Answer:
Rational, integer, natural, whole, rational numbers
Step-by-step explanation:
17 is a rational, integer, natural, whole, and is a rational number. I'm not totally sure why rational is on there, since rational and rational number should be the same thing. Basically it's everything but "only". If rational is supposed to mean irrational, then it's not irrational.
Write the equation of a circle with a center at (12, 6) and a radius of 6.
Answer:
(x-12)² + (y-6)² = 36 (Option C)
Step-by-step explanation:
use circle formula
(x-h)² + (y-k)²= r²
h= 12 and k= 6 and r= 6
(x-12)² + (y-6)² = 6²
6 squared = 36 (6·6)
(x-12)² + (y-6)² = 36
Tatenda takes ttt seconds to mow a square meter of lawn and Ciara takes ccc seconds to mow a square meter of lawn. Tatenda mows 700700700 square meters of lawn per week and Ciara mows 750750750 square meters of lawn per week. Which expressions can we use to describe how many more seconds Tatenda spends than Ciara spends mowing lawns during 444 weeks? Choose 2 answers: Choose 2 answers: (Choice A) A 4(750c-700t)4(750c−700t)4, left parenthesis, 750, c, minus, 700, t, right parenthesis (Choice B) B 3000c+2800t3000c+2800t3000, c, plus, 2800, t (Choice C) C 2800t-3000c2800t−3000c2800, t, minus, 3000, c (Choice D) D 4(700t-750c)4(700t−750c)4, left parenthesis, 700, t, minus, 750, c, right parenthesis (Choice E) E 4(700t+750c)4(700t+750c)
Answer:
C.) 4(750c-700t) ; D.) 2800t - 3000c
Step-by-step explanation:
Time taken :
Tatenda = t sec/m^2
Ciara = c sec/m^2
Tatenda = 700m^2 per week
Ciara = 750m^2 per week
Which expressions can we use to describe how many more seconds Tatenda spends than Ciara spends mowing lawns during 4
Total Time taken over four weeks :
Tatenda = 4(t * 700) = 4(700c)
Ciara = 4(c * 750) = 4(750c )
Number of seconds Tatenda spends more than Ciara : meaning Tatenda spends more seconds than
Tatenda - Ciara
4(700t) - 4(750c) = 4(700t - 750c)
4(700t - 750c)
Or
4(700t - 750c) = 2800t - 3000c
2800t - 3000c
How many solutions does the nonlinear system of equations graphed below
have?
y
10+
-10
10
-10
A. One
B. Two
0
O
C. Four
O
D. Zero
Answer:
D. zero
Step-by-step explanation:
Since the graphs do not intersect, there are zero solutions.
The number of solutions on the graph is zero
How to determine the number of solutions?The graph shows a linear equation (the straight line) and a non linear equation (the curve)
From the graph, we can see that the straight line and the curve do not intersect
This means that the graph do not have any solution
Hence, the number of solutions on the graph is zero
Read more about non-linear graphs at:
https://brainly.com/question/16274644
#SPJ5
Please answer this question now
Answer:
156.6 square yards
Step-by-step explanation:
To find the surface area of the pyramid, find the area of each surface and add them together.
formula for area of a triangle = 1/2(b·h)
1. There are three triangles with a base of 9 and a height of 9
1/2(9·9) = 40.5
Multiply by the three triangles
40.5 · 3 = 121.5
2. There is one triangle with a base of 9 and a height of 7.8
1/2(9·7.8) = 35.1
3. Add the areas of all surfaces
121.5 + 35.1 = 156.6
In a naval engagement, one-third of the fleet was captured, one-sixth was sunk, and two ships were destroyed by fire. One-seventh of the surviving ships were lost in a storm after the battle. Finally, the twenty-four remaining ships sailed home. How many ships were in the fleet before the engagement?
Answer:
60 ships.
