Answer:
Composition and vertical translation must be done in the parent function.
Step-by-step explanation:
Let be [tex]j(x)[/tex] the parent function, if [tex]g(x) = j(4\cdot x) -27[/tex], then two transformation must be done in the following order:
Composition
[tex]j \circ h (x) \rightarrow j(h(x))[/tex], where [tex]h(x) = 4\cdot x[/tex]
Vertical translation
[tex]g(x) = j(4\cdot x) -27[/tex]
Composition and vertical translation must be done in the parent function.
Answer: Option D
Horizontal compression by a factor of 1/4, and a translation 27 units down
5
What is the equation, in point-slope form, of the line that
is parallel to the given line and passes through the point
(-3, 1)?
4
3
2
(-3, 1)
42.27
1
5 4 3 2 1
2 3 4 5 x
y-1=-{(x+3)
y-1=-{(x + 3)
y-1= {(x + 3)
y-1= {(x + 3)
(-2, 4)
Answer: [tex]y-1=\dfrac32(x+3)[/tex]
Step-by-step explanation:
Slope of a line passes through (a,b) and (c,d) = [tex]\dfrac{d-b}{c-a}[/tex]
In graph(below) given line is passing through (-2,-4) and (2,2) .
Slope of the given line passing through (-2,-4) and (2,2) =[tex]\dfrac{-4-2}{-2-2}=\dfrac{-6}{-4}=\dfrac{3}{2}[/tex]
Since parallel lines have equal slope . That means slope of the required line would be .
Equation of a line passing through (a,b) and has slope m is given by :_
(y-b)=m(x-a)
Then, Equation of a line passing through(-3, 1) and has slope = is given by
[tex](y-1)=\dfrac32(x-(-3))\\\\\Rightarrow\ y-1=\dfrac32(x+3)[/tex]
Required equation: [tex]y-1=\dfrac32(x+3)[/tex]
If the sphere shown above has a radius of 17 units, then what is the approximate volume of the sphere?
A.
385.33 cubic units
B.
4,913 cubic units
C.
6,550.67 cubic units
D.
3,275.34 cubic units
Answer:
20582.195 unitsStep-by-step explanation:
This problem is on the mensuration of solids.
A sphere is a solid shape.
Given data
radius of sphere = 17 units
The volume of a sphere can be expressed as below
[tex]volume = \frac{4}{3}\pi r^3[/tex]
Substituting our data into the expression we have
[tex]volume = \frac{4}{3}*3.142*17^3[/tex]
[tex]volume = \frac{4}{3}*3.142*4913\\\\volume = \frac{61746.584}{3}= 20582.195[/tex]
The volume of the sphere is given as
20582.195 units
Need help on the third question. how do i generalise the number of ways to win.(check the attatchment)
Answer:
2n+2 ways to win
Step-by-step explanation:
You generalize by observing patterns in the way you solve the smaller problems.
The number of winning moves is 2n+2: the total of the number of diagonals, columns, and rows.
For an n×n board, there are 2 full-length diagonals, n columns, and n rows, hence 2+n+n = 2n+2 ways to win.
Please answer this question now
Answer:
298.3 square centimeters
Step-by-step explanation:
We are given
Slant height (l)= 14cm
Radius (r)= 5cm
Since we are given the slant height ,
the formula for surface area of a cone =
πrl + πr²
πr(l + r)
π = 3.14
Hence,
3.14 × 5(14 + 5)
3.14 × 5(19)
= 298.3 square centimeters
How to do this question plz answer me step by step plzz plz plz plz plz plz plz plz
Answer:
288.4m
Step-by-step explanation:
This track is split into a rectangle and two semi-circles.
We can find the length of the semi-circles by finding its circumference with the formula [tex]2\pi r[/tex].
[tex]2\cdot3.14\cdot30\\188.4[/tex]
However this is half a circle, so:
[tex]188.4\div2=94.2[/tex].
There are two semi-circles.
[tex]94.2\cdot2=188.4[/tex]
Since there are two legs of 50m each, we add 100 to 188.4
[tex]188.4+100=288.4[/tex]m
Hope this helped!
Answer:
Step-by-step explanation:
To solve for the perimeter, we first look at the rectangle in the middle. the length is 50m, and there are two sides to it, so: 50 * 2 = 100m for the top and bottom of the track.
For the circle, we can see the diameter is 30m. To solve for the circumference, we need to use the formula 2πr.
