Answer:
A) the moment of inertia of the system decreases and the angular speed increases.
Explanation:
The complete question is
A merry-go-round spins freely when Diego moves quickly to the center along a radius of the merry-go-round. As he does this, It is true to say that
A) the moment of inertia of the system decreases and the angular speed increases.
B) the moment of inertia of the system decreases and the angular speed decreases.
C) the moment of inertia of the system decreases and the angular speed remains the same.
D) the moment of inertia of the system increases and the angular speed increases.
E) the moment of inertia of the system increases and the angular speed decreases
In angular momentum conservation, the initial angular momentum of the system is conserved, and is equal to the final angular momentum of the system. The equation of this angular momentum conservation is given as
[tex]I_{1} w_{1} = I_{2} w_{2}[/tex] ....1
where [tex]I_{1}[/tex] and [tex]I_{2}[/tex] are the initial and final moment of inertia respectively.
and [tex]w_{1}[/tex] and [tex]w_{2}[/tex] are the initial and final angular speed respectively.
Also, we know that the moment of inertia of a rotating body is given as
[tex]I = mr^{2}[/tex] ....2
where [tex]m[/tex] is the mass of the rotating body,
and [tex]r[/tex] is the radius of the rotating body from its center.
We can see from equation 2 that decreasing the radius of rotation of the body will decrease the moment of inertia of the body.
From equation 1, we see that in order for the angular momentum to be conserved, the decrease from [tex]I_{1}[/tex] to [tex]I_{2}[/tex] will cause the angular speed of the system to increase from [tex]w_{1}[/tex] to [tex]w_{2}[/tex] .
From this we can clearly see that reducing the radius of rotation will decrease the moment of inertia, and increase the angular speed.
If Superman really had x-ray vision at 0.12 nm wavelength and a 4.1 mm pupil diameter, at what maximum altitude could he distinguish villains from heroes, assuming that he needs to resolve points separated by 5.4 cm to do this?
Answer:
Maximum altitude to see(L) = 1.47 × 10⁶ m (Approx)
Explanation:
Given:
wavelength (λ) = 0.12 nm = 0.12 × 10⁻⁹ m
Pupil Diameter (d) = 4.1 mm = 4 × 10⁻³ m
Separation distance (D) = 5.4 cm = 0.054 m
Find:
Maximum altitude to see(L)
Computation:
Resolving power = 1.22(λ / d)
D / L = 1.22(λ / d)
0.054 / L = 1.22 [(0.12 × 10⁻⁹) / (4 × 10⁻³ m)]
0.054 / L = 1.22 [0.03 × 10⁻⁶]
L = 0.054 / 1.22 [0.03 × 10⁻⁶]
L = 0.054 / [0.0366 × 10⁻⁶]
L = 1.47 × 10⁶
Maximum altitude to see(L) = 1.47 × 10⁶ m (Approx)
A/An ____________________ is a small, flexible tube with a light and lens on the end that is used for examination. Question 96 options:
Answer:
"Endoscope" is the correct answer.
Explanation:
A surgical tool sometimes used visually to view the internal of either a body cavity or maybe even an empty organ like the lung, bladder, as well as stomach. There seems to be a solid or elastic tube filled with optics, a source of fiber-optic light, and sometimes even a sample, epidurals, suction tool, and perhaps other equipment for sample analysis or recovery.If mirror M2 in a Michelson interferometer is moved through 0.233 mm, a shift of 792 bright fringes occurs. What is the wavelength of the light producing the fringe pattern?
Answer:
The wavelength is [tex]\lambda = 589 nm[/tex]
Explanation:
From the question we are told that
The distance of the mirror shift is [tex]k = 0.233 \ mm = 0.233*10^{-3} \ m[/tex]
The number of fringe shift is n = 792
Generally the wavelength producing this fringes is mathematically represented as
[tex]\lambda = \frac{ 2 * k }{ n }[/tex]
substituting values
[tex]\lambda = \frac{ 2 * 0.233*10^{-3} }{ 792 }[/tex]
[tex]\lambda = 5.885 *10^{-7} \ m[/tex]
[tex]\lambda = 589 nm[/tex]
When a mercury thermometer is heated, the mercury expands and rises in the thin tube of glass. What does this indicate about the relative rates of expansion for mercury and glass
Answer:
This means that mercury has a higher or faster expansion rate than glass
Explanation:
This is because When a container expands, the reservoir in the glass expands at the same rate as the glass. Thus, if there is something in a glass and both expand at the same rate, they have no change - but if the contents expand faster, they will fill the container to a higher level, and if the contents expand slower, they will fill the container to a lower level (relative to the new size of the container).