Step-by-step explanation:
Let the total number of ships in the naval fleet be represented by x
One-third of the fleet was captured = 1/3x
One-sixth was sunk = 1/6x
Two ships were destroyed by fire = 2
Let surviving ships be represented by y
One-seventh of the surviving ships were lost in a storm after the battle = 1/7y
Finally, the twenty-four remaining ships sailed home
The 24 remaining ships that sailed home =
y - 1/7y = 6/7y of the surviving fleet sailed home.
Hence
24 = 6/7y
24 = 6y/7
24 × 7/ 6
y = 168/6
y = 28
Therefore, total number of ships that survived is 28.
Surviving ships lost in the storm = 1/7y = 1/7 × 28 = 4
Total number of ships in the fleet(x) =
x = 1/3x + 1/6x + 2 + 28
Collect like terms
x - (1/3x + 1/6x) = 30
x - (1/2x) = 30
1/2x = 30
x = 30 ÷ 1/2
x = 30 × 2
x = 60
Therefore, ships that were in the fleet before the engagement were 60 ships.
use the formula S = 40,000 (1.06)t to calculate your salary after 4 years. Round your answer to the nearest dollar.
a. $42,400
b. $44,944
c. $47,641
d. $50,499
Answer:
d. $50,499
Step-by-step explanation:
Given:
S = 40,000 (1.06)^t
Where,
t=4 years
S=40,000(1.06)^4
=40,000(1.26247696)
=50,499.0784
To the nearest dollar
S=$50,499
The answer is d. $50,499
If the sphere shown above has a radius of 17 units, then what is the approximate volume of the sphere?
A.
385.33 cubic units
B.
4,913 cubic units
C.
6,550.67 cubic units
D.
3,275.34 cubic units
Answer:
20582.195 unitsStep-by-step explanation:
This problem is on the mensuration of solids.
A sphere is a solid shape.
Given data
radius of sphere = 17 units
The volume of a sphere can be expressed as below
[tex]volume = \frac{4}{3}\pi r^3[/tex]
Substituting our data into the expression we have
[tex]volume = \frac{4}{3}*3.142*17^3[/tex]
[tex]volume = \frac{4}{3}*3.142*4913\\\\volume = \frac{61746.584}{3}= 20582.195[/tex]
The volume of the sphere is given as
20582.195 units
What is the value of w? inscribed angles (Image down below)
Answer:
w = 100°
Step-by-step explanation:
Opposite angles in an inscribed quadrilateral in a circle are supplementary.
Therefore, [tex] w + 80 = 180 [/tex]
Subtract 80 from both sides
[tex] w + 80 - 80 = 180 - 80 [/tex]
[tex] w = 100 [/tex]
The value of w = 100°
PLEASE help me solve this question! No nonsense answers please!
Answer:
[tex]\boxed{\sf Option \ 1}[/tex]
Step-by-step explanation:
The profit is revenue (R ) - costs (C ).
Subtract the expression of costs (C ) from revenue (R ).
[tex]10x-0.01x^2-(2x+100)[/tex]
Distribute negative sign.
[tex]10x-0.01x^2-2x-100[/tex]
Combine like terms.
[tex]8x-0.01x^2-100[/tex]
The first option has a positive 100, which is wrong.
The rest options are right, when we expand brackets the result is same.
How many triangles exist with the given side lengths? 2mm,6mm,10mm
Answer:
Zero
Step-by-step explanation:
2+6=8 which means it can't be. It has to be a length higher than 10
Could someone clarrify this for me Factor completely 3x^2 + 2x − 1. (3x + 1)(x − 1) (3x + 1)(x + 1) (3x − 1)(x + 1) (3x − 1)(x − 1)
Answer:
(3x-1) (x+1)
Step-by-step explanation:
3x^2 + 2x − 1
3x^2 factors into 3x and x
-1 factors into -1 and 1
We want a postive 2x
(3x-1) (x+1)
Answer:
(3x-1)(x+1)
Step-by-step explanation:
3x² + 2x − 1
when factorizing , first look at the constant number( in this case it is 1 prime number), then find the GCF if found.
