) +( 1- P(Z < 2.25) })[/tex]

From the standard normal distribution tables

[tex]\mathtt{\alpha = 0.0122+( 1- 0.9878) })[/tex]

[tex]\mathtt{\alpha = 0.0122+( 0.0122) })[/tex]

[tex]\mathbf{\alpha = 0.0244 }[/tex]

Thus, the type 1 error probability is [tex]\mathbf{\alpha = 0.0244 }[/tex]

B. Find beta for the case where the true mean heat evolved is 103.

The probability of type II error is represented by β. Type II error implies that we fail to reject null hypothesis [tex]\mathtt{H_o}[/tex]

Thus;

β = P( type II error) - P( fail to reject [tex]\mathtt{H_o}[/tex] )

[tex]\mathtt{\beta = P(98.5 \leq \overline x \leq 101.5) }[/tex]

Given that [tex]\mu = 103[/tex]

[tex]\mathtt{\beta = P( \dfrac{98.5 -103}{\dfrac{2}{\sqrt{9}}} \leq \dfrac{\overline X - \mu}{\dfrac{\sigma}{n}} \leq \dfrac{101.5-103}{\dfrac{2}{\sqrt{9}}}) }[/tex]

[tex]\mathtt{\beta = P( \dfrac{-4.5}{\dfrac{2}{3}} \leq Z \leq \dfrac{-1.5}{\dfrac{2}{3}}) }[/tex]

[tex]\mathtt{\beta = P(-6.75 \leq Z \leq -2.25) }[/tex]

[tex]\mathtt{\beta = P(z< -2.25) - P(z < -6.75 )}[/tex]

From standard normal distribution table

β  = 0.0122 - 0.0000

β  = 0.0122

C. Find beta for the case where the true mean heat evolved is 105. This value of beta is smaller than the one found in part (b) above. Why?

[tex]\mathtt{\beta = P(98.5 \leq \overline x \leq 101.5) }[/tex]

Given that [tex]\mu = 105[/tex]

[tex]\mathtt{\beta = P( \dfrac{98.5 -105}{\dfrac{2}{\sqrt{9}}} \leq \dfrac{\overline X - \mu}{\dfrac{\sigma}{n}} \leq \dfrac{101.5-105}{\dfrac{2}{\sqrt{9}}}) }[/tex]

[tex]\mathtt{\beta = P( \dfrac{-6.5}{\dfrac{2}{3}} \leq Z \leq \dfrac{-3.5}{\dfrac{2}{3}}) }[/tex]

[tex]\mathtt{\beta = P(-9.75 \leq Z \leq -5.25) }[/tex]

[tex]\mathtt{\beta = P(z< -5.25) - P(z < -9.75 )}[/tex]

From standard normal distribution table

β  = 0.0000 - 0.0000

β  = 0.0000

The reason why the value of beta is smaller here is that since the difference between the value for the true mean and the hypothesized value increases, the probability of type II error decreases.

find the area of square whose side is 2.5 cm

Answers

Answer:

6.25

Step-by-step explanation:

2.5 *2.5=6.25

Answer:

6.25cm^2.

Step-by-step explanation:

To find the area of a square, you multiply the two sides, 2.5✖️2.5.

This gives the area of 6.25cm^2.

Hope this helped!

Have a nice day:)

|5x|=3 please help me

Answers

Answer: see below

Explanation:

|5x| = 3

5x = 3
x = 3/5

5x = -3
x = -3/5

The dot plot represents a sampling of ACT scores: dot plot titled ACT Scores with Score on the x axis and Number of Students on the y axis with 1 dot over 24, 3 dots over 26, 3 dots over 27, 5 dots over 28, 3 dots over 30, 3 dots over 32, 1 dot over 35 Which box plot represents the dot plot data? box plot titled ACT Score with a minimum of 24, quartile 1 of 25, median of 26, quartile 3 of 29, and maximum of 35 box plot titled ACT Score with a minimum of 23, quartile 1 of 25, median of 26, quartile 3 of 29, and maximum of 36 box plot titled ACT Score with a minimum of 23, quartile 1 of 27, median of 30, quartile 3 of 34, and maximum of 36 box plot titled ACT Score with a minimum of 24, quartile 1 of 27, median of 28, quartile 3 of 30, and maximum of 35

Answers

Answer:

box plot titled ACT Score with a minimum of 24, quartile 1 of 27, median of 28, quartile 3 of 30, and maximum of 35

Step-by-step explanation:

The scores of the students represented on the dot plot are:

1 dot => 24

3 dots => 26, 26, 26

3 dots => 27, 27, 27

5 dots => 28, 28, 28, 28, 28

3 dots => 30, 30, 30

3 dots => 32, 32, 32

1 dot => 35

Quickly, we can ascertain 3 values from these data points of which we can use to find out which box plot represents the dot plot data.

The minimum score = 24

The maximum score = 35

The median score is the 10th value, which is the middle value of the data point = 28

Therefore, we can conclude that: "box plot titled ACT Score with a minimum of 24, quartile 1 of 27, median of 28, quartile 3 of 30, and maximum of 35".

