What is the pOH of a solution at 25.0∘C with [H3O+]=4.8×10−6 M?

Answers

Answer 1

Answer:

8.68

Explanation:

pOH = 8.68

all you need is contained in the sheet

What Is The POH Of A Solution At 25.0C With [H3O+]=4.8106 M?
Answer 2

Answer:

Approximately [tex]8.68[/tex].

Explanation:

The [tex]\rm pOH[/tex] of a solution can be found from the hydroxide ion concentration [tex]\rm \left[OH^{-}\right][/tex] with the following equation:

[tex]\displaystyle \rm pOH = -\log_{10} \rm \left[OH^{-}\right][/tex].

On the other hand, the ion-product constant of water, [tex]K_{\text{w}}[/tex], relates the hydroxide ion concentration [tex]\rm \left[OH^{-}\right][/tex] of a solution to its hydronium ion concentration [tex]\rm \left[{H_3O}^{+}\right][/tex]:

[tex]K_\text{w} = \rm \left[{H_3O}^{+}\right] \cdot \rm \left[OH^{-}\right][/tex].

At [tex]25 \; ^\circ \rm C[/tex], [tex]K_{\text{w}} \approx 1.0 \times 10^{-14}[/tex]. For this particular [tex]25 \; ^\circ \rm C[/tex] solution, [tex]\rm \left[{H_3O}^{+}\right] = 4.8 \times 10^{-6}\; \rm mol \cdot L^{-1}[/tex].

Hence the [tex]\rm \left[OH^{-}\right][/tex] of this solution:

[tex]\begin{aligned}\left[\mathrm{OH}^{-}\right] &= \frac{K_\text{w}}{\rm \left[{H_3O}^{+}\right]} \\ &= \frac{1.0 \times 10^{-14}}{4.8 \times 10^{-6}}\; \rm mol\cdot L^{-1} \approx 2.08333 \times 10^{-9}\; \rm mol\cdot L^{-1}\end{aligned}[/tex].

Therefore, the [tex]\rm pOH[/tex] of this solution would be:

[tex]\begin{aligned}\rm pOH &= -\log_{10} \rm \left[OH^{-}\right] \\ &\approx -\log_{10} \left(4.8 \times 10^{-6}\right) \approx 8.68\end{aligned}[/tex].

Note that by convention, the number of decimal places in [tex]\rm pOH[/tex] should be the same as the number of significant figures in [tex]\rm \left[OH^{-}\right][/tex].

For example, because the [tex]\rm \left[{H_3O}^{+}\right][/tex] from the question has two significant figures, the [tex]\rm \left[OH^{-}\right][/tex] here also has two significant figures. As a result, the [tex]\rm pOH[/tex] in the result should have two decimal places.


Related Questions

Testbank Question 47 Consider the molecular orbital model of benzene. In the ground state how many molecular orbitals are filled with electrons?

Answers

Answer:

There are fifteen molecular orbitals in benzene filled with electrons.

Explanation:

Benzene is an aromatic compound. Let us consider the number of bonding molecular orbitals that should be present in the molecule;

There are 6 C-C σ bonds, these will occupy six bonding molecular orbitals filled with electrons.

There are 6 C-H σ bonds, these will occupy another six molecular orbitals filled with electrons

The are 3 C=C π bonds., these will occupy three bonding molecular pi orbitals.

All these bring the total number of bonding molecular orbitals filled with electrons to fifteen bonding molecular orbitals.

Does the amount of methanol increase, decrease, or remain the same when an equilibrium mixture of reactants and products is subjected to the following changes?

a. the catalyst is removed
b. the temp is increased
c. the volume is decreased
d. helium is added
e. CO is added

Answers

Answer:

a. Methanol remains the same

b. Methanol decreases

c. Methanol increases

d. Methanol remains the same

e. Methanol increases

Explanation:

Methanol is produced by the reaction of carbon monoxide and hydrogen in the presence of a catalyst as follows; 2H2+CO→CH3OH.

a) The presence or absence of a catalyst makes no difference on the equilibrium position of the system hence the methanol remains constant.

b) The amount of methanol decreases because the equilibrium position shifts towards the left and more reactants are formed since the reaction is exothermic.

c) If the volume is decreased, there will be more methanol in the system because the equilibrium position will shift towards the right hand side.

d) Addition of helium gas has no effect on the equilibrium position since it does not participate in the reaction system.

e) if more CO is added the amount of methanol increases since the equilibrium position will shift towards the right hand side.