The sun generates both mechanical and electromagnetic waves. Which statement about those waves is true?
OA. The mechanical waves reach Earth, while the electromagnetic waves do not.
OB. The electromagnetic waves reach Earth, while the mechanical waves do not.
OC. Both the mechanical waves and the electromagnetic waves reach Earth.
OD. Neither the mechanical waves nor the electromagnetic waves reach Earth.
Answer: The correct answer for this question is letter (B) The electromagnetic waves reach Earth, while the mechanical waves do not. The sun generates both mechanical and electromagnetic waves. Space, between the sun and the earth is a nearly vacuum. So mechanical wave can not spread out in the vacuum.
Hope this helps!
Answer:
The electromagnetic waves reach Earth, while the mechanical waves do not
The linear density rho in a rod 3 m long is 8/ x + 1 kg/m, where x is measured in meters from one end of the rod. Find the average density rhoave of the rod.
Answer:
The average density of the rod is 1.605 kg/m.
Explanation:
The average density of the rod is given by:
[tex] \rho = \frac{m}{l} [/tex]
To find the average density we need to integrate the linear density from x₁ = 0 to x₂ = 3, as follows:
[tex] \int_{0}^{3} \frac{8}{3(x + 1)}dx [/tex]
[tex] \rho = \frac{8}{3} \int_{0}^{3} \frac{1}{(x + 1)}dx [/tex] (1)
Using u = x+1 → du = dx → u₁= x₁+1 = 0+1 = 1 and u₂ = x₂+1 = 3+1 = 4
By entering the values above into (1), we have:
[tex] \rho = \frac{8}{3} \int_{0}^{3} \frac{1}{u}du [/tex]
[tex]\rho = \frac{8}{3}*log(u)|_{1}^{4} = \frac{8}{3}[log(4) - log(1)] = 1.605 kg/m[/tex]
Therefore, the average density of the rod is 1.605 kg/m.
I hope it helps you!
The average density of the rod is [tex]1.605 \;\rm kg/m^{3}[/tex].
Given data:
The length of rod is, L = 3 m.
The linear density of rod is, [tex]\rho=\dfrac{8}{x+1} \;\rm kg/m[/tex].
To find the average density we need to integrate the linear density from x₁ = 0 to x₂ = 3, The expression for the average density is given as,
[tex]\rho' = \int\limits^3_0 { \rho} \, dx\\\\\\\rho' = \int\limits^3_0 { \dfrac{m}{L}} \, dx\\\\\\\rho' = \int\limits^3_0 {\dfrac{8}{3(x+1)}} \, dx[/tex]............................................................(1)
Using u = x+1
du = dx
u₁= x₁+1 = 0+1 = 1
and
u₂ = x₂+1 = 3+1 = 4
By entering the values above into (1), we have:
[tex]\rho' =\dfrac{8}{3} \int\limits^3_0 {\dfrac{1}{u}} \, du\\\\\\\rho' =\dfrac{8}{3} \times [log(u)]^{4}_{1}\\\\\\\rho' =\dfrac{8}{3} \times [log(4)-log(1)]\\\\\\\rho' =1.605 \;\rm kg/m^{3}[/tex]
Thus, we can conclude that the average density of the rod is [tex]1.605 \;\rm kg/m^{3}[/tex].
