What was your recommended intake of carbohydrates (grams), and how far were you from it? Show the mathActual Intake Recommended Intake Percentage159.00 115-166 100%

Answers

Answer 1

The actual intake of carbohydrates is 138% as compare to recommended intake.

Recommended intake of carbohydrates or any other nutrient are,

Based on the information provided,

Consumed 159 grams of carbohydrates,

Recommended intake is between 115 and 166 grams.

Calculate the percentage of actual intake compared to the recommended intake, use the following formula,

Percentage = (Actual Intake / Recommended Intake) x 100%

Substituting the values in the formula we have,

⇒Percentage = (159 / 115) x 100%

⇒Percentage ≈ 138.3%

Therefore,  the actual intake of carbohydrates is about 138% of the recommended intake, indicating that consumption of more carbohydrates than recommended.

learn more about carbohydrates here

brainly.com/question/10052351

#SPJ4


Related Questions

According to Money magazine, Maryland had the highest median annual household income of any state in 2018 at $75,847.† Assume that annual household income in Maryland follows a normal distribution with a median of $75,847 and standard deviation of $33,800.
(a) What is the probability that a household in Maryland has an annual income of $90,000 or more? (Round your answer to four decimal places.)
(b) What is the probability that a household in Maryland has an annual income of $50,000 or less? (Round your answer to four decimal places.)

Answers

The required probability that a household in Maryland with annual income of ,

$90,000 or more is equal to 0.3377.

$50,000 or less is equal to 0.2218.

Annual household income in Maryland follows a normal distribution ,

Median =  $75,847

Standard deviation = $33,800

Probability of household in Maryland has an annual income of $90,000 or more.

Let X be the random variable representing the annual household income in Maryland.

Then,

find P(X ≥ $90,000).

Standardize the variable X using the formula,

Z = (X - μ) / σ

where μ is the mean (or median, in this case)

And σ is the standard deviation.

Substituting the given values, we get,

Z = (90,000 - 75,847) / 33,800

⇒ Z = 0.4187

Using a standard normal distribution table

greater than 0.4187  as 0.3377.

P(X ≥ $90,000)

= P(Z ≥ 0.4187)

= 0.3377

Probability that a household in Maryland has an annual income of $90,000 or more is 0.3377(rounded to four decimal places).

Probability that a household in Maryland has an annual income of $50,000 or less.

P(X ≤ $50,000).

Standardizing X, we get,

Z = (50,000 - 75,847) / 33,800

⇒ Z = -0.7674

Using a standard normal distribution table

Probability that a standard normal variable is less than -0.7674 as 0.2218. This implies,

P(X ≤ $50,000)

= P(Z ≤ -0.7674)

= 0.2218

Probability that a household in Maryland has an annual income of $50,000 or less is 0.2218.

Therefore, the probability with annual income of $90,000 or more and  $50,000 or less is equal to 0.3377 and 0.2218 respectively.

learn more about probability here

brainly.com/question/24111146

#SPJ4

WILL MARK AS BRAINLIEST!!!!!!!!!!!!!!
If "f" is differentiable and f(1) < f(2), then there is a number "c", in the interval (_____, _____) such that f'(c)>_______

Answers

If "f" is differentiable and f(1) < f(2), then there is a number "c", in the interval  (1, 2)  such that f'(c)>  0.

How do we know?

Applying the  Mean Value Theorem for derivatives, if a function f is continuous on the closed interval [a, b] and differentiable on the open interval (a, b), then there exists at least one number c in the interval (a, b) such that:

f'(c) = (f(b) - f(a)) / (b - a)

In the scenario above, we have that f is differentiable, and that f(1) < f(2).

choosing a = 1 and b = 2.

Then applying the Mean Value Theorem, there exists at least one number c in the interval (1, 2) such that:

f'(c) = (f(2) - f(1)) / (2 - 1)

f'(c) = f(2) - f(1)

We have that f(1) < f(2), we have:

f(2) - f(1) > 0

We can conclude by saying that there exists a number c in the interval (1, 2) such that:

f'(c) = f(2) - f(1) > 0

Learn more about Mean Value Theorem at: https://brainly.com/question/19052862

#SPJ1

For a standard normal distribution, find:

P(-2.11 < z < -0.85)

Answers

Answer:

Step-by-step explanation:

Using a standard normal table, we can find the area under the curve between -2.11 and -0.85.