15 * 2π ≈ 94.2477796077
We add that to 100m and get:
194.2477796077
Two stores sell the same computer for the same original price. Store A advertises that the computer is on sale for 25% off the original price. Store B advertises that it is reducing the computer’s price by $180. When Brittany compares the sale prices of the computer in both stores, she concludes that the sale prices are equal. Let p represent the computer’s original price. Which equation models this situation?
Answer:
p= 25/100 = 180/x
Step-by-step explanation:
In order to find the computer's original price, you must use the equation p= 25/100 = 180/x and solve for x.
Answer:
0.75p=p-180
Step-by-step explanation:
0.75p=p-180 is your answer
On Wednesday at camp, Samuel went for a hike at 6:30 A.M. The hike took 2 hours and 15 minutes. As soon as he got back from the hike, Samuel played volleyball for 1 hour. What time did Samuel finish playing volleyball?
Answer:
9:45 A.M.
Step-by-step explanation:
First, add the time that took him to hike:
6:30 + 2 hours and 15 minutes = 8:45 A.M.
Next, add the 1 hour that he played volleyball for:
8:45 + 1 hour = 9:45 A.M.
So, he finished playing volleyball at 9:45 A.M.
Answer:
9:45 am
Step-by-step explanation:
He went at 6:30 am to a hike.
It took him 2 hours 15 minutes
=> 6 : 30
+ 2 15
=> 8 : 45
He came back from the Hike at 8:45 am
He played volleyball for 1 hour.
=> 8 : 45
+ 1
=> 9 : 45
He finished playing volleyball at 9:45 am
Question 1 (
Multiple Choice Worth 3 points)
(07.04)
The cost of 3 slices of pizza is $4.89. What is the cost of each slice of pizza?
O $1.63
$1.89
O $2.45
O $2.88
Answer:
Each slice of pizza cost:
$1.63
Step-by-step explanation:
4.89/3 = 1.63
Answer:
$1.63
Step-by-step explanation:
We want to find the cost per slice of pizza. Therefore, we must divide the total cost by the number of slices of pizza.
cost / slices
It costs $4.89 for 3 slices.
$4.89 / 3 slices
Divide 4.89 by 3 (4.89/3=1.63)
$1.63 / slice
The cost of each slice of pizza is $1.63
This table represents a quadratic function.
y
x
0
14
1
10.5
2
8
3
6.5
4
5
6.5
What is the value of a in the function's equation?
A.2
B.1/2
C.-1/2
D.1
Answer:
B. 1/2
Step-by-step explanation:
y = ax^2 + bx + c
14 = a(0)^2 + b(0) + c
c = 14
10.5 = a(1)^2 + b(1) + 14
10.5 = a + b + 14 ____(i)
8 = a(2)^2 + b(2) + 14
8 = 4a + 2b + 14
4 = 2a + b + 7 ___ (ii)
i - ii
10.5 - 4 = -a + 7
6.5 = -a + 7
a = 7- 6.5
a = 0.5
Value of a in the quadratic function is 0.5
What is Quadratic function?In algebra, a quadratic function, a quadratic polynomial, a polynomial of degree 2, or simply a quadratic, is a polynomial function with one or more variables in which the highest-degree term is of the second degree
Given,
Quadratic function
y = [tex]ax^{2}+bx+c[/tex]
Consider values in the table x= 0 and y =14
[tex]14=a(0)^{2}+b(0)+c\\ c=14[/tex]
Consider x=1 and y = 10.5
[tex]10.5=a(1^{2})+b(1)+c\\ a+b=10.5-14\\a+b=-3.5[/tex]
Consider x=2 and y =8
[tex]8=a(2^{2})+b(2)+c\\ a\\8=4a+2b+14\\4a+2b=-6\\2a+b=-3[/tex]
Subtract a + b= -3.5 from 2a + b= -3
a=-3--3.5=0.5
Hence, the Value of a in the quadratic function is 0.5
Learn more about Quadratic function here
https://brainly.com/question/5975436
#SPJ2
HELP ASAP
[tex]Given that $33^{-1} \equiv 77 \pmod{508}$, find $11^{-1} \pmod{508}$ as a residue modulo 508. (Give an answer between 0 and 507, inclusive.)[/tex]
===================================================
Work Shown:
[tex]33^{-1} \equiv 77 \text{ (mod 508)}\\\\(3*11)^{-1} \equiv 77 \text{ (mod 508)}\\\\3^{-1}*11^{-1} \equiv 77 \text{ (mod 508)}\\\\3*3^{-1}*11^{-1} \equiv 3*77 \text{ (mod 508)}\\\\11^{-1} \equiv 231 \text{ (mod 508)}\\\\[/tex]
Notice how 33*77 = 2541 and 11*231 = 2541
[tex]2541 \equiv 1 \text{ (mod 508)}[/tex] since 2541/508 has a remainder of 1.