Learn more about the average density here:
https://brainly.com/question/1371999
"A light beam incident on a diffraction grating consists of waves with two different wavelengths. The separation of the two first order lines is great if"
Answer:
A light beam incident on a diffraction grating consists of waves with two different wavelengths. The separation of the two first order lines is great if
the dispersion is great
Expectant mothers many times see their unborn child for the first time during an ultrasonic examination. In ultrasonic imaging, the blood flow and heartbeat of the child can be measured using an echolocation technique similar to that used by bats. For the purposes of these questions, please use 1500 m/s as the speed of sound in tissue. I need help with part B and C
To clearly see an image, the wavelength used must be at most 1/4 of the size of the object that is to be imaged. What frequency is needed to image a fetus at 8 weeks of gestation that is 1.6 cm long?
A. 380 kHz
B. 3.8 kHz
C. 85 kHz
D. 3.8 MHz
Answer:
380 kHz
Explanation:
The speed of sound is taken as 1500 m/s
The length of the fetus is 1.6 cm long
The condition is that the wavelength used must be at most 1/4 of the size of the object that is to be imaged.
For this 1.6 cm baby, the wavelength must not exceed
λ = [tex]\frac{1}{4}[/tex] of 1.6 cm = [tex]\frac{1}{4}[/tex] x 1.6 cm = 0.4 cm =
0.4 cm = 0.004 m this is the wavelength of the required ultrasonic sound.
we know that
v = λf
where v is the speed of a wave
λ is the wavelength of the wave
f is the frequency of the wave
f = v/λ
substituting values, we have
f = 1500/0.004 = 375000 Hz
==> 375000/1000 = 375 kHz ≅ 380 kHz
Which scientist proposed a mathematical solution for the wave nature of light?
Answer:
Explanation:
Christian Huygens
Light Is a Wave!
Then, in 1678, Dutch physicist Christian Huygens (1629 to 1695) established the wave theory of light and announced the Huygens' principle.
1. (I) If the magnetic field in a traveling EM wave has a peak magnitude of 17.5 nT at a given point, what is the peak magnitude of the electric field
Answer:
The electric field is [tex]E = 5.25 V/m[/tex]
Explanation:
From the question we are told that
The peak magnitude of the magnetic field is [tex]B = 17.5 nT = 17.5 *10^{-9}\ T[/tex]
Generally the peak magnitude of the electric field is mathematically represented as
[tex]E = c * B[/tex]
Where c is the speed of light with value [tex]c = 3.0 *10^{8} \ m/s[/tex]
So
[tex]E = 3.0 *10^{8} * 17.5 *10^{-9}[/tex]
[tex]E = 5.25 V/m[/tex]
The peak magnitude of the electric field will be "5.25 V/m".
Magnetic fieldAccording to the question,
Magnetic field's peak magnitude, B = 17.5 nT or,
= 17.5 × 10⁻⁹ T
Speed of light, c = 3.0 × 10⁸ m/s
We know the relation,
→ E = c × B
By substituting the values, we get
= 3.0 × 10⁸ × 17.5 × 10⁻⁹
= 5.25 V/m
Thus the above approach is appropriate.
Find out more information about magnetic field here:
https://brainly.com/question/26257705
This problem explores the behavior of charge on conductors. We take as an example a long conducting rod suspended by insulating strings. Assume that the rod is initially electrically neutral. For convenience we will refer to the left end of the rod as end A, and the right end of the rod as end B. In the answer options for this problem, "strongly attracted/repelled" means "attracted/repelled with a force of magnitude similar to that which would exist between two charged balls.A. A small metal ball is given a negative charge, then brought near (i.e., within about 1/10 the length of the rod) to end A of the rod. What happens to end A of the rod when the ball approaches it closely this first time?
What happens to end A of the rod when the ball approaches it closely this first time?a. It is strongly repelled.b. It is strongly attracted.c. It is weakly attracted.d. It is weakly repelled.e. It is neither attracted nor repelled.
Answer:
e. It is neither attracted nor repelled.
Explanation:
Electrostatic attraction or repulsion occurs between two or more charged particles or conductors. In this case, if the negatively charged ball is brought close to the neutral end A of the rod, there would be no attraction or repulsion between the rod end A and the negatively charged ball. This is because a charged particle or conductor has no attraction or repulsion to a neutral particle or conductor.
Two ice skaters, Paula and Ricardo, initially at rest, push off from each other. Ricardo weighs more than Paula.