P(-2.11 < z < -0.85) = P(z < -0.85) - P(z < -2.11)

Using the table, we find:

P(z < -0.85) = 0.1977

P(z < -2.11) = 0.0174

Therefore,

P(-2.11 < z < -0.85) = 0.1977 - 0.0174 = 0.1803

So the probability that a standard normal random variable falls between -2.11 and -0.85 is 0.1803.

To approximate binomial probability plx > 8) when n is large, identify the appropriate 0.5 adjusted formula for normal approximation. O plx > 7.5) O plx >= 9) O plx > 9) O plx > 8.5)

Answers

The appropriate 0.5 adjusted formula for normal approximation is option (d) p(x > 8.5)

The appropriate 0.5 adjusted formula for normal approximation to approximate binomial probabilities when n is large is

P(Z > (x + 0.5 - np) / sqrt(np(1-p)))

where Z is the standard normal variable, x is the number of successes, n is the number of trials, and p is the probability of success in each trial.

To approximate binomial probability p(x > 8) when n is large, we need to use the continuity correction and find the appropriate 0.5 adjusted formula for normal approximation. Here, x = 8, n is large, and p is unknown. We first need to find the value of p.

Assuming a binomial distribution, the mean is np and the variance is np(1-p). Since n is large, we can use the following approximation

np = mean = 8, and

np(1-p) = variance = npq

8q = npq

q = 0.875

p = 1 - q = 0.125

Now, using the continuity correction, we adjust the inequality to p(x > 8) = p(x > 8.5 - 0.5)

P(Z > (8.5 - 0.5 - 8∙0.125) / sqrt(8∙0.125∙0.875))

= P(Z > 0.5 / 0.666)

= P(Z > 0.75)

Therefore, the correct option is (d) p(x > 8.5)

Learn more about binomial probability here

brainly.com/question/29350029

#SPJ4

The given question is incomplete, the complete question is:

To approximate binomial probability p(x > 8) when n is large, identify the appropriate 0.5 adjusted formula for normal approximation. a) p(x > 7.5) b)  p(x >= 9) c) p(x > 9) d) p(x > 8.5)

P, Q, R, S, T and U are different digits.
PQR + STU = 407

Answers

Step-by-step explanation:

There are many possible solutions to this problem, but one possible set of values for P, Q, R, S, T, and U is:

P = 2

Q = 5

R = 1

S = 8

T = 9

U = 9

With these values, we have:

PQR = 251

STU = 156

And the sum of PQR and STU is indeed 407.

Uri paid a landscaping company to mow his lawn. The company charged $74 for the service plus
5% tax. After tax, Uri also included a 10% tip with his payment. How much did he pay in all?

Answers

Uri paid a total of $85.47 for the landscaping service including tax and tip.

What is tax?

Taxes are compulsory payments made by a government organisation, whether local, regional, or federal, to people or businesses. Tax revenues are used to fund a variety of government initiatives, such as Social Security and Medicare as well as public infrastructure and services like roads and schools. Taxes are borne by whoever bears the cost of the tax in economics, whether this is the entity being taxed, such as a business, or the final users of the items produced by the firm. Taxes should be taken into consideration from an accounting standpoint, including payroll taxes, federal and state income taxes, and sales taxes.

Given that company charged $74 for the service plus 5% tax.

The tax is 5%, that is:

Tax = 5% of $74 = 0.05 x $74 = $3.70

Cost after tax = $74 + $3.70 = $77.70

Now, tip is 10%:

Tip = 10% of $77.70 = 0.10 x $77.70 = $7.77

Total cost = $77.70 + $7.77 = $85.47

Hence, Uri paid a total of $85.47 for the landscaping service including tax and tip.

Learn more about tax here:

https://brainly.com/question/16423331

#SPJ1

Give the interval(s) on which the function is continuous.
g(t) = 1/√16-t^2

Answers

The function g(t) is defined as:

g(t) = 1/√(16-t^2)

The function is continuous for all values of t that satisfy the following conditions:

The denominator is non-zero:

The denominator of the function is √(16-t^2). Therefore, the function is undefined when 16-t^2 < 0, or when t is outside the interval [-4,4].

There are no vertical asymptotes:

The function does not have any vertical asymptotes, because the denominator is always positive.

Thus, the function g(t) is continuous on the interval [-4,4].

are the ratios 2:1 and 20:10 equivalent

Answers

Yes, there is an analogous ratio between 2:1 and 20:10.

What ratio is similar to 2 to 1?

We just cancel by a common factor. So 4:2=2:1 . The simplest representation of the ratio 4 to 2 is the ratio 2 to 1. Also, since each pair of numbers has the same relationship to one another, the ratios are equivalent.