If one pound is the same as 454 grams, then convert the mass of 78 grams to pounds.

Answers

Answer:

0.17 lb

Explanation:

78 g * (1 lb/454 g)=0.17 lb

If you want additional help with chemistry or another subject for FREE, check out growthinyouth.org.

i) Briefly discuss the strengths and weaknesses of the four spectroscopy techniques listed below. Include in your answer the specific structural information you get from each method.
 IR
 UV-VIS
 NMR
 Mass Spec

Answers

delete please .....................................

I add a 50. g piece of Al (c = 0.88 J/g-deg) that is at 225°C to 100. mL of water at 20°C. What is the final temperature of the water in °C? The density of water is approximately 1g/mL.

Answers

Answer:

THE FINAL TEMPERATURE OF WATER IS -4.117 °C

Explanation:

Mass of the aluminium = 50 g

c = 0.88 J/g C

Initial temperature of aluminium = 225 °C

Volume of water = 100 ml

Density of water = 1 g/ml

Mass of water = density * volume of water

Mass of water = 1 * 100 = 100 g of water

Initial temperature of water = 20 C

It is worthy to note that the heat of a system is constant and conserved as no heat is lost or gained by a closed system,

So therefore,

heat lost by aluminium = heat gained by water

H = mass * specific heat capacity * temeprature change

So:

m c ( T2- T1) = m c (T2-T1)

50 * 0.88 * ( T2 - 225) = 100 * 4.18 *( T2 - 20)

44 ( T2 - 225 ) = 418 ( T2 - 20)

44 T2 - 9900 = 418 T2 - 8360

-9900 + 8360 = 418 T2 - 44 T2

-1540 = 374 T2

T2 = - 4.117

So therefore the final temperature of water is -4.117 °C

What is the mass number of an element

Answers

Answer:

A (Atomic mass number or Nucleon number)

Explanation:

The mass number is the total number of protons and nucleons in an atomic nucleus.

Hope this helps.

Please mark Brainliest...

Identify four general properties that make an NSAID unique as compared to the NSAID aspirin. List specific properties that make aspirin, naproxen, and ibuprofen unique from one another

Answers

Answer:

NSAIDs are steroidal anti-inflammatories, their action is on the phospholipase A2 enzyme, this enzyme is responsible for breaking down the phospholipids of the membrane to trigger an inflammatory response. This is how steroidal anti-inflammatory drugs inhibit ALL inflammatory pathways (not like NSAIDs that they only inhibit the COX pathway).

These corticosteroid drugs cannot exceed the systemic mineralocorticoid value 1 in the body, since this corticosteroid hormone is also released by the adrenal cortex.

The NSAIDs generate: sporadic peaks in blood glucose, hypertension, fluid retention, increase in body fat mass, possible suppression of the adrenal cortex over time, inhibiting endogenous synthesis of corticosteroids.

On the other hand, naproxen and ibuprofen are NSAIDs, that is, non-steroidal anti-inflammatory drugs that do not influence both routes of inflammation, but only COX, this enzyme is abbreviated as COX but is called cyclooxygenase, and is responsible for a single route of inflammation.

NSAIDs such as naproxen and ibuprofen can cause gastric disorders such as ulcers or gastritis if they are consumed in a very repetitive manner.

In addition, both drugs are anti-inflammatory, analgesic and antipyretic. Although its two main functions are the first two, it was shown to have an effect in lowering body temperature.

That they are anti-inflammatory means that they inhibit the path of inflammation and analgesics the path of pain.

Explanation:

Both types of drugs generate the same effect but by different mechanisms.

Some are steroids and others are not, although steroids are considered to have a greater risk of benefit that is why they are administered against more systematically compromised instances such as anaphylactic shock.

NSAIDs such as naproxen and ibuprofen are the most prescribed today, since they have few risks and very good benefits, meaning that their adverse effects are not lethal or highly relevant and have a good effect on symptoms.

Both must be administered with care when treating a diabetic patient since corticosteroids generate glycemic peaks or increase in blood glucose, and NSAIDs compete for plasma protein with oral hypoglycemic agents, thus generating that these are in higher free concentrations. high diffusing better through the tissues and increases the potency of the adverse effects of these.

Calculate the pH of a solution formed by mixing 250.0 mL of 0.15 M NH4Cl with 200.0 mL of 0.12 M NH3. The Kb for NH3 is 1.8 × 10-5.

Answers

Answer:

The pH of the solution is 9.06.