A. Which skater, if either, has the greater momentum after the push-off? Explain.
B. Which skater, if either, has the greater speed after the push-off? Explain.
Answer:
the two ice skater have the same momentum but the are in different directions.
Paula will have a greater speed than Ricardo after the push-off.
Explanation:
Given that:
Two ice skaters, Paula and Ricardo, initially at rest, push off from each other. Ricardo weighs more than Paula.
A. Which skater, if either, has the greater momentum after the push-off? Explain.
The law of conservation of can be applied here in order to determine the skater that possess a greater momentum after the push -off
The law of conservation of momentum states that the total momentum of two or more objects acting upon one another will not change, provided there are no external forces acting on them.
So if two objects in motion collide, their total momentum before the collision will be the same as the total momentum after the collision.
Momentum is the product of mass and velocity.
SO, from the information given:
Let represent the mass of Paula with [tex]m_{Pa}[/tex] and its initial velocity with [tex]u_{Pa}[/tex]
Let represent the mass of Ricardo with [tex]m_{Ri}[/tex] and its initial velocity with [tex]u_{Ri}[/tex]
At rest ;
their velocities will be zero, i.e
[tex]u_{Pa}[/tex] = [tex]u_{Ri}[/tex] = 0
The initial momentum for this process can be represented as :
[tex]m_{Pa}[/tex][tex]u_{Pa}[/tex] + [tex]m_{Ri}[/tex][tex]u_{Ri}[/tex] = 0
after push off from each other then their final velocity will be [tex]v_{Pa}[/tex] and [tex]v_{Ri}[/tex]
The we can say their final momentum is:
[tex]m_{Pa}[/tex][tex]v_{Pa}[/tex] + [tex]m_{Ri}[/tex][tex]v_{Ri}[/tex] = 0
Using the law of conservation of momentum as states earlier.
Initial momentum = final momentum = 0
[tex]m_{Pa}[/tex][tex]u_{Pa}[/tex] + [tex]m_{Ri}[/tex][tex]u_{Ri}[/tex] = [tex]m_{Pa}[/tex][tex]v_{Pa}[/tex] + [tex]m_{Ri}[/tex][tex]v_{Ri}[/tex]
Since the initial velocities are stating at rest then ; u = 0
[tex]m_{Pa}[/tex](0) + [tex]m_{Pa}[/tex](0) = [tex]m_{Pa}[/tex][tex]v_{Pa}[/tex] + [tex]m_{Ri}[/tex][tex]v_{Ri}[/tex]
[tex]m_{Pa}[/tex][tex]v_{Pa}[/tex] + [tex]m_{Ri}[/tex][tex]v_{Ri}[/tex] = 0
[tex]m_{Pa}[/tex][tex]v_{Pa}[/tex] = - [tex]m_{Ri}[/tex][tex]v_{Ri}[/tex]
Hence, we can conclude that the two ice skater have the same momentum but the are in different directions.
B. Which skater, if either, has the greater speed after the push-off? Explain.
Given that Ricardo weighs more than Paula
So [tex]m_{Ri} > m_{Pa}[/tex] ;
Then [tex]\mathsf{\dfrac{{m_{Ri}}}{m_{Pa} }= 1}[/tex]
The magnitude of their momentum which is a product of mass and velocity can now be expressed as:
[tex]m_{Pa}[/tex][tex]v_{Pa}[/tex] = [tex]m_{Ri}[/tex][tex]v_{Ri}[/tex]
The ratio is
[tex]\dfrac{v_{Pa}}{v_{Ri}} =\dfrac{m_{Ri}}{m_{Pa}} = 1[/tex]
[tex]v_{Pa} >v_{Ri}[/tex]
Therefore, Paula will have a greater speed than Ricardo after the push-off.
(A) Both the skaters have the same magnitude of momentum.
(B) Paula has greater speed after push-off.
Conservation of momentum:Given that two skaters Paula and Ricardo are initially at rest.
Ricardo weighs more than Paula.
Let us assume that the mass of Ricardo is M, and the mass of Paula is m.
Let their final velocities be V and v respectively.
(A) Initially, both are at rest.
So the initial momentum of Paula and Ricardo is zero.