By dividing the terms of each ratio by their greatest common factor, we may simplify both ratios to explain why.

As the greatest common factor for the ratio 2:1 is 1, additional simplification is not necessary.

The greatest common factor for the ratio 20:10 is 10. When we multiply both terms by 10, we get:

20 ÷ 10 : 10 ÷ 10

= 2 : 1

As a result, both ratios have the same reduced form, 2:1, making them equal.

To know more about ratio visit:-

https://brainly.com/question/13419413

#SPJ1

What gravitational force does the moon produce on the Earth if their centers are 3.88x108 m apart and the moon has a mass of 7.34x1022 kg?

Answers

The gravitational force that the moon produces on the Earth is approximately [tex]1.98 \times 10^{20}\ \mathrm{N}$.[/tex]

What is gravitational force?

Gravitational force is the force of attraction that exists between any two objects in the universe with mass. This force is directly proportional to the masses of the objects and inversely proportional to the square of the distance between their centers.

The gravitational force that the moon produces on the Earth can be calculated using the formula:

[tex]F = G \cdot \frac{m_1 \cdot m_2}{r^2}[/tex]

where:

[tex]G$ = gravitational constant = $6.67430 \times 10^{-11}\ \mathrm{N(m/kg)^2}$[/tex]

[tex]m_1$ = mass of the moon = $7.34 \times 10^{22}\ \mathrm{kg}$[/tex]

[tex]m_2$ = mass of the Earth = $5.97 \times 10^{24}\ \mathrm{kg}$ (approximate)[/tex]

[tex]r$ = distance between the centers of the Earth and the moon = $3.88 \times 10^8\ \mathrm{m}$[/tex]

Substituting these values into the formula, we get:

[tex]F &= 6.67430 \times 10^{-11} \cdot \frac{7.34 \times 10^{22} \cdot 5.97 \times 10^{24}}{(3.88 \times 10^8)^2} \&= 1.98 \times 10^{20}\ \mathrm{N}[/tex]

Therefore, the gravitational force that the moon produces on the Earth is approximately [tex]1.98 \times 10^{20}\ \mathrm{N}$.[/tex]

To learn more about gravitational force visit:

https://brainly.com/question/29328661

#SPJ1

What is the slope of the line in the following graph?

Answers

Answer:

1/3

Step-by-step explanation:

using rise over run fron the two dots, we can find 2/6, which simplifies down to 1/3

fill in the blank. Toward the end of a game of Scrabble, you hold the letters D, O, G, and Q. You can choose 3 of these 4 letters and arrange them in order in ______ different ways. (Give your answer as a whole number.)

Answers

Toward the end of a game of Scrabble, you hold the letters D, O, G, and Q. You can choose 3 of these 4 letters and arrange them in order in 24 different ways.

To solve this problem, we need to use the concept of permutations. A permutation is an arrangement of objects in a specific order. In this case, we need to find the number of permutations that can be made from the letters D, O, G, and Q when we choose 3 of these 4 letters.

The formula for finding the number of permutations is:

n! / (n-r)!

where n is the total number of objects and r is the number of objects we choose.

Using this formula, we can calculate the number of permutations as follows:

4! / (4-3)!

= 4! / 1!

= 4 x 3 x 2 x 1 / 1

= 24

Therefore, we can arrange the chosen 3 letters in 24 different ways.

To learn more about permutations click on,

https://brainly.com/question/30660588

#SPJ4

Without an appointment, the average waiting time in minutes at the doctor's office has the probability density function f(t)=1/38, where 0≤t≤38
Step 1 of 2:
What is the probability that you will wait at least 26 minutes? Enter your answer as an exact expression or rounded to 3 decimal places.
Step 2 of 2:
What is the average waiting time?

Answers

The probability of waiting at least 26 minutes is 0.316. The average waiting time is 19 minutes.

Step 1:

The probability of waiting at least 26 minutes can be calculated by finding the area under the probability density function from 26 to 38:

P(waiting at least 26 minutes) = ∫26^38 (1/38) dt = [t/38] from 26 to 38

= (38/38) - (26/38) = 12/38 = 0.316

So the probability of waiting at least 26 minutes is 0.316 or approximately 0.316 rounded to 3 decimal places.

Step 2:

The average waiting time can be calculated by finding the expected value of the probability density function:

E(waiting time) = ∫0³⁸ t f(t) dt = ∫0³⁸ (t/38) dt

= [(t²)/(238)] from 0 to 38

= (38²)/(238) = 19

Therefore, the average waiting time is 19 minutes.