Explanation:

The reaction of the dissociation of NH₃ in water is:

NH₃(aq) + H₂O(l)  ⇄  NH₄⁺(aq) + OH⁻(aq)     (1)

[NH₃] - x                     [NH₄⁺] + x     x  

The concentration of NH₃ and NH₄⁺ is:

[tex] [NH_{3}] = \frac{n_{NH_{3}}}{V_{T}} = \frac{C_{i}_{(NH_{3})}*Vi_{NH_{3}}}{V_{NH_{3}} + V_{NH_{4}^{+}}} = \frac{0.12 M*0.2 L}{0.2 L + 0.25 L} = 0.053 M [/tex]

[tex] [NH_{4}^{+}] = \frac{C_{i}_{(NH_{4}^{+})*V_{NH_{4}^{+}}}}{V_{NH_{3}} + V_{NH_{4}^{+}}} = \frac{0.15 M*0.25 L}{0.2 L + 0.25 L} = 0.083 M [/tex]

From equation (1) we have:

[tex]Kb = \frac{[NH_{4}^{+}][OH^{-}]}{[NH_{3}]}[/tex]

[tex] 1.8 \cdot 10^{-5} = \frac{(0.083 + x)*x}{0.053 - x} [/tex]

[tex] 1.8 \cdot 10^{-5}(0.053 - x) - (0.083 + x)*x = 0 [/tex]

By solving the above equation for x we have:

x =  1.15x10⁻⁵ = [OH⁻]

The pH of the solution is:

[tex] pOH = -log([OH^{-}]) = -log(1.15 \cdot 10^{-5}) = 4.94 [/tex]

[tex] pH = 14 - pOH = 14 - 4.94 = 9.06 [/tex]

Therefore, the pH of the solution is 9.06.

I hope it helps you!

An actacide tablet containing Mg(OH)2 (MM = 58.3g / (mol)) is titrated with a 0.100 M solution of HNO3. The end point is determined by using an indicator. Based on 20.00mL HNO3 being used to reach the endpoint, what was the mass of the Mg * (OH) in the antacid tablet? * 0.0583 g 0.583 5.83 g 58.3 g

Answers

Answer:

0.0583g

Explanation:

The equation of the reaction is;

2HNO3(aq) + Mg(OH)2(aq) -------> Mg(NO3)2(aq) + 2H2O(l)

From the question, number of moles of HNO3 reacted= concentration × volume

Concentration of HNO3= 0.100 M

Volume of HNO3 = 20.00mL

Number of moles of HNO3= 0.100 × 20/1000

Number of moles of HNO3 = 2×10^-3 moles

From the reaction equation;

2 moles of HNO3 reacts with 1 mole of Mg(OH)2

2×10^-3 moles reacts with 2×10^-3 moles ×1/2 = 1 ×10^-3 moles of Mg(OH)2

But

n= m/M

Where;

n= number of moles of Mg(OH)2

m= mass of Mg(OH)2

M= molar mass of Mg(OH)2

m= n×M

m= 1×10^-3 moles × 58.3 gmol-1

m = 0.0583g

Which of these species would you expect to have the lowest standard entropy (S°)?

a. CH4(g)
b. H2O(g)
c. NH3(g)
d. HF(g)

Answers

Answer:

d. HF(g)

Explanation:

Hello,

In this case, the standard entropy S° could be predicted by looking at the amount of bonds the compound has, thus, the fewer the number bonds, the lower the standard entropy, it means that d. HF(g) has lowest value as it has one bond only whereas methane has four bonds, water two bonds and ammonia three bonds.

Best regards.

How many atoms of oxygen are in one molecule of water (H2O)? one two four three

Answers

Answer:

there is one atom of oxygen and two atoms of hydrogen

Explanation:

One atom is in oxygen of water

2NH3 → N2 + 3H2 If 2.22 moles of ammonia (NH3) decomposes according to the reaction shown, how many moles of hydrogen (H2) are formed? A) 2.22 moles of H2 B) 1.11 moles of H2 C) 3.33 moles of H2 D) 6.66 moles of H2

Answers

Answer:

C

Explanation:

According to the mole ratio, using 2NH3 will give you 3H2. Which means in order to find the moles of H2 you would only need to divide 2 and multiply 3 to get the amount of moles of H2 produced.

Answer:

I think it's C

Explanation:

Please, tell me if I'm incorrect.

11mg of cyanide per kilogram of body weight is lethal for 50% of domestic chickens. How many grams per kilogram of body weight is a lethal dose for 50% of domestic chickens?