According to the law of conservation of momentum, the final momentum of the system must be equal to the initial momentum of the system.
Initial momentum = final momentum
0 = MV + mv
MV = -mv
So, both of them have the same magnitude of momentum, but in opposite directions.
(B) If we compare the magnitude of the momentum of Paula and Ricardo, then:
MV = mv
M/m = v/V
Now, we know that M>m
so, M/m > 1
therefore:
v/V > 1
v > V
So, Paula has greater speed.
Learn more about conservation of momentum:
https://brainly.com/question/2141713?referrer=searchResults
An unstable particle at rest spontaneously breaks into two fragments of unequal mass. The mass of the first fragment is 3.00 10-28 kg, and that of the other is 1.86 10-27 kg. If the lighter fragment has a speed of 0.844c after the breakup, what is the speed of the heavier fragment
Answer: Speed = [tex]3.10^{-31}[/tex] m/s
Explanation: Like in classical physics, when external net force is zero, relativistic momentum is conserved, i.e.:
[tex]p_{f} = p_{i}[/tex]
Relativistic momentum is calculated as:
p = [tex]\frac{mu}{\sqrt{1-\frac{u^{2}}{c^{2}} } }[/tex]
where:
m is rest mass
u is velocity relative to an observer
c is light speed, which is constant (c=[tex]3.10^{8}[/tex]m/s)
Initial momentum is zero, then:
[tex]p_{f}[/tex] = 0
[tex]p_{1}-p_{2}[/tex] = 0
[tex]p_{1} = p_{2}[/tex]
To find speed of the heavier fragment:
[tex]\frac{mu_{1}}{\sqrt{1-\frac{u^{2}_{1}}{c^{2}} } }=\frac{mu_{2}}{\sqrt{1-\frac{u^{2}_{2}}{c^{2}} } }[/tex]
[tex]\frac{1.86.10^{-27}u_{1}}{\sqrt{1-\frac{u^{2}_{1}}{(3.10^{8})^{2}} } }=\frac{3.10^{-28}.0.844.3.10^{8}}{\sqrt{1-\frac{(0.844c)^{2}}{c^{2}} } }[/tex]
[tex]\frac{1.86.10^{-27}u_{1}}{\sqrt{1-\frac{u^{2}_{1}}{(3.10^{8})^{2}} } }=1.42.10^{-19}[/tex]
[tex]1.86.10^{-27}u_{1} = 1.42.10^{-19}.{\sqrt{1-\frac{u^{2}_{1}}{(3.10^{8})^{2}} } }[/tex]
[tex](1.86.10^{-27}u_{1})^{2} = (1.42.10^{-19}.{\sqrt{1-\frac{u^{2}_{1}}{(3.10^{8})^{2}} } })^{2}[/tex]
[tex]3.46.10^{-54}.u_{1}^{2} = 2.02.10^{-38}.(1-\frac{u_{1}^{2}}{9.10^{16}} )[/tex]
[tex]3.46.10^{-54}.u_{1}^{2} = 2.02.10^{-38} -[2.02.10^{-38}(\frac{u_{1}^{2}}{9.10^{16}} )][/tex]
[tex]3.46.10^{-54}.u_{1}^{2} = 2.02.10^{-38} -2.24.10^{-23}.u^{2}_{1}[/tex]
[tex]3.46.10^{-54}.u_{1}^{2}+2.24.10^{-23}.u^{2}_{1} = 2.02.10^{-38}[/tex]
[tex]2.24.10^{-23}.u^{2}_{1} = 2.02.10^{-38}[/tex]
[tex]u^{2}_{1} = \frac{2.02.10^{-38}}{2.24.10^{-23}}[/tex]
[tex]u_{1} = \sqrt{9.02.10^{-62}}[/tex]
[tex]u_{1} = 3.10^{-31}[/tex]
The speed of the heavier fragment is [tex]u_{1} = 3.10^{-31}[/tex]m/s.