Learn more about probability here: brainly.com/question/30034780
#SPJ4

During a manufacturing process, a metal part in a machine is exposed to varying temperature conditions. The manufacturer of the machine recommends that the temperature of the machine part remain below 131°F. The temperature T in degrees Fahrenheit x minutes after the machine is put into operation is modeled by T=-0.005x^2+0.45x+125. Will the temperature of the part ever reach or exceed 131°F? Use the discriminant of a quadratic equation to decide.


answer options
1. No
2. Yes​

Answers

From the discriminant of the give quadratic equation, the temperature of the machine will part after 50 minutes of operation.

Will the temperature of the part ever reach or exceed 135°F?

The given equation that models the temperature of the machine is;

T = -0.005x² + 0.45x + 125

Let check if there's a value that exists for T = 135

Putting T = 135 in the given equation,

135 = -0.005x² + 0.45x + 125

We can simplify this to;

0.005x² - 0.45x + 10 = 0

From the general form of quadratic equation which is ax² + bx + c = 0, where a = 0.005, b = -0.45, and c = 10.

The discriminant of this quadratic equation is given by:

D = b² - 4ac

= (-0.45)² - 4(0.005)(10)

= 0.2025 - 0.2

= 0.0025

The discriminant of the equation is positive which indicates we have two roots. Therefore, the temperature of the machine part will cross 135°F at some point during the operation.

We can also find the roots of the quadratic equation using the formula:

[tex]x = (-b \± \sqrt(D)) / 2a[/tex]

Substituting the values of a, b, and D, we get:

[tex]x = (0.45 \± \sqrt(0.0025)) / 2(0.005)\\= (0.45 \± 0.05) / 0.01[/tex]

Taking the positive value, we get:

x = 50

Therefore, the temperature of the machine part will cross 135°F after 50 minutes of operation.

Learn more on discriminant here;

https://brainly.com/question/12526527

#SPJ1

find a polynomial function with the following zeros: double zero at -4 simple zero at 3.

Answers

f(x) = (x+4)^2(x-3) has polynomial function with the following zeros: double zero at -4 simple zero at 3.

If a polynomial has a double zero at -4, it means that it can be factored as (x+4)^2.

If it also has a simple zero at 3, then the factorization must include (x-3).

Therefore, the polynomial function with these zeros is :-

f(x) = (x+4)^2(x-3)

This polynomial has a double zero at -4, because $(x+4)^2$ has a zero of order 2 at -4, and a simple zero at 3, because $(x-3)$ has a zero of order 1 at 3.

To know more about polynomial-

brainly.com/question/11536910

#SPJ4

If A B C are three matric such that AB=AC such that A=C then A is

Answers

Answer:

invertible

Step-by-step explanation:

If A is invertible then ∣A∣ =0

Let the Universal Set, S, have 158 elements. A and B are subsets of S. Set A contains 67 elements and Set B contains 65 elements. If Sets A and B have 9 elements in common, how many elements are in neither A nor B?

Answers

There are 92 elements in A but not in B.

What are sets?

In mathematics, a set is a well-defined collection of objects or elements. Sets are denoted by uppercase symbols, and the number of elements in a finite set is denoted as the cardinality of the set enclosed in curly braces {…}.

Empty or zero quantity:

Items not included. example:

A = {} is a null set.

Finite sets:

The number is limited. example:

A = {1,2,3,4}

Infinite set:

There are myriad elements. example:

A = {x:

x is the set of all integers}

Same sentence:

Two sets with the same members. example:

A = {1,2,5} and B = {2,5,1}:

Set A = Set B

Subset:

A set 'A' is said to be a subset of B if every element of A is also an element of B. example:

If A={1,2} and B={1,2,3,4} then A ⊆ B

Universal set:

A set that consists of all the elements of other sets that exist in the Venn diagram. example:

A={1,2}, B={2,3}, where the universal set is U = {1,2,3} 

n(A ∪ B) = n(A – B) + n(A ∩ B) + n(B – A)

Hence, There are 92 elements in A but not in B.

learn more about sets click here:

https://brainly.com/question/13458417

#SPJ1

To the nearest hundredth, what is the volume of the sphere? (Use 3.14 for pie.)

Answers

Therefore, the volume of the sphere to the nearest hundredth is 724,775.70 cubic millimeters.

What is volume?