Answers

Answer:

[tex]0.033g[/tex]

Explanation:

Hello,

In this case, since 11 mg per kilogram of body weight has the given lethality, the mg that turn out lethal for a chicken weighting 3 kg is computed by using a rule of three:

[tex]11mg\longrightarrow 1kg\\\\x\ \ \ \ \ \ \longrightarrow 3kg[/tex]

Thus, we obtain:

[tex]x=\frac{3kg*11mg}{1kg}\\ \\x=33mg[/tex]

That in grams is:

[tex]=33mg*\frac{1g}{1000mg} \\\\=0.033g[/tex]

Regards.

At standard temperature and pressure conditions, the volume of an ideal gas contained in a jar is 55.3 L. How many molecules are in the jar. This question is to be answered in scientific notation.(eg. 1.5 e5)

Answers

Answer:

1.49e24

Explanation:

Standars temperature and pressure are 273.15K and 1atm, respectively.

Using ideal gas law, we can find moles of an ideal gas if we know its pressure, temperature and volume as follows:

PV = nRT

PV / RT = n

Where P is pressure (1atm), V is volume (55.3L), R is gas constant (0.082atmL/molK), T is temperature (273.15K) and n moles of the ideal gas.

Replacing:

PV / RT = n

1atm*55.3L / 0.082atmL/molK*273.15K = n

2.47 moles = n

Now, the question is about the number of molecules in the jar. By definition, 1 mole = 6.022x10²³ molecules.

As we have 2.47 moles:

2.47 mol × (6.022x10²³ molecules / 1 mole) =

1.49x10²⁴ molecules that are in the jar

In scientific notation:

1.49e24

A student determines the value of the equilibrium constant to be 1.5297 x 107 for the following reaction: HBr(g) + 1/2 Cl2(g) --> HCl(g) +1/2 Br2(g) Based on this value of Keq, calculate the Gibbs free energy change for the reaction of 2.37 moles of HBr(g) at standard conditions at 298 K.

Answers

Answer:

[tex]\Delta G=-97.14kJ[/tex]

Explanation:

Hello,

In this case, the relationship between the equilibrium constant and the Gibbs free energy of reaction is:

[tex]\Delta G=-RTln(K)[/tex]

Hence, we compute it as required:

[tex]\Delta G=-8.314\frac{J}{mol\times K}*298K*ln(1.5297x10^7)\\\\\Delta G=-40.99kJ/mol[/tex]

And for 2.37 moles of hydrogen bromide, we obtain:

[tex]\Delta G=-40.99kJ/mol*2.37mol\\\\\Delta G=-97.14kJ[/tex]

Best regards.

The intermolecular forces present in CH 3NH 2 include which of the following? I. dipole-dipole II. ion-dipole III. dispersion IV. hydrogen bonding

Answers

Answer:

I. dipole-dipole

III. dispersion

IV. hydrogen bonding

Explanation:

Intermolecular forces are weak attraction force joining nonpolar and polar molecules together.

London Dispersion Forces are weak attraction force joining non-polar and polar molecules together. e.g O₂, H₂,N₂,Cl₂ and noble gases. The attractions here can be attributed to the fact that a non -polar molecule sometimes becomes polar because the constant motion of its electrons may lead to an uneven charge distribution at an instant.

Dispersion forces are the weakest of all electrical forces that act between atoms and molecules. The force is responsible for liquefaction or solidification of non-polar substances such as noble gas an halogen at low temperatures.

Dipole-Dipole Attractions are forces of attraction existing between polar molecules ( unsymmetrical molecules) i.e molecules that have permanent dipoles such as HCl, CH3NH2 . Such molecules line up such that the positive pole of one molecule attracts the negative pole of another.

Dipole - Dipole attractions are more stronger than the London dispersion forces but weaker than the attraction between full charges carried by ions in ionic crystal lattice.

Hydrogen Bonding is a dipole-dipole intermolecular attraction which occurs when hydrogen is covalently bonded to highly electronegative elements such as nitrogen, oxygen or fluorine. The highly electronegative elements have very strong affinity for electrons. Hence, they attracts the shared pair of electrons in the covalent bonds towards themselves, leaving a partial positive charge on the hydrogen atom and a partial negative charge on the electronegative atom ( nitrogen in the case of CH3NH2 ) . This attractive force is know as hydrogen bonding.