A Galilean telescope adjusted for a relaxed eye is 36.2 cm long. If the objective lens has a focal length of 39.5 cm , what is the magnification
Answer:
The magnification is [tex]m = 12[/tex]
Explanation:
From the question we are told that
The object distance is [tex]u = 36.2 \ cm[/tex]
The focal length is [tex]v = 39.5 \ cm[/tex]
From the lens equation we have that
[tex]\frac{1}{f} = \frac{1}{u} + \frac{1}{v}[/tex]
=> [tex]\frac{1}{v} = \frac{1}{f} - \frac{1}{u}[/tex]
substituting values
[tex]\frac{1}{v} = \frac{1}{39.5} - \frac{1}{36.2}[/tex]
[tex]\frac{1}{v} = -0.0023[/tex]
=> [tex]v = \frac{1}{0.0023}[/tex]
=> [tex]v =-433.3 \ cm[/tex]
The magnification is mathematically represented as
[tex]m =- \frac{v}{u}[/tex]
substituting values
[tex]m =- \frac{-433.3}{36.2}[/tex]
[tex]m = 12[/tex]
Light of wavelength 500 nm falls on two slits spaced 0.2 mm apart. If the spacing between the first and third dark fringes is to be 4.0 mm, what is the distance from the slits to a screen?
Answer:
L = 0.8 m
Explanation:
Since, the distance between first and third dark fringes is 4 mm. Therefore, the fringe spacing between consecutive dark fringes will be:
Δx = 4 mm/2 = 2 mm = 2 x 10⁻³ m
but,
Δx = λL/d
λ = wavelength of the light = 500 nm = 5 x 10⁻⁷ m
d = slit spacing = 0.2 mm = 0.2 x 10⁻³ m
L = Distance between slits and screen = ?
Therefore, using the values, we get:
2 x 10⁻³ m = (5 x 10⁻⁷ m)(L)/(0.2 x 10⁻³)
L = (2 x 10⁻³ m)(0.2 x 10⁻³ m)/(5 x 10⁻⁷ m)
L = 0.8 m
Two protons, A and B, are next to an infinite plane of positive charge. Proton B is twice as far from the plane as proton A. Which proton has the larg
Answer:
They both have the same acceleration
a transformer changes 95 v acorss the primary to 875 V acorss the secondary. If the primmary coil has 450 turns how many turns does the seconday have g
Answer:
The number of turns in the secondary coil is 4145 turns
Explanation:
Given;
the induced emf on the primary coil, [tex]E_p[/tex] = 95 V
the induced emf on the secondary coil, [tex]E_s[/tex] = 875 V
the number of turns in the primary coil, [tex]N_p[/tex] = 450 turns
the number of turns in the secondary coil, [tex]N_s[/tex] = ?
The number of turns in the secondary coil is calculated as;
[tex]\frac{N_p}{N_s} = \frac{E_p}{E_s}[/tex]
[tex]N_s = \frac{N_pE_s}{E_p} \\\\N_s = \frac{450*875}{95} \\\\N_s = 4145 \ turns[/tex]
Therefore, the number of turns in the secondary coil is 4145 turns.
Consider two parallel plate capacitors. The plates on Capacitor B have half the area as the plates on Capacitor A, and the plates in Capacitor B are separated by twice the separation of the plates of Capacitor A. If Capacitor A has a capacitance of CA-17.8nF, what is the capacitance of Capacitor? .
Answer:
CB = 4.45 x 10⁻⁹ F = 4.45 nF
Explanation:
The capacitance of a parallel plate capacitor is given by the following formula:
C = ε₀A/d
where,
C = Capacitance
ε₀ = Permeability of free space
A = Area of plates
d = Distance between plates
FOR CAPACITOR A:
C = CA = 17.8 nF = 17.8 x 10⁻⁹ F
A = A₁
d = d₁
Therefore,
CA = ε₀A₁/d₁ = 17.8 x 10⁻⁹ F ----------------- equation 1
FOR CAPACITOR B:
C = CB = ?
A = A₁/2
d = 2 d₁
Therefore,
CB = ε₀(A₁/2)/2d₁
CB = (1/4)(ε₀A₁/d₁)
using equation 1:
CB = (1/4)(17.8 X 10⁻⁹ F)
CB = 4.45 x 10⁻⁹ F = 4.45 nF
Calculate the density of the following material.