Other Questions
"If a customer calls his registered representative and states the following: "I just got my account statement and I see that your recommendations have lost 15% in value. Clearly, you have made unsuitable recommendations and you will be hearing from my attorney." Which statement is TRUE under FINRA rules regarding how the representative should handle this?" A projectile is fired vertically upward from a height of 300300 feet above the ground, with an initial velocity of 900900 ft/sec. Recall that projectiles are modeled by the function h(t)=16t2+v0t+y0h(t)=16t2+v0t+y0. Write a quadratic equation to model the projectile's height h(t)h(t) in feet above the ground after t seconds. Sample ________ options for athletes include whey protein, low-fat chocolate milk, a peanut butter and jelly sandwich, or a slice of cheese pizza. Sample ________ options for athletes include whey protein, low-fat chocolate milk, a peanut butter and jelly sandwich, or a slice of cheese pizza. post-exercise hydration high-fiber pre-exercise ROI, Residual Income, and EVA with Different Bases Envision Company has a target return on capital of 12 percent. The following financial information is available for October ($ thousands):Software Division . Consulting Division Venture Capital Division(Value Base) (Value Base) (Value Base)Book Current Book Current Book CurrentSales $100,000 $100,000 $200,000 $200,000 $800,000 $800,000Income 12,250 11,700 16,400 20,020 56,730 51,920Assets 70,000 90,000 100,000 110,000 610,000 590,000Liabilities 10,000 10,000 14,000 14,000 40,000 40,000Requireda. Compute the return on investment using both book and current values for each division. Round answers to three decimal places.Book Value Current ValueSoftware Answer ? Answer ?Consulting Answer ? Answer ?Venture Capital Answer ? Answer ?b. Compute the residual income for both book and current values for each division. Use negative signs with answers, when appropriate.Book Value Current ValueSoftware $Answer 3,850 $Answer 900Consulting Answer 4,400 . Answer 6,820Venture Capital Answer (16,470) Answer (1,880)c. Compute the economic value added income for both book and current values for each division if the tax rate is 30 percent and the weighted average cost of capital is 10 percent. Use negative signs with answers, when appropriate. Book Value Current ValueSoftware $Answer ? $Answer ?Consulting Answer ? Answer ?Venture Capital Answer ? Answer ? When I say " I am also a student." do I have to put a space between and ? do the qualities called for in the ideal renaissance man and woman seem to emphasize in the individual or the group? A merry-go-round spins freely when Diego moves quickly to the center along a radius of the merry-go-round. As he does this, it is true to say that The average daily volume of a computer stock in 2011 was =35.1 million shares, according to a reliable source. A stock analyst believes that the stock volume in 2014 is different from the 2011 level. Based on a random sample of 30 trading days in 2014, he finds the sample mean to be 32.7 million shares, with a standard deviation of s=14.6 million shares. Test the hypothesis by constructing a 95% confidence interval. Complete a and b A. State the hypothesis B. Construct a 95% confidence interval about the sample mean of stocks traded in 2014. The double number line shows that to make 4 apple pies takes 14 pounds of apples.Select the double number line that correctly labels the number of pounds of apples that are needed to make 1 , 2, and 3 pies. A 6-month-old infant is unresponsive. You begin checking for breathing at the same time you check for the infant's pulse. Which is the maximum time you should spend when trying to simultaneously check for breathing and palpate the infant's pulse before starting CPR An operator wants to determine the standard deviation for a machine relative to its ability to produce windshield wipers conforming within their specifications. To do this, she wants to create a p-chart. Over a month's time, she tests 100 units every day and records the number of manufacturing defects. The average proportion of non-conforming windshield wipers is found to be 0.042. What is the standard deviation of this sample The introduction of automatic elevator equipment allowed firms to handle the movement of people in a multistory building at less cost, thus decreasing the demand for elevator operators. The best explanation for this change is that the Multiple Choice marginal product of elevator operators was equal to its price. marginal product of automatic elevator equipment was equal to its price. marginal product of automatic elevator equipment divided by its price was greater than that for elevator operators. marginal product of elevator operators divided by its price was greater than that for automatic elevator equipment. (EC) Seale la relacin correcta: a. C/5 = (F 36) /9 b. C/5 = (F 32) /9 c. C/5 = (R + 492) / 5 d. C/5 = (K 272) /9 e. C/5 = (C 273) /5 How many times larger is the value of86,000,000 than 8,600? Two hoops, staring from rest, roll down identical incline planes. The work done by nonconservative forces is zero. The hoops have the same mass, but the larger hoop has twice the radius. Which hoop will have the greater total kinetic energy at the bottom List 3 difference and similarities of chance music and electronic music. (3 each) evaluate 1 whole number 2/5 + 3/4 and give your answer to one significant figure PLEASE HELP!!!! ASAPP!!!! I will name Brainliest. A pyramid has a square base that measures 10 feet on a side. The height of each face is five feet. What is the surface area of the pyramid? A toroidal solenoid with 400 turns of wire and a mean radius of 6.0 cm carries a current of 0.25 A. The relative permeability of the core is 80. (a) What is the magnetic field in the core? (b) What part of the magnetic field is due to atomic currents? Direct democracy is the government democratic