Answer:

The intermolecular forces present in CH_3NH_2 includes

II. (ion-dipole) and IV. (hydrogen bonding)

Explanation:

The intermolecular forces present in CH_3NH_2 includes II. (ion-dipole) and IV. (hydrogen bonding)

It is a polar molecule due to NH polar bond and it can form Hydrogen bond also due to NH bond.

Interaction will be dipole- dipole and Hydrogen dispersion forces can always be taken into account.

For more information on intermolecular forces, visit

https://brainly.com/subject/chemistry

Beginning with Na, record the number of energy levels, number of protons, and atomic radius for each element in period 3.

Answers

Answer:

Sodium, magnesium, aluminium, silicon, phosphorus, sulfur, chlorine, and argon are the elements of third period.

Explanation:

There are three energy levels in sodium atom. It has 11 electrons revolving around the nucleus. the atomic radius of sodium atom is 227 ppm. Magnesium, aluminium, silicon, phosphorus, sulfur, chlorine, and argon has also three energy levels like sodium because all these elements belongs to third period. There are 12 electrons present in magnesium, 13 in aluminium, 14 in silicon, 15 in phosphorus, 16 in sulfur, 17 in chlorine, and 18 electrons in argon. The atomic radius of magnesium atom is 173 ppm.  The atomic radius of aluminium atom is 143 ppm.  The atomic radius of silicon atom is 111 ppm.  The atomic radius of phosphorus atom is 98 ppm.  The atomic radius of sulfur atom is 87 ppm. The atomic radius of chlorine atom is 79 ppm and the atomic radius of argon atom is 71 ppm.

We discussed the different types of intermolecular forces in this lesson, which can affect the boiling point of a substance.
1. Which of these has the highest boiling point?
A) Ar
B) Kr
C) Xe
D) Ne
2. Which substance has the highest boiling point?
A) CH4
B) He
C) HF
D) Cl2

Answers

Answer:

1, C, Xe 2, B,He

Explanation:

1, cause as u go down a group the boiling point increases.

2, boiling point of single element is greater than a compound

According to  periodic trends in periodic table boiling point increases down the  group and hence Xe has highest boiling point and more amount of heat is required to boil an element hence He has highest boiling point.

What is periodic table?

Periodic table is a tabular arrangement of elements in the form of a table. In the periodic table, elements are arranged according to the modern periodic law which states that the properties of elements are a periodic function of their atomic numbers.

It is called as periodic because properties repeat after regular intervals of atomic numbers . It is a tabular arrangement consisting of seven horizontal rows called periods and eighteen vertical columns called groups.

Elements present in the same group have same number of valence electrons and hence have similar properties while elements present in the same period show gradual variation in properties due to addition of one electron for each successive element in a period.

Learn more about periodic table,here:

https://brainly.com/question/11155928

#SPJ2

what is ammonium nitrate

Answers

Answer:

Ammonium nitrate is a chemical compound with the chemical formula NH₄NO₃. It is a white crystalline solid consisting of ions of ammonium and nitrate.

Calculate the equilibrium constant K c for the following overall reaction: AgCl(s) + 2CN –(aq) Ag(CN) 2 –(aq) + Cl –(aq) For AgCl, K sp = 1.6 × 10 –10; for Ag(CN) 2 –, K f = 1.0 × 10 21.

Answers

Answer:

1.6x10¹¹ = Kc

Explanation:

For the reaction:

AgCl(s) + 2CN⁻(aq) ⇄ Ag(CN)₂⁻(aq) + Cl⁻(aq)

Kc is defined as:

Kc = [Ag(CN)₂⁻] [Cl⁻] / [CN⁻]²

Ksp of AgCl is:

AgCl(s) ⇄ Ag⁺(aq) + Cl⁻(aq)

Where Ksp is:

Ksp = [Ag⁺] [Cl⁻] = 1.6x10⁻¹⁰

In the same way, Kf of Ag(CN)₂⁻ is:

Ag⁺(aq) + 2CN⁻ ⇄ Ag(CN)₂⁻

Kf = [Ag(CN)₂⁻] / [CN⁻]² [Ag⁺] = 1.0x10²¹

The multiplication of Kf with Ksp gives:

[Ag⁺] [Cl⁻] *  [Ag(CN)₂⁻] / [CN⁻]² [Ag⁺] = Ksp*Kf

[Ag(CN)₂⁻] [Cl⁻] / [CN⁻]² = Ksp*Kf

Obtaining the same expression of the first reaction

That means Ksp*Kf = Kc

1.6x10⁻¹⁰*1.0x10²¹ = Kc

1.6x10¹¹ = Kc

If 1 mol of a pure triglyceride is hydrolyzed to give 2 mol of RCOOH, 1 mol of R'COOH, and 1 mol of glycerol, which of the following compounds might be the triglyceride?
CHOC(O)R
A. CHOC(O)R
CHOC(O)R
CH,OC(O)R
B. CHOC(O)R
CH2OC(O)R
CHOC(O)R
C. CHOC(O)R
CHOC(O)R
CHOC(O)R
D. CHOC(O)R
CHOC(O)R

Answers

Answer:

The correct option is C.