(3x )(x ) first step : 3x*x=3x^2
(3x- ) (x+ ) the sign for the constant is minus so the factoring has to be minus and plus on each side
(3x-1)(x+1) look at the 2x it has positive sign, means the sign is plus:
3x-1
x+1
regular standard multiplication
3x(x)-1(x)+1(3x)-1
3x²+2x-1
The quotient of x^2+x-6/x^2-6x+5*x^2+2x-3/x^2-7x+10 has ___ in the numerator and ______ in the denominator.
Answer:
So the quotient of [tex]\frac{x^{2} + x - 6}{x^{2} -6x + 5} X \frac{x^{2} + 2x - 3}{x^{2} -7x + 10}[/tex] has (x + 3)² in the numerator and (x + 5)² in the denominator.
Step-by-step explanation:
[tex]\frac{x^{2} + x - 6}{x^{2} -6x + 5} X \frac{x^{2} + 2x - 3}{x^{2} -7x + 10}[/tex]
Factorizing the expressions we have
[tex]\frac{x^{2} + 3x -2x - 6}{x^{2} -x - 5x + 5} X \frac{x^{2} + 3x - x - 3}{x^{2} -2x -5x + 10}[/tex]
[tex]\frac{x(x + 3)- 2(x + 3)}{x(x -1) - 5(x - 1)} X \frac{x(x + 3) - 1(x + 3)}{x(x - 2) - 5(x - 2)}[/tex]
[tex]\frac{(x + 3)(x - 2)}{(x - 5)(x - 1)}X\frac{(x + 3)(x - 1)}{(x - 2)(x - 5)}[/tex]
Cancelling out the like factors, (x -1) and (x - 2), we have
[tex]\frac{(x + 3)(x + 3)}{(x - 5)(x - 5)}[/tex]
= [tex]\frac{(x + 3)^{2} }{(x + 5)^{2} }[/tex]
So the quotient of [tex]\frac{x^{2} + x - 6}{x^{2} -6x + 5} X \frac{x^{2} + 2x - 3}{x^{2} -7x + 10}[/tex] has (x + 3)² in the numerator and (x + 5)² in the denominator.
What is the main difference between simplifying and solving? Which one gives you a value for a variable? How do you know the difference?
Answer:
when you simplify you continue until you get to the simplest form but when you solve you continue until you get an answer. Solving gives you a value for a variable. You mean simplify and get 2x - 10 but when you solve you continue until you get x as 5
Step-by-step explanation:
Answer: ok, so simplifying is when you make something less complex or complicated. Solving means an expression can be used for representating the solutions. for Example, say if you have the equation x+y=2x-1 is solved for the unknown x by the expression x=y+1. solving gives you the value for the variable. you know the difference by when you are simplifying you are trying to make the problem less complicated or less complex. and when you are solving you are trying to find the answer to the problem..
Step-by-step explanation:
PLEASE help me with this question!!! REALLY URGENT!
Answer:
The third table is the correct answer
Step-by-step explanation:
Here in this question, we are concerned with determine which of the tables correctly represents what an exponential function is.
An exponential function is a function of the form;
y = x^n
where the independent variable x in this case is raised to a certain exponent so as to give the results on the dependent variable axis (y-axis)
In the table, we can see that we have 2 segments, one that contains digits 1,2 and so on while the other contains purely the powers of 10.
Now, let’s set up an exponential outlook;
y = 10^x
So we have;
1 = 10^0
10 = 10^1
1/10 = 10^-1
1000 = 10^3
1/100 = 10^-2
We can clearly see here that we have an increase in the value of y, depending on the value of the exponent.
However it is only this table that responds to this successive correctness as the other tables in the answer do have a point where they fail.