So effectively [tex]33*77 \equiv 1 \text{ (mod 508)}[/tex] and [tex]11*231 \equiv 1 \text{ (mod 508)}[/tex]
Use distributive property to evaluate the expression 5(4/1/5)
Answer:
21
Step-by-step explanation:
4[tex]\frac{1}{5}[/tex] = [tex]\frac{21}{5}[/tex]
5 × [tex]\frac{21}{5}[/tex] = (5×21)/5
[tex]\frac{105}{5}[/tex] = 21
Solve: 5x2 + 25x = 0
Answer:
x = -0.4
x = -(2/5)
Answer:
x = ± √5
Step-by-step explanation:
Please indicate exponentiation by using the symbol " ^ ":
5x^2 + 25x = 0
Divide all three terms by 5. We get:
x^2 + 5 = 0, or x^2 = -5
Then x = ± √5
PLEASE HELP ASAP!!
The image above shows two dilated figures with lines IJ and JK drawn. If the smaller figure was dilated by a scale factor of 2, what relationship do lines IJ and KL have?
Answer:
[tex] IJ = 2(KL) [/tex]
Step-by-step explanation:
From the information given, the smaller figure was dilated on a scale factor of 2, to produce the bigger figure. In essence, the bigger figure is times 2 of the smaller figure.
Therefore, line IJ would be twice the length of KL.
The relationship that both lines have can be represented as: [tex] IJ = 2(KL) [/tex]
what is the image (-9,-2) after a reflection over the x-axis ?
Answer:
(-9,2)
Step-by-step explanation:
The rule for reflecting over the x axis is
(x,y)→(x,−y)
(-9, -2) becomes ( -9, - -2) = (-9,2)
Answer:
(-9,2)
Step-by-step explanation:
It will be -9,2 because when you reflect across x axis you change the y axis not the x axis because if you imagine it it works like that
Solve for h. 3/7=h/14-2/7
Answer:
h = 10
Step-by-step explanation:
Given
[tex]\frac{3}{7}[/tex] = [tex]\frac{h}{14}[/tex] - [tex]\frac{2}{7}[/tex]
Multiply through by 14 to clear the fractions
6 = h - 4 ( add 4 to both sides )
10 = h
Answer:
10
Step-by-step explanation:
We start out with 3/7 = h/14 - 2/7
add 2/7 to both sides:
(5/7) = h/14
Multiply both sides by 14 to get rid of the fraction:
h = 10
The diagonal of rhombus measure 16 cm and 30 cm. Find it's perimeter
Answer:
P = 68 cmStep-by-step explanation:
The diagonals of the rhombus divide it into 4 congruent right triangles.
So we can use Pythagorean theorem to calculate side of a rhombus.
[tex](\frac e2)^2+(\frac f2)^2=s^2\\\\e=30\,cm\quad\implies\quad\frac e2=15\,cm\\\\f=16\,cm\quad\implies\quad\frac f2=8\,cm\\\\15^2+8^2=s^2\\\\s^2=225+64\\\\s^2=289\\\\s=17[/tex]
Perimeter:
P = 4s = 4•17 = 68 cm
A bag contains 2
2
blue marbles, 2
2
red marbles, and 2
2
yellow marbles.
If Jenna randomly draws a marble from the bag (and puts it back) 15
15
times, how many times should she expect to pull a yellow marble?
Answer:
5 times
Step-by-step explanation:
Jenna wil most likely pull a yellow marble 1/3 of the time, because the total number of marbles is 6, and there are 2 yellow marbles, 2/6 which is 1/3. 1/3 times 15 is 5. So Jenna will most likely pull a yellow marble 5 times.
How many solutions does the nonlinear system of equations graphed below
have?
y
10+
-10
10
-10
A. One
B. Two
0
O
C. Four
O
D. Zero
Answer:
D. zero
Step-by-step explanation:
Since the graphs do not intersect, there are zero solutions.