1 kg helium with a volume of 5.587 m³
700 kg/m³
5.587 kg/m³
0.179 kg/m³
Answer:
[tex]density \: = \frac{mass}{volume} [/tex]
1 / 5.587 is equal to 0.179 kg/m³
Hope it helps:)
Answer:
The answer is
0.179 kg/m³Explanation:
Density of a substance is given by
[tex]Density \: = \frac{mass}{volume} [/tex]
From the
mass = 1 kg
volume = 5.583 m³
Substitute the values into the above formula
We have
[tex]Density \: = \frac{1 \: kg}{5.583 \: {m}^{3} } [/tex]
We have the final answer as
Density = 0.179 kg/m³Hope this helps you
A car travels at 45 km/h. If the driver breaks 0.65 seconds after seeing the traffic light turn yellow, how far will the car continue to travel before it begins to slow?
Answer:
8.1 m
Explanation:
Convert km/h to m/s.
45 km/h × (1000 m/km) × (1 h / 3600 s) = 12.5 m/s
Distance = speed × time
d = (12.5 m/s) (0.65 s)
d = 8.125 m
You add 500 mL of water at 10°C to 100 mL of water at 70°C. What is the
most likely final temperature of the mixture?
O A. 80°C
OB. 10-C
OC. 20°C
O D. 60°C
Answer:
Option (c) : 20°C
Explanation:
[tex]t(final) = \frac{w1 \times t1 + w2 \times t2}{w1 + w2} [/tex]
T(final) = 500* 10 + 100*70/600 = 20°C
A long solenoid consists of 1700 turns and has a length of 0.75 m.The current in the wire is 0.48 A. What is the magnitude of the magnetic field inside the solenoid
Answer:
1.37 ×10^-3 T
Explanation:
From;
B= μnI
μ = 4π x 10-7 N/A2
n= number of turns /length of wire = 1700/0.75 = 2266.67
I= 0.48 A
Hence;
B= 4π x 10^-7 × 2266.67 ×0.48
B= 1.37 ×10^-3 T
Three resistors, each having a resistance, R, are connected in parallel to a 1.50 V battery. If the resistors dissipate a total power of 3.00 W, what is the value of R
Answer:
The value of resistance of each resistor, R is 2.25 Ω
Explanation:
Given;
voltage across the three resistor, V = 1.5 V
power dissipated by the resistors, P = 3.00 W
the resistance of each resistor, = R
The effective resistance of the three resistors is given by;
R(effective) = R/3
Apply ohms law to determine the current delivered by the source;
V = IR
I = V/R
I = 3V/R
Also, power is calculated as;
P = IV
P = (3V/R) x V
P = 3V²/R
R = 3V² / P
R = (3 x 1.5²) / 3
R = 2.25 Ω
Therefore, the value of resistance of each resistor, R is 2.25 Ω
A 750 gram grinding wheel 25.0 cm in diameter is in the shape of a uniform solid disk. (we can ignore the small hole at the center). when it is in use, it turns at a consant 220 rpm about an axle perpendicular to its face through its center. When the power switch is turned off, you observe that the wheel stops in 45.0 s with constant angular acceleration due to friction at the axle. What torque does friction exert while this wheel is slowing down?
Answer:
Torque = 0.012 N.m
Explanation:
We are given;
Mass of wheel;m = 750 g = 0.75 kg
Radius of wheel;r = 25 cm = 0.25 m
Final angular velocity; ω_f = 0
Initial angular velocity; ω_i = 220 rpm
Time taken;t = 45 seconds
Converting 220 rpm to rad/s we have;
220 × 2π/60 = 22π/3 rad/s
Equation of rotational motion is;
ω_f = ω_i + αt
Where α is angular acceleration
Making α the subject, we have;
α = (ω_f - ω_i)/t
α = (0 - 22π/3)/45
α = -0.512 rad/s²
The formula for the Moment of inertia is given as;
I = ½mr²
I = (1/2) × 0.75 × 0.25²
I = 0.0234375 kg.m²
Formula for torque is;
Torque = Iα
For α, we will take the absolute value as the negative sign denotes decrease in acceleration.