For example;
10^-2 is not 10 which makes the fourth table wrong
10^4 is not 100 which makes the first table wrong
we have same error on second table too
Dr. Potter provides vaccinations against polio and measles. Each polio vaccination consists of 6 doses, and each measles vaccination consists of 3 doses. Last year, Dr. Potter gave a total of 60 vaccinations that consisted of a total of 225 doses. How many more measles vaccines did Mr. Potter give than polio? Show All Work !!
Answer:
The number of measles vaccines that Dr. Potter give than polio vaccines is 30
Step-by-step explanation:
The parameters given are;
The number of doses given in a polio vaccine = 6 doses
The number of doses given in a measles vaccine = 3 doses
The number of vaccinations given by Dr. Potter last year = 60 vaccinations
The number of doses given in the 60 vaccinations = 225 doses
Let the number of polio vaccine given last year by Dr. Potter = x
Let the number of measles vaccine given last year by Dr. Potter = y
Therefore, we have;
6 × x + 3 × y = 225.......................(1)
x + y = 60.......................................(2)
From equation (2), we have;
x = 60 - y
Substituting the derived value for x in equation (1), we get;
6 × x + 3 × y = 225
6 × (60 - y) + 3 × y = 225
360 - 6·y + 3·y = 225
360 - 225 = 6·y - 3·y
135 = 3·y
y = 45
x = 60 - y = 60 - 45 = 15
Therefore;
The number of polio vaccine given last year by Dr. Potter = 15
The number of measles vaccine given last year by Dr. Potter = 45
The number of measles vaccines that Dr. Potter give than polio vaccines = 45 - 15 = 30 vaccines.
The number of measles vaccines that Dr. Potter give than polio vaccines = 30 vaccines.
PLEASE HELP Polynomial Graph Studies Polynomials are great functions to use for modeling real-world scenarios where different intervals of increase and decrease happen. But polynomial equations and graphs can be trickier to work with than other function types. In mathematical modeling, we often create an equation to summarize data and make predictions for information not shown on the original display. In this activity, you’ll create an equation to fit this graph of a polynomial function. Part A Describe the type of function shown in the graph. Part B What are the standard form and the factored form of the function? Part C What are the zeros of the function? Part D Use the zeros to find all of the linear factors of the polynomial function. Part E Write the equation of the graphed function f(x), where a is the leading coefficient. Use the factors found in part D. Express the function as the product of its leading coefficient and the expanded form of the equation in standard form. Part F Use the y-intercept of the graph and your equation from part E to calculate the value of a. Part G Given what you found in all of the previous parts, write the equation for the function shown in the graph.
Answer:
Here's what I get
Step-by-step explanation:
Part A
The graph shows a polynomial of odd degree. It is probably a third-degree polynomial — a cubic equation.
Part B
The standard form of a cubic equation is
y = ax³ + bx² + cx + d
The factored form of a cubic equation is
y = a(x - b₁)(x² + b₂x + b₃)
If you can factor the quadratic, the factored form becomes
y = a(x - c₁)(x - c₂)(x - c₃)
Part C
The zeros of the function are at x = -25, x = - 15, and x = 15.
Part D
The linear factors of the function are x + 25, x + 15, and x - 15.
Part E
y = a(x + 25)(x + 15)(x - 15) = a(x + 25)(x² - 225)
y = a(x³ + 25x² - 225x - 5625)
Part F
When x = 0, y = 1.