Note the full question and structure of the moleculesis found in the attachment below.

Explanation:

Triglycerides or triacylglycerols are non-polar, hydrophobic lipid molecules composed of three fatty acids linked by ester bonds to a molecule of glycerol.

The fatty acids linked to the glycerol molecule are denoted by R and may be of the same kind or different. when the R group is the same, the R is attached in all the three positions for ester bonding in the glycerol molecule but when they are different are denoted by R, R' and R'' respectively.

During the hydrolysis of triglycerides, the three fatty acids molecules are obtained as well as a glycerol molecule.

From the question, when 1 mole of the triglyceride is hydrolysed, 2 moles of RCOOH, 1 mole of R'COOH and 1 mole of glycerol is obtained. The triglyceride must then be composed of two fatty acids which are the same denoted by R, and a different fatty acid molecule denoted by R'.

The correct option therefore, is C

Using the data: C2H4(g), = +51.9 kJ mol-1, S° = 219.8 J mol-1 K-1 CO2(g), = ‑394 kJ mol-1, S° = 213.6 J mol-1 K-1 H2O(l), = ‑286.0 kJ mol-1, S° = 69.96 J mol-1 K-1 O2(g), = 0.00 kJ mol-1, S° = 205 J mol-1 K-1 calculate the maximum amount of work that can be obtained, at 25.0 °C, from the process: C2H4(g) + 3 O2(g) → 2 CO2(g) + 2 H2O(l)

Answers

Answer:

The correct answer is 1332 KJ.

Explanation:

Based on the given information,  

ΔH°f of C2H4 is 51.9 KJ/mol, ΔH°O2 is 0.0 KJ/mol, ΔH°f of CO2 is -394 KJ/mol, and ΔH°f of H2O is -286 KJ/mol.  

Now the balanced equation is:  

C2H4 (g) + 3O2 (g) ⇔ 2CO2 (g) + 2H2O (l)

ΔH°rxn = 2 × ΔH°f CO2 + 2 × ΔH°fH2O - 1 × ΔH°fC2H4 - 3×ΔH°fO2

ΔH°rxn = 2 (-394) + 2(-286) - 1(51.9) - 3(0)

ΔH°rxn = -1411.9 KJ

Now, the given ΔS°f of C2H4 is 219.8 J/mol.K, ΔS°f of O2 is 205 J/mol.K, ΔS°f of CO2 is 213.6 J/mol.K, and ΔS°f of H2O is 69.96 J/mol.K.  

Now based on the balanced chemical reaction,  

ΔS°rxn = 2 × ΔS°fCO2 + 2 ΔS°fH2O - 1 × ΔS°f C2H4 - 3 ΔS°fO2

ΔS°rxn = 2 (213.6) + 2(69.96) - 1(219.8) -3(205)

ΔS°rxn = -267.68 J/K or -0.26768 KJ/K

T = 25 °C or 298 K

Now putting the values of ΔH, ΔS and T in the equation ΔG = ΔH-TΔS, we get

ΔG = -1411.9 - 298.0 × (-0.2677)

ΔG = -1332 KJ.  

Thus, the maximum work, which can obtained is 1332 kJ.  

If the heat of combustion for a specific compound is −1320.0 kJ/mol and its molar mass is 30.55 g/mol, how many grams of this compound must you burn to release 617.30 kJ of heat?

Answers

Answer:

14.297 g

Explanation:

From the question;

1 mo of the compound requires 1320.0 kJ

From the molar mass;

1 ml of the compound weighs 30.55g

How many grams requires 617.30kJ?