Thus;
Torque = 0.0234375 × 0.512
Torque = 0.012 N.m
CAN SOMEONE HELP ME PLEASE ITS INTEGRATED SCIENCE AND I AM STUCK
Answer:
[tex]\huge \boxed{\mathrm{Option \ D}}[/tex]
Explanation:
Two forces are acting on the object.
Subtracting 2 N from both forces.
2 N → Object ← 5 N
- 2 N - 2N
0 N → Object ← 3 N
The force 3 N is pushing the object to the left side.
The mass of the object is 10 kg.
Applying formula for acceleration (Newton’s Second Law of Motion).
a = F/m
a = 3/10
a = 0.3
Which notation is better to use? (Choose between 4,000,000,000,000,000 m and 4.0 × 1015 m)
Answer:
4 x 10¹⁵
Explanation:
A current of 5 A is flowing in a 20 mH inductor. The energy stored in the magnetic field of this inductor is:_______
a. 1J.
b. 0.50J.
c. 0.25J.
d. 0.
e. dependent upon the resistance of the inductor.
Answer:
C. 0.25J
Explanation:
Energy stored in the magnetic field of the inductor is expressed as E = 1/2LI² where;
L is the inductance
I is the current flowing in the inductor
Given parameters
L = 20mH = 20×10^-3H
I = 5A
Required
Energy stored in the magnetic field.
E = 1/2 × 20×10^-3 × 5²
E = 1/2 × 20×10^-3 × 25
E = 10×10^-3 × 25
E = 0.01 × 25
E = 0.25Joules.
Hence the energy stored in the magnetic field of this inductor is 0.25Joules
An aluminum rod 17.400 cm long at 20°C is heated to 100°C. What is its new length? Aluminum has a linear expansion coefficient of 25 × 10-6 C-1.
Answer:
the new length is 17.435cm
Explanation:
the new length is 17.435cm
pls give brainliest
The new length of aluminum rod is 17.435 cm.
The linear expansion coefficient is given as,
[tex]\alpha=\frac{L_{1}-L_{0}}{L_{0}(T_{1}-T_{0})}[/tex]
Given that, An aluminum rod 17.400 cm long at 20°C is heated to 100°C.
and linear expansion coefficient is [tex]25*10^{-6}C^{-1}[/tex]
Substitute, [tex]L_{0}=17.400cm,T_{1}=100,T_{0}=20,\alpha=25*10^{-6}C^{-1}[/tex]
[tex]25*10^{-6}C^{-1} =\frac{L_{1}-17.400}{17.400(100-20)}\\\\25*10^{-6}C^{-1} = \frac{L_{1}-17.400}{1392} \\\\L_{1}=[25*10^{-6}C^{-1} *1392}]+17.400\\\\L_{1}=17.435cm[/tex]
Hence, The new length of aluminum rod is 17.435 cm.
Learn more:
https://brainly.com/question/19495810
Which examination technique is the visualization of body parts in motion by projecting x-ray images on a luminous fluorescent screen?
Answer:
Fluoroscopy
Explanation:
A Fluoroscopy is an imaging technique that uses X-rays to obtain real-time moving images of the interior of an object. In its primary application of medical imaging, a fluoroscope allows a physician to see the internal structure and function of a patient, so that the pumping action of the heart or the motion of swallowing, for example, can be watched.
The roller coaster car reaches point A of the loop with speed of 20 m/s, which is increasing at the rate of 5 m/s2. Determine the magnitude of the acceleration at A if pA
Answer and Explanation:
Data provided as per the question is as follows
Speed at point A = 20 m/s
Acceleration at point C = [tex]5 m/s^2[/tex]
[tex]r_A = 25 m[/tex]
The calculation of the magnitude of the acceleration at A is shown below:-
Centripetal acceleration is
[tex]a_c = \frac{v^2}{r}[/tex]
now we will put the values into the above formula
= [tex]\frac{20^2}{25}[/tex]
After solving the above equation we will get
[tex]= 16 m/s^2[/tex]
Tangential acceleration is
[tex]= \sqrt{ac^2 + at^2} \\\\ = \sqrt{16^2 + 5^2}\\\\ = 16.703 m/s^2[/tex]