1 = a[0³ +25(0)² - 225(0) - 5625] = a(0 + 0 - 0 -5625) = -5625a
a = -1/5625
Part G
[tex]y = -\dfrac{1}{5625}( x^{3} + 25x^{2} - 225x - 5625)\\\\y = \mathbf{ -\dfrac{1}{5625} x^{3} - \dfrac{1}{225}x^{2} + \dfrac{1}{25} x + 1}[/tex]
Answer
Actually, the answer should be -0.0007(x+20)(x+5)(x-15)
Step-by-step explanation:
This is continuing off of the previous answer
PART C
The zeros should be (15,0), (-5,0), and (-20,0)
PART D
x - 15, x + 5, and x + 20
PART E
a(x - 15)(x + 5)(x + 20)
Standard: [tex]a(x^{3} + 10x^{2} -275x-1500)[/tex]
PART F
The y-intercept is at (0,1), so we replace the x's with 0:
1 =[tex][(0)x^{3} +10(0)x^{2} -275(0)-1500][/tex] and this gives us (0+0-0-1500) which also equals -1500
Then we do [tex]\frac{1}{-1500}[/tex] which gives us -0.0006 repeating which rounds to -0.0007
a= -0.0007
PART G
Just place the numbers where they should go and your answer is
y =-0.0007(x + 20)(x + 5)(x - 15)
the placement for (x + 20) (x + 5) and (x - 15) doesn't matter as long as they are behind -0.0007
What is the 8th term for this sequence -3, -12, -48, -192,...
Answer:
-49152
Step-by-step explanation:
The pattern is:
multiply for 4
then:
-3, -12, -48, -192, -768, -3072, -12288, -49152
A students wants to report on the number of movies her friends watch each week. The collected date are below:
0, 0, 1, 1, 2, 2, 2, 14
which measure of center is most appropriate for this situation and what's its value?
A.) Median; 1.5
B.) Median; 3
C.) Mean; 1.5
D.) Mean; 3
Answer:
A.) median; 1.5
Step-by-step explanation:
Hello!
The median is the number that is in the middle when the numbers are listed from least to greatest
0, 0, 1, 1, 2, 2, 2, 14
We can take one from both sides till there are one or two numbers left
0, 1, 1, 2, 2, 2
1, 1, 2, 2
1, 2
If there are two numbers left we add them then divide by 2 to get the median
1 + 2 = 3
3 / 2 = 1.5
The answer is A.) median; 1.5
Hope this helps!
Use distributive property to evaluate the expression 5(4/1/5)
Answer:
21
Step-by-step explanation:
4[tex]\frac{1}{5}[/tex] = [tex]\frac{21}{5}[/tex]
5 × [tex]\frac{21}{5}[/tex] = (5×21)/5
[tex]\frac{105}{5}[/tex] = 21
Kapil deposited Rs. 1600 in a bank on 1st January 2005. Find the amount in his bank account on 1st January 2006, if the bank pays interest at 8% per annum and the interest is calculated every year on 30th June and 31st December.
Answer:
SI=PRT/100
=10000*5*42/12*100
=1750
SI=1750
TOTAL AMOUNT=PRINCIPLE+SI
=10000+1750
=101750
Need help on the third question. how do i generalise the number of ways to win.(check the attatchment)
Answer:
2n+2 ways to win
Step-by-step explanation:
You generalize by observing patterns in the way you solve the smaller problems.
The number of winning moves is 2n+2: the total of the number of diagonals, columns, and rows.
For an n×n board, there are 2 full-length diagonals, n columns, and n rows, hence 2+n+n = 2n+2 ways to win.
The projected worth (in millions of dollars) of a large company is modeled by the equation w = 206(1.1) t. The variable t represents the number of years since 2000. What is the projected annual percent of growth, and what should the company be worth in 2011? A. 10%; $534.31 million B. 11%; $646.52 million C. 10%; $587.74 million D. 11%; $226.60 million
Answer:
Hey There!! The Correct answer is: The equation is w = 241(1.06)t
And here variable t represents the number of years since 2000.
In 2001 means t=2001 -2000 = 1
So we plug 1 for t in the given expression , that is w = 241(1.06)1 = 241 * 1.06 = 255.46
Therefore in 2001, it should be worth to 255.46.
And in the given expression 1.06=1 +0.06, where 0.06 is the annual percent of growth that is 6 % .