The number of solutions on the graph is zero
How to determine the number of solutions?The graph shows a linear equation (the straight line) and a non linear equation (the curve)
From the graph, we can see that the straight line and the curve do not intersect
This means that the graph do not have any solution
Hence, the number of solutions on the graph is zero
Read more about non-linear graphs at:
https://brainly.com/question/16274644
#SPJ5
Which graph solves the following system? x+2y=4 5x−2y=8
Answer:
elimination method
x+2y=4 1
5x-2y=8 2
1+2
6x=12
x=2
plug into x+2y=4
2+2y=4
2y=4-2
2y=2
y=1
(2,1)
so graph 1
Find the amplitude of y = -2 sin x
Answer:
Amplitude = 2
Step-by-step explanation:
The amplitude of this sine wave is 2 denoted by the coefficient -2 in front of the sin(x). The negative of the coefficient denotes that the sine wave is the opposite of the standard sine wave.
Cheers.
Suppose the population of a country is 100 people: 40 work full-time, 20 work half-time but would prefer to work full-time, 10 are looking for a job, 10 would like to work but are so discouraged they have given up looking, 10 are not interested in working because they are full-time students, and 10 are retired. What is the number of unemployed
Answer:
10
Step-by-step explanation:
Those people who are actively seeking for a job are counted as unemployed. Underemployment is not considered as unemployment. Those who have given up looking for jobs are also not considered as unemployed as well. Hence there are 10 unemployed people.
Consider the function represented by 9x + 3y = 12 with x as the independent variable. How can this function be
written using function notation?
O FID = - Šv
O f(x) = - 3x + 4
Of(x) = -x +
O fly) = -34+4
Answer:
f(x) = - 3x + 4
Step-by-step explanation:
Note that y = f(x)
Rearrange making y the subject
9x + 3y = 12 ( subtract 9x from both sides )
3y = - 9x + 12 ( divide all terms by 3 )
y = - 3x + 4 , that is
f(x) = - 3x + 4
Which statement correctly compares
1–201 and
1512
ol-201 = 151
ol-201 < 51
l-201 > 151
Answer:
Option B.
Step-by-step explanation:
Consider the correct question is "Which statement correctly compares
1. -201 and 151
-201 = 151
-201 < 51
-201 > 151"
The given numbers are -201 and 151. We need to compare these numbers.
We know that all negative numbers are less than positive numbers.
So,
-201 < 151
If both numbers are negative, then the larger negative number is the smaller number.
Therefore, the correct option is B.
every rational number is a
a. whole number b. natural number c. integer d. real number
Greetings from Brasil...
a - whole number
FALSE
3/5, for example isnt a whole number
b. natural number
FALSE
0,457888..., for example isnt a natural number
c. integer
FALSE - like a
d. real number
TRUE
The set of real numbers contains the set of rational numbers
ℝ ⊃ ℚ
Show that the equations x^2-7x+6=0 and y^2-14y+40=0 form a rectangle.Also find the joint equations of diagonals.
Answer:
1) The region between the four lines x = 6, x = 1, y = 4 and y = 10 describing both equations is a rectangle
2) The joint equations of diagonals are;
5·y = 56 - 6·x and 5·y = 6·x + 14.
Step-by-step explanation:
The equations are;
x² - 7·x + 6 = 0......................(1)
y² - 14·y + 40 = 0.................(2)
Factorizing equation (1) and equation (2) , we get
x² - 7·x + 6 = (x - 6)·(x - 1) = 0
Which are vertical lines at points x = 6 and x = 1
For equation (2) , we get
y² - 14·y + 40 = (y - 10)·(y - 4) = 0
Which are horizontal lines at point y = 4 and y = 10
The region between the four lines x = 6, x = 1, y = 4 and y = 10 describing both equations is a rectangle
2) The points of intersection of the equations are;
(1, 4), (1, 10), (6, 4), and (6, 10)
The end point of the diagonals are;
(1, 10), (6, 4) and (1, 4), (6, 10)
The slope of the diagonals are;
(10 - 4)/(1 - 6) = -6/5 and (4 - 10)/(1 - 6) = 6/5
The equation of one of the diagonals are then, y - 10 = -6/5×(x - 1)
y = -6/5·x + 6/5 + 10 = -6/5·x + 56/5
5·y = 56 - 6·x
The other diagonal is therefore;
y - 4 = 6/5×(x - 1)
y = 6/5·x - 6/5 + 4 = 6/5·x + 14/5
5·y = 6·x + 14.
The joint equations of diagonals are therefore;
5·y = 56 - 6·x and 5·y = 6·x + 14.
please help me i offered all my points and this is really important!!! The question is attached.