Volume is a measurement of the amount of space occupied by a three-dimensional object. It is often expressed in units such as cubic meters (m³), cubic centimeters (cm³), cubic feet (ft³), or gallons (gal), depending on the context. The volume of a solid object can be calculated by multiplying its length, width, and height or using a specific formula depending on the shape of the object. For example, the volume of a rectangular box can be calculated as length x width x height, while the volume of a cylinder can be calculated as π x radius² x height. In general, volume is an important concept in many fields, including physics, chemistry, engineering, and architecture. It is often used to describe the capacity of containers, the displacement of fluids, and the amount of material used in construction or manufacturing.

Here,

The formula for the volume of a sphere is given as V = (4/3)πr³, where r is the radius of the sphere and π is approximately 3.14.

Substituting the given value of the radius, we get:

V = (4/3) x 3.14 x 48³

V ≈ 724,775.68 cubic millimeters

Rounding this value to the nearest hundredth, we get:

V ≈ 724,775.68 ≈ 724,775.70 cubic millimeters (rounded to two decimal places)

To know more about volume,

https://brainly.com/question/12237641

#SPJ1

Oliver's normal rate of pay is $10.40 an hour.

How much is he paid for working 5 hours overtime one Saturday at time-and-a-half?

Answers

For this problem you want to multiply your hourly rate by your time worked and then you also want to multiply it by you time and a half factor so your problem should look like, 10.40 x 5 x 1.5 = ? And if you plug that all into a calculator you will get $78

Is the function represented by the following table linear, quadratic or exponential? ​

Answers

The function represented by the table is linear, as it has a constant rate of change and is represented by a straight line.

What is function in mathematics?

Function in mathematics is a relation between two sets, where one set is the input and the other set is the output. Functions are an important tool in mathematics and can be used to describe and model real-world phenomena. Functions take inputs, manipulate them and produce outputs. They can be used to represent relationships between two or more variables, or to represent a complex process. Functions allow us to break down complex problems into smaller, more manageable pieces and to study how changes in one variable affect other variables.

The function represented by the table is linear. It can be determined by the fact that the y-values change by the same amount every time the x-values increase by one unit. In this case, the y-values decrease by 2 each time the x-values increase by one unit. This is an example of a linear function.

Linear functions have the shape of a straight line and are characterized by having a constant rate of change. The constant rate of change is represented by the slope of the line, which in this case is -2. This means that for every one unit increase in the x-values, the y-values decrease by two.

A quadratic function is the opposite of a linear function, as it has a rate of change that is not constant. Quadratic functions are characterized by their parabolic shape and their rate of change increases as x-values increase. Exponential functions are characterized by their curved shape and increase exponentially as x-values increase.

In conclusion, the function represented by the table is linear, as it has a constant rate of change and is represented by a straight line.

To know more about function click-
https://brainly.com/question/25841119
#SPJ1

.2 In the diagram below, given that XY = 3cm, XZY = 30° and YZ = x, is it possible to solve for x using the theorem of Pythagoras? Motivate your answer. Show Calculations ​

Answers

Sin 30 =3/x

1/2=3/x

x=6

Help me find the value of x

Answers

Answer:

x = 30

Step-by-step explanation:

We know

The three angles must add up to 180°. We know one is 20°, so the other two must add up to 160°.

2x + 3x + 10 = 160

5x + 10 = 160

5x = 150

x = 30

se spherical coordinates to evaluate the triple integral where is the region bounded by the spheres and .

Answers

The value of the triple integral[tex]\int \int\int _{E } \frac{e^{-(x^2+y^2+z^2)}}{\sqrt{(x^2+y^2+z^2}}\sqrt{dV}[/tex] by using spherical coordinates [tex]2\pi(e^{-1}-e^{-9})[/tex].

Given that the triple integral is-

[tex]\int \int\int _{E } \frac{e^{-(x^2+y^2+z^2)}}{\sqrt{(x^2+y^2+z^2}}\sqrt{dV}[/tex]

E is the region bounded by the spheres which are,

[tex]x^2+y^2+z^2=1\\\\x^2+y^2+z^2=9[/tex]

In spherical coordinates we have,

x = r cosθ sin ∅

y = r sinθ sin∅

z = r cos∅

dV = r²sin∅ dr dθ d∅

E contains two spheres of radius 1 and 3 () respectively, the bounds will be like this,

1 ≤ r ≤ 3

0 ≤ θ ≤ 2π

0 ≤ ∅ ≤ π

Then

[tex]\int \int\int _{E } \frac{e^{-(x^2+y^2+z^2)}}{\sqrt{(x^2+y^2+z^2}}\sqrt{dV}[/tex]