1 ml = 1320

x mol = 617.30

x = 617.30 / 1320

x = 0.468 mol

But 1 mol = 30.55

0.468 mol = x

x = 14.297 g

Please Help! Use Hess’s Law to determine the ΔHrxn for: Ca (s) + ½ O2 (g) → CaO (s) Given: Ca (s) + 2 H+ (aq) → Ca2+ (aq) + H2 (g) ΔH = 1925.9 kJ/mol 2 H2 (g) + O2 (g) → 2 H2O (l) ΔH = −571.68 kJ/mole CaO (s) + 2 H+ (aq) → Ca2+ (aq) + H2O (l) ΔH = 2275.2 kJ/mole ΔHrxn =

Answers

Answer:

ΔHrxn = -635.14kJ/mol

Explanation:

We can make algebraic operations of reactions until obtain the desire reaction and, ΔH of the reaction must be operated in the same way to obtain the ΔH of the desire reaction (Hess's law). Using the reactions:

(1)Ca(s) + 2 H+(aq) → Ca2+(aq) + H2(g) ΔH = 1925.9 kJ/mol

(2) 2H2(g) + O2 g) → 2 H2O(l) ΔH = −571.68 kJ/mole

(3) CaO(s) + 2 H+(aq) → Ca2+(aq) + H2O(l) ΔH = 2275.2 kJ/mole

Reaction (1) - (3) produce:

Ca(s) + H2O(l) → H2(g) + CaO(s)

ΔH = 1925.9kJ/mol - 2275.2kJ/mol = -349.3kJ/mol

Now this reaction + 1/2(2):

Ca(s) + ½ O2(g) → CaO(s)

ΔH = -349.3kJ/mol + 1/2 (-571.68kJ/mol)

ΔHrxn = -635.14kJ/mol

Determine which set of properties correctly describes copper (Cu)?
A. Giant structure, conducts electricity, high melting point, soluble in water, malleable
B. Malleable, brittle, soluble in oil or gasoline, high melting point, simple structure
C. Ionic lattice, conducts electricity, soluble in oil or gasoline, low melting point, ductile
D. Malleable, conducts electricity, high melting point, giant structure, metallic lattice

Answers

Answer:

D. Malleable, conducts electricity, high melting point, giant structure, metallic lattice

Explanation:

Copper is a metal with an atomic number of 29. This metal is soft and reddish in color which explains why it is very malleable(beaten to form various shapes without breaking).

All metals are good conductors of electricity including copper which is also a metal. Metals generally are insoluble in water. Copper also has a high melting point which is a characteristic of metals due to their giant structure and metallic lattice which makes it difficult to be broken down.

The complex ion Fe(CN)63- is paramagnetic with one unpaired electron. The complex ion Fe(SCN)63- has five unpaired electrons. Where does SCN- lie in the spectrochemical series with respect to CN-?

Answers

Answer:

SCN- is a weak field ligand while CN- is a strong field ligand

Explanation:

The spectrochemical series is an arrangement of ligands according to their magnitude of crystal field splitting. Ligands that cause only a small degree of crystal field splitting are called weak field ligands while ligands that cause large crystal field splitting are called strong field ligands.

Strong field ligands often lead to the formation of low spin complexes with the least number of unpaired electrons while high spin complexes are formed by weak field ligands.

CN- is a strong field ligand as it lies towards the right hand side of the spectrochemical series.

SCN- is a weak field ligand hence it forms a high spin complex having the maximum number of unpaired electrons for Fe^3+, hence the answer.

SCN⁻ lies in the lower (weak field) region of the spectrochemical series while CN⁻ lies in the higher (stronger field) region.

CN⁻ is a strong field ligand with a large splitting constant, and it is high up in the spectrochemical series.

Conversely, SCN⁻ is a weak field ligand with a low splitting constant, and it is lower in the spectrochemical series.

Hence, SCN⁻ lies in the lower (weak field) region of the spectrochemical series while CN⁻ lies in the higher (stronger field) region.

Learn more here: https://brainly.com/question/14658134

A sample of ammonia gas was allowed to come to equilibrium at 400 K. 2NH3(g) <----> N2(g) 3H2(g) At equilibrium, it was found that the concentration of H2 was 0.0484 M, the concentration of N2 was 0.0161 M, and the concentration of NH3 was 0.295 M. What was the initial concentration of ammonia

Answers

Answer:

0.327 M

Explanation:

Step 1: Write the balanced equation

2 NH₃(g) ⇄ N₂(g) + 3H₂(g)

Step 2: Make an ICE chart

        2 NH₃(g) ⇄ N₂(g) + 3 H₂(g)

I              x             0            0

C          -2y            +y         +3y

E         x-2y             y           3y

Step 3: Find the value of y

The concentration of N₂ at equilibrium is 0.0161 M. Then,

y = 0.0161

Step 4: Find the value of x

The concentration of NH₃ at equilibrium is 0.295 M. Then,

x-2y = 0.295

x-2(0.0161) = 0.295

x = 0.327

A balloon has an initial volume of 2.954 L containing 5.50 moles of helium. More helium is added so that the balloon expands to 4.325 L. How much helium (moles) has been added if the temperature and pressure stay constant during this process.