Answer:
25[tex]\sqrt{3}[/tex] +60
Step-by-step explanation: The first thing you need to do is realize that, this figure is a isosceles trapezoid due to the markings on each side.
So now we know both sides are 10.
We also know the the top two angles are congruent to each other and so are the bottom two angles due to the trapezoid being isosceles.
So the top two angles are 120 degrees and bottom two angles are 60 degrees.
It seems like we can't find the sides, let's try drawing two lines from each top angle all the way down to form two right triangles.
Wow, these two triangles are special right triangles in the form of
30 - 60 - 90 degrees.
shorter side = n
longer side = n[tex]\sqrt{3}[/tex]
hypotenuse = 2n
So, 2n = 10
n = 5 for the short side
The bottom base is 4[tex]\sqrt{3}[/tex] + 5 + 5 = 10 + 4[tex]\sqrt{3}[/tex]
The longer side is 5[tex]\sqrt{3}[/tex].
The area of trapezoid = (base1 + base2)/2 * height
= (4[tex]\sqrt{3}[/tex] + 10 + 4[tex]\sqrt{3}[/tex])/2 * 5[tex]\sqrt{3}[/tex] = (10 + 8[tex]\sqrt{3}[/tex])/2 * 5[tex]\sqrt{3}[/tex] = (5+4[tex]\sqrt{3}[/tex])*5[tex]\sqrt{3}[/tex] = 25[tex]\sqrt{3}[/tex] +60
So, 25[tex]\sqrt{3}[/tex] + 60 is our answer.
Answer:
60 +25√3
Step-by-step explanation:
In the figure of the isosceles trapezoid below, the angles at C and D are supplementary to the given angle, so are 60°. That makes triangle BDE a 30°-60°-90° right triangle, which has side length ratios ...
DE : BE : BD = 1 : √3 : 2 = 5 : 5√3 : 10
Triangle BDE can be relocated to the other end of the figure to become triangle CAD'. Then the area of concern is that of the rectangle with height 5√3 and length 5+4√3. The area is then ...
Area = lh = (5√3)(5 +4√3) = 5·5√3 +5·4·3
Area = 60 +25√3 . . . square units
_____
In the figure, 6.93 = 4√3, and 8.66 = 5√3, 16.93 = 10+4√3.
Estimate. Then determine the area. Please please please, need help!
Estimate:
2.3 rounds down to 2
So after multiplying by 2, the area is estimated to be 4 cm squared.
Actual Area:
2.3 x 2 = 4.6
The actual area of the shape is 4.6 cm squared.
Hope this helped!
Answer:
4.6
Step-by-step explanation:
make u the subject of the formula
u-x/v-x=u/v²
Answer:
See below.
Step-by-step explanation:
[tex]\frac{u-x}{v-x}=\frac{u}{v^2} \\[/tex]
Cross multiply and distribute.
[tex]u(v-x)=v^2(u-x)\\uv-ux=uv^2-xv^2[/tex]
Move all the u to the left side:
[tex]uv-ux-uv^2=-xv^2[/tex]
Factor out a u:
[tex]u(v-x-v^2)=-xv^2[/tex]
Divide:
[tex]u=\frac{-xv^2}{v-x-v^2}=\frac{xv^2}{x+v^2-v}[/tex]
(I factored out a negative in the second term.)
Ramona works in a clothing store where she earns a base salary of $140 per day plus 14% of her daily sales. She sold $600 in clothing on Saturday and $1200 in clothing on Sunday. How much did she earn over the two days? A. $252 B. $291 C. $392 D. $532
Answer:
I hope this helps!
Answer D
Step-by-step explanation:
Step-by-step explanation:
salary per day =$140
bonus on sales =14%
sales on Saturday =$600
bonus on Saturday sales=14/100*$600
=$84
sales on Sunday =$1200
bonus on Sunday sales=14/100*$1200
=$168
total amount she earned over the two days=$140+$84+$168
=$532
Please answer this question now
Answer:
156.6 square yards
Step-by-step explanation:
To find the surface area of the pyramid, find the area of each surface and add them together.
formula for area of a triangle = 1/2(b·h)
1. There are three triangles with a base of 9 and a height of 9
1/2(9·9) = 40.5
Multiply by the three triangles
40.5 · 3 = 121.5
2. There is one triangle with a base of 9 and a height of 7.8
1/2(9·7.8) = 35.1
3. Add the areas of all surfaces
121.5 + 35.1 = 156.6