[tex]\int\int\int _{E} \frac{e^{-r^2}}{r}r^2Sin\phi drd\phi d\theta\\\\2\pi \int_{0}^{\pi} \int_1^3 re^{-r^2} dr d\phi\\\\2\pi \int_1^3 re^{-r^2} dr\\\\2\pi(e^{-1}-e^{-9})[/tex]

The complete question is-

Use spherical coordinates to evaluate the triple integral ∭ee−(x2 y2 z2)x2 y2 z2−−−−−−−−−−√dv, where e is the region bounded by the spheres x2 y2 z2=1 and x2 y2 z2=9.

learn more about triple integral,

https://brainly.com/question/30404807

#SPJ4

Parts A-D. What is the value of the sample mean as a percent? What is its interpretation? Compute the sample variance and sample standard deviation as a percent as measures of rotelle for the quarterly return for this stock.

Answers

The sample mean is 2.1, the sample variance is 212.5% and the standard deviation is 14.57%

What is the sample mean?

a. The sample mean can be computed as the average of the quarterly percent total returns:

[tex](11.2 - 20.5 + 13.2 + 12.6 + 9.5 - 5.8 - 17.7 + 14.3) / 8 = 2.1[/tex]

So the sample mean is 2.1%, which can be interpreted as the average quarterly percent total return for the stock over the sample period.

b. The sample variance can be computed using the formula:

[tex]s^2 = sum((x - mean)^2) / (n - 1)[/tex]

where x is each quarterly percent total return, mean is the sample mean, and n is the sample size. Plugging in the values, we get:

[tex]s^2 = (11.2 - 2.1)^2 + (-20.5 - 2.1)^2 + (13.2 - 2.1)^2 + (12.6 - 2.1)^2 + (9.5 - 2.1)^2 + (-5.8 - 2.1)^2 + (-17.7 - 2.1)^2 + (14.3 - 2.1)^2 / (8 - 1) = 212.15[/tex]

So the sample variance is 212.15%. The sample standard deviation can be computed as the square root of the sample variance:

[tex]s = \sqrt(s^2) = \sqrt(212.15) = 14.57[/tex]

So the sample standard deviation is 14.57%.

c. To construct a 95% confidence interval for the population variance, we can use the chi-square distribution with degrees of freedom n - 1 = 7. The upper and lower bounds of the confidence interval can be found using the chi-square distribution table or calculator, as follows:

upper bound = (n - 1) * s^2 / chi-square(0.025, n - 1) = 306.05

lower bound = (n - 1) * s^2 / chi-square(0.975, n - 1) = 91.91

So the 95% confidence interval for the population variance is (91.91, 306.05).

d. To construct a 95% confidence interval for the standard deviation (as percent), we can use the formula:

lower bound = s * √((n - 1) / chi-square(0.975, n - 1))

upper bound = s * √((n - 1) / chi-square(0.025, n - 1))

Plugging in the values, we get:

lower bound = 6.4685%

upper bound = 20.1422%

So the 95% confidence interval for the standard deviation (as percent) is (6.4685%, 20.1422%).

Learn more on sample mean here;

https://brainly.com/question/26941429

#SPJ1

Question 13 (2 points)
Suppose you flip a coin and then roll a die. You record your result. What is the
probability you flip heads or roll a 3?
1/2
3/4
7/12
1

Answers

Step-by-step explanation:

a probability is always the ratio

desired cases / totally possible cases

we have 2 possible cases for the coin and 6 possible cases for the die.

so, we have 2×6 = 12 combined possible cases :

heads, 1

heads, 2

heads, 3

heads, 4

heads, 5

heads, 6

tails, 1

tails, 2

tails, 3

tails, 4

tails, 5

tails, 6

out of these 12 cases, which ones (how many) are desired ?

all first 6 plus (tails, 3) = 7 cases

so, the correct probability is

7/12

formally that is calculated :

1/2 × 6/6 + 1/2 × 1/6 = 6/12 + 1/12 = 7/12

the probability to get heads combined with the probability to roll anything on the die, plus the probability to get tails combined with the probability to roll 3.

the c on the left has blank1 - word answer please type your answer to submit electron geometry and a bond angle of

Answers

The CH3-CIOI-CNI molecule contains three carbon atoms with different electron geometries and bond angles. The CH3 and CIOI carbon atoms have tetrahedral geometry with a bond angle of approximately 109.5 degrees, while the CNI carbon atom has a trigonal planar geometry with a bond angle of approximately 120 degrees.

Using this Lewis structure, we can determine the electron geometry and bond angle for each carbon atom in the molecule as follows.