Answers

Answer:

8.05 moles

Explanation:

5.50 / 2.954 = x / 4.325

x = 8.05

According to ideal gas equation, if the temperature and pressure stay constant during the process 0.520 moles have been added  so that the balloon expands to 4.325 L.

What is ideal gas equation?

The ideal gas equation is a equation which is applicable in a hypothetical state of an ideal gas.It is a combination of Boyle's law, Charle's law,Avogadro's law and Gay-Lussac's law . It is given as, PV=nRT where R= gas constant whose value is 8.314.The law has several limitations.The law was proposed by Benoit Paul Emile Clapeyron in 1834.

In the given example if pressure and temperature are constant then V=nR substituting V=4.325 l and R=8.314  so n=V/R=4.325/8.314=0.520 moles.

Thus, 0.520 moles of helium are added if the temperature and pressure stay constant during this process.

Learn more about ideal gas equation,here:

https://brainly.com/question/28837405

#SPJ2

Fill in the blanks with the words given below- [Atoms, homogeneous, metals, true, saturated, homogeneous, colloidal, compounds, lustrous] 1.An element which are sonorous are called................ 2.An element is made up of only one kind of .................... 3.Alloys are ............................. mixtures. 4.Elements chemically combines in fixed proportion to form ........................ 5. Metals are................................... and can be polished. 6. a solution in which no more solute can be dissolved is called a .................... solution. 7. Milk is a .............. solution but vinegar is a .................. solution. 8. A solution is a ................... mixture. pls help, could not get these answers

Answers

Answer:

1. metals

2. atom

3. homogeneous

4. compounds

5. lustrous

6. saturated

7. colloidal

8. homogeneous

Explanation:

A. Rank the following substances in order of decreasing standard molar entropy (S∘).
Rank the gases from largest to smallest standard molar entropy. To rank items as equivalent, overlap them.
Br(g)
Cl2(g)
I2(g)
F2(g)
B. Rank the following substances in order of decreasing standard molar entropy (S∘).
Rank the gases from largest to smallest standard molar entropy. To rank items as equivalent, overlap them.
H2S(g)
H2O(g)
H2O2(g)
C. Rank the following substances in order of decreasing standard molar entropy (S∘).
Rank the gases from largest to smallest standard molar entropy. To rank items as equivalent, overlap them.
C(s, amorphous)
C(s, diamond)
C(s, graphite)

Answers

Answer:

A. Rank the following substances in order of decreasing standard molar entropy (S∘).

Rank the gases from largest to smallest standard molar entropy

I2(g)>Br2(g)>Cl2(g)>F2(g)

B. Rank the gases from largest to smallest standard molar entropy. To rank items as equivalent, overlap them.

H2O2(g)>H2S(g) >H2O(g)

C. Rank the gases from largest to smallest standard molar entropy. To rank items as equivalent, overlap them.

C(s, amorphous) >C(s, graphite)>C(s, diamond)

Explanation:

Hello,

In this case, we can apply the following principles to explain the order:

- The greater the molar mass, the larger the standard molar entropy.

- The greater the molar mass and the structural complexity, the larger the standard molar entropy.

- The greater the structural complexity, the larger the standard molar entropy.

A. Rank the following substances in order of decreasing standard molar entropy (S∘).

Rank the gases from largest to smallest standard molar entropy

I2(g)>Br2(g)>Cl2(g)>F2(g)

This is due to the fact that the greater the molar mass, the larger the standard molar entropy.

B. Rank the gases from largest to smallest standard molar entropy. To rank items as equivalent, overlap them.

H2O2(g)>H2S(g) >H2O(g)

This is due to the fact that the greater the molar mass and the structural complexity, the larger the standard molar entropy as the hydrogen peroxide has four bonds and weights 34 g/mol as well as hydrogen sulfide that has two bonds only.

C. Rank the gases from largest to smallest standard molar entropy. To rank items as equivalent, overlap them.

C(s, amorphous) >C(s, graphite)>C(s, diamond)

Since the molecular complexity is greater in the amorphous carbon (messy arrangement), mid in the graphite and lower in the diamond (well organized).

Regards.

Other Questions
How is 