Hope It Helped!~ ♡
ItsNobody~ ☆
The projected annual percent of growth is 10% and the company worth in 2011 will be $587.74 millions. Then the correct option is C.
What is an exponent?Consider the function:
y = a (1 ± r) ˣ
Where x is the number of times this growth/decay occurs, a = initial amount, and r = fraction by which this growth/decay occurs.
If there is a plus sign, then there is exponential growth happening by r fraction or 100r %.
If there is a minus sign, then there is exponential decay happening by r fraction or 100r %.
The projected worth (in millions of dollars) of a large company is modeled by the equation is given as,
[tex]\rm w = 206\times (1.10)^t\\\\w = 206\times (1+0.10)^t[/tex]
Then the projected annual percent of growth is 10%.
The variable t represents the number of years since 2000.
Then the company worth in 2011 will be
w = 206 × 1.1¹¹
w = $587.74 millions
The projected annual percent of growth is 10% and the company worth in 2011 will be $587.74 millions.
Then the correct option is C.
More about the exponent link is given below.
https://brainly.com/question/5497425
#SPJ2
Helppppp!!!! Thank you
Greetings from Brasil...
In a triangle the sum of the internal angles is 180 °.... Thus,
Ô = 180 - 30
Ô = 60
The desired area is the area of the rectangle triangle, minus the area of the circular sector whose angle 60
A1 = area of the rectangle triangle
TG B = OA/AB
AB = OA / TG B
AB = 6 / TG 30
AB = 6√3
A1 = (AB . OA)/2
A1 = (6√3 . 6)/2
A1 = 18√3A2 = area of the circular sector
(rule of 3)
º area
360 ------------ πR²
60 ------------ X
X = 60πR²/360
X = 6π
So,
A2 = 6πThen the area shaded is:
A = A1 - A2
A = 18√3 - 6π20 POINTS! ***CORRECT*** ANSWER GETS BRAINLIEST!!!!
The fraction model below shows the steps that a student performed to find a quotient.
Which statement best interprets the quotient?
A. There are 5 1/6 three-fourths in 4 1/8
B. There are 5 1/6 three and one-eights in 3/4
C. There are 5 1/2 three and one-eights in 3/4
D. There are 5 1/2 three-fourths in 4 1/8
Answer:
(D) There are [tex]5 \frac{1}{2}[/tex] three-fourths in [tex]4 \frac{1}{8}[/tex]
Step-by-step explanation:
We can see that in this model, the student tried to put [tex]\frac{3}{4}[/tex] into [tex]4 \frac{1}{8}[/tex]. We know this because the top of Step 2 is [tex]4 \frac{1}{8}[/tex] and he is counting how many fourths in the bottom.
So this becomes the division statement:
[tex]4 \frac{1}{8} \div \frac{3}{4}[/tex].
We can convert [tex]4 \frac{1}{8}[/tex] into a mixed number by multiplying 8 and 4, then adding 1.
[tex]\frac{33}{8} \div \frac{3}{4}[/tex].
Multiply by the reciprocal:
[tex]\frac{33}{8} \cdot \frac{4}{3} = \frac{132}{24}[/tex]
Which simplifies down to
[tex]\frac{11}{2}[/tex], which is just [tex]5 \frac{1}{2}[/tex] in improper form.
Hope this helped!
Answer:
D
Step-by-step explanation:
Let f (x) = |2). Write a function g whose graph is a vertical shrink by a factor of
followed by a translation 2 units up of the graph of f.
Answer:
This is poorly written, so i will answer it as it was:
"Let f (x) = |2). Write a function g(x) whose graph is a vertical shrink by a factor of A, followed by a translation 2 units up of the graph of f."
I don't really know what you do mean by I2), so i will answer it in a general way.
First, we do a vertical shrink of factor A.
A must be a number smaller than one and larger than zero., then if g(x) is a vertical shrink of factor A of the graph of f(x), we have that:
g(x) = A*f(x)
As 0 < A < 1
We will have that the graph of g(x) is a vertical compression of the graph of f(x)
Now we do a vertical shift of 2 units up.
A general vertical shift of N units up is written as:
g(x) = f(x) + N
Where N is a positive number.
So in our case, we have:
g(x) = A*f(x) + 2.
Where you will need to replace the values of A and f(x) depending on what the actual question says,
Please Help me with this math question
what is mean absolute deviation (MAD) and how do I find it?
Steps to find MAD:
Step 1. Calculate mean([tex]\overline{x}[/tex]) of the data using formula: [tex]\overline{x}=\dfrac{\sum x}{n}[/tex] , where x denotes data points and n is the number of data points.
Step 2. Calculate distance of each data point from mean :
Distance = [tex]|x-\overline{x}|[/tex]
Step 3. Divide distance of each data point from mean by n:
MAD = [tex]\dfrac{\sum |x-\overline{x}|}{n}[/tex] , which is the final computation to find MAD.
(a²b²-c²)(a²b²+c²)
simplify
Answer:
a⁴b⁴ - c⁴
Step-by-step explanation:
The difference of squares formula states that (a - b)(a + b) = a² - b². In this case, a = a²b² and b = c² so a² - b² = (a²b²)² - (c²)² = a⁴b⁴ - c⁴.
Answer:
a^4b^4 - c^4.
Step-by-step explanation:
(a²b²-c²)(a²b²+c²)
Difference of 2 squares:
= (a²b²)^2 - (c²)^2
= a^4b^4 - c^4.
If f(x) = 4x + 15, then f(-3) = ?
Answer:
[tex]\Huge \boxed{3}[/tex]
Step-by-step explanation:
The function is given :
f(x) = 4x + 15
For f(-3), the input for the function f(x) is -3.
Replace the x variable with -3.
f(-3) = 4(-3) + 15
Evaluate.
f(-3) = -12 + 15
f(-3) = 3
The output for f(-3) is 3.
Answer: f(-3) = 3
Step-by-step explanation: Notice that f is a function of x.
So we want to find f(-3).
We find f(-3) by plugging -3 in for x,
everywhere that x appears in the function.
So we have 4(-3) + 15.
4(-3) is -12 so we have -12 + 15 which is 3.
So f(-3) is 3.
how do you find the length of the hypotenuse when you have only the length of the altitude of the hypotensuse and a length of a leg?
Answer:
By using The Pythagorean Theorem:
[tex]/Hypotenuse/^{2} = /Length of altitude/^{2} + /Length of leg/^{2} \[/tex]
/Hypotenuse/ = [tex]\sqrt\ /Length of altitude/^{2} + /Length of leg/^{2} \}[/tex]
Step-by-step explanation:
The Pythagorean theorem states that: Given a Right-angled triangle, the square of the hypotenuse equals the sum of squares of the other two sides ( Here, being the length of the altitude and length of leg). That is,
[tex]/Hypotenuse/^{2} = /Length of altitude/^{2} + /Length of leg/^{2} \[/tex] and hence,
/Hypotenuse/ = [tex]\sqrt\ /Length of altitude/^{2} + /Length of leg/^{2} \}[/tex]
For example, If the length of the altitude is 4m and the length of leg is 3m. Using The Pythagorean theorem, the length of the hypotenuse will be
[tex]/Hypotenuse/^{2} = /Length of altitude/^{2} + /Length of leg/^{2} \\\/Hypotenuse/ = \sqrt{/Length of altitude/^{2} + /Length of leg/^{2}} \\/Hypotenuse/ = \sqrt{4^{2} + 3^{2} }[/tex]
[tex]/Hypotenuse/ = \sqrt{16+9} \\/Hypotenuse/ = \sqrt{25} \\/Hypotenuse/ = 5m[/tex]
The length of the hypotenuse for the given example will be 5m.
This is how to find the length of an hypotenuse.