The carbon atom in the CH3 group has four electron domains (three bonding pairs and one non-bonding pair). The electron geometry around this carbon atom is tetrahedral, and the bond angle is approximately 109.5 degrees.

The carbon atom in the CIOI group has four electron domains (two bonding pairs and two non-bonding pairs). The electron geometry around this carbon atom is also tetrahedral, and the bond angle is approximately 109.5 degrees.

The carbon atom in the CNI group has three electron domains (one bonding pair and two non-bonding pairs). The electron geometry around this carbon atom is trigonal planar, and the bond angle is approximately 120 degrees.

Therefore, the electron geometry and bond angle for each carbon atom in the structure CH3-CIOI-CNI are:

CH3 carbon atom tetrahedral geometry, bond angle of approximately 109.5 degrees

CIOI carbon atom tetrahedral geometry, bond angle of approximately 109.5 degrees

CNI carbon atom trigonal planar geometry, bond angle of approximately 120 degrees

To know more about electron geometry:

https://brainly.com/question/7558603

#SPJ4

_____The given question is incomplete, the complete question is given below:

Determine the electron geometry and bond angle for each carbon atom in the structure CH3-CIOI-CNI

please help me with math quiz i’ll give you brainlist

Answers

The correct answer is Skewed

Answer:

Answer: B. Symmetric.

Explanation:

In a symmetric distribution, the data is evenly distributed around the mean or median, creating a mirror image on both sides of the center. In this histogram, the median and mean are very close together at 55 and the bars on both sides of the center are roughly equal in height, indicating a fairly even distribution. Therefore, the histogram is symmetric.

Solve please geometry, solve for x

Answers

Answer: The answer is D

Step-by-step explanation:

Pythagorean theorem: a²+b²=c²

x²+x²=14²

2x²=196

Evaluate...

x=7√2

The Nutty Professor sells cashews for $6.80 per pound and Brazil nuts for $4.20 per pound. How much of each type should be used to make a 35 pound mixture that sells for $5.31 per pound?

Answers

The Nutty Prοfessοr shοuld use apprοximately 14.94 pοunds οf cashews and 35 - 14.94 = 20.06 pοunds οf Brazil nuts tο make a 35 pοund mixture that sells fοr $5.31 per pοund.

Assume the Nutty Prοfessοr makes a 35-pοund mixture with x pοunds οf cashews and (35 - x) pοunds οf Brazil nuts.

The cashews cοst $6.80 per pοund, sο the tοtal cοst οf x pοunds οf cashews is $6.8x dοllars.

Similarly, Brazil nuts cοst $4.20 per pοund, sο (35 - x) pοunds οf Brazil nuts cοst 4.2(35 - x) dοllars.

The tοtal cοst οf the mixture equals the sum οf the cashew and Brazil nut cοsts, which is:

6.8x + 4.2(35 - x) (35 - x)

When we simplify, we get:

6.8x + 147 - 4.2x

2.6x + 147

The mixture sells fοr $5.31 per pοund, sο the tοtal revenue frοm selling 35 pοunds οf the mixture is:

35(5.31) = 185.85

When we divide the tοtal cοst οf the mixture by the tοtal revenue, we get:

2.6x + 147 = 185.85

Subtractiοn οf 147 frοm bοth sides yields:

2.6x = 38.85

When we divide by 2.6, we get:

x ≈ 14.94

Tο make a 35-pοund mixture that sells fοr $5.31 per pοund, the Nutty Prοfessοr shοuld use apprοximately 14.94 pοunds οf cashews and 35 - 14.94 = 20.06 pοunds οf Brazil nuts.

To know more pοunds visit:

https://brainly.com/question/29145297

#SPJ1

Use the power of a power property to simplify the numeric expression.

(91/4)^7/2

Answers

Using the power property to simplify the expression (9¹⁺⁴)⁷⁺², we have 9^7/8


Using the power property to simplify the numeric expression.

Given the expression

(9¹⁺⁴)⁷⁺²

To simplify this expression using the power of a power property, we need to multiply the exponents:

(9¹⁺⁴)⁷⁺² = 9(¹⁺⁴ ˣ ⁷⁺²)

Simplifying the exponents in the parentheses:

(9¹⁺⁴)⁷⁺² = 9⁷⁺⁸ or 9^7/8

Therefore, (9¹⁺⁴)⁷⁺² simplifies to 9^(7/8).

Read more about expression at

https://brainly.com/question/4344214

#SPJ1

The roots of a quadratic equation a x +b x +c =0 are (2+i √2)/3 and (2−i √2)/3 . Find the values of b and c if a = −1.

Answers

[tex]\begin{cases} x=\frac{2+i\sqrt{2}}{3}\implies 3x=2+i\sqrt{2}\implies 3x-2-i\sqrt{2}=0\\\\ x=\frac{2-i\sqrt{2}}{3}\implies 3x=2-i\sqrt{2}\implies 3x-2+i\sqrt{2}=0 \end{cases} \\\\\\ \stackrel{ \textit{original polynomial} }{a(3x-2-i\sqrt{2})(3x-2+i\sqrt{2})=\stackrel{ 0 }{y}} \\\\[-0.35em] ~\dotfill[/tex]

[tex]\stackrel{ \textit{difference of squares} }{[(3x-2)-(i\sqrt{2})][(3x-2)+(i\sqrt{2})]}\implies (3x-2)^2-(i\sqrt{2})^2 \\\\\\ (9x^2-12x+4)-(2i^2)\implies 9x^2-12x+4-(2(-1)) \\\\\\ 9x^2-12x+4+2\implies 9x^2-12x+6 \\\\[-0.35em] ~\dotfill\\\\ a(9x^2-12x+6)=y\hspace{5em}\stackrel{\textit{now let's make}}{a=-\frac{1}{9}} \\\\\\ -\cfrac{1}{9}(9x^2-12x+6)=y\implies \boxed{-x^2+\cfrac{4}{3}x-\cfrac{2}{3}=y}[/tex]

Other Questions
Martin has a spinner that is divided into four sections labeled A, B, C, and D. He spins the spinner twice. PLEASE ANSWER RIGHT HELP EASY THANK UUDrag the letter pairs into the boxes to correctly complete the table and show the sample space of Martin's experiment.. Maria purchased 1,000 shares of stock for $35. 50 per share in 2014. She sold them in 2016 for $55. 10 per share. Express her capital gain as a percent, rounded to the nearest tenth of a percent in a sanger sequencing reaction, deoxyribonucleotides terminate a replicating segment of dna, while dideoxyribonucleotides allow it to continue.T/F ne al Compute the derivative of the given function. TE f(x) = - 5x^pi+6.1x^5.1+pi^5.1 TRUE/FALSE.Crowdsourcing occurs when companies invite other employees to contribute to particular goals and manage that process via the Internet. 10) Find the vertex form of the parabola. an organization provides in service treatment for alcoholic clients and receives virutally all of these referrals from the family service agencies this is an example of what kind of relationship? true/false. the birth of information technology such as texting and email is giving firms and employees increased flexibility to choose while staying competitive. The LIBOR zero curve is flat at 5% (continuously compounded) out to 1.5 years. Swap rates for 2- and 3-year semiannual pay swaps are 5.4% and 5.6%, respectively. Estimate the LIBOR zero rates for maturities of 2.0, 2.5, and 3.0 years. (Assume that the 2.5-year swap rate is the average of the 2- and 3-year swap rates and use LIBOR discounting.) Explain. Congress struck a blow against organized labor with the passage of the 1947 Taft-Hartley Act. Which of the following were features of this legislation?feature of the Taft-Hartley Act-granted the president the ability to suspend strikes-forced union officials to swear that they were not communists-prohibited mandatory union membership in unionized workplaces as characteristized in lecture, an oil spill is an example of: question 12 options: competition antagonism ammensalism commensalism Please help its for tmr, I only have 18 minutes leftLeo has a number of toy soldiers between 27 and 54. If he wants to group them four by four, there are none left, seven by seven, 6 remain, five by five, 3 remain. How many toy soldiers are there?The answer is 48 but I need step by step explanation which example is an exothermic reaction? responses dissolving sugar in water dissolving sugar in water melting ice melting ice dissolving ammonium nitrate in water to cool the water dissolving ammonium nitrate in water to cool the water condensation What are gases that accumulate in the atmosphere and contribute to global warming? Ralph Waldo Emerson predicted what the future of the United States would look like if the country tried to take over part of Mexico. What quotes resonates with his ideas? if x < y < z and all three are consecutive non-zero integers, then which of the following must be a positive odd integer? In the figure, curves A-D depict per capita rate increases (r). Which of the following best explains the difference between the shapes of these curves? Marked individuals have the same probability of being recaptured as unmarked individuals during the recapture phase. In the 1920s how many U.S. workers were annually replaced by machines? what is the Taylor's series for 1+3e^(x)+x^2 at x=0 if the measure of and acute angle is represented by x, then the measure of the angle that it is complementary which is represented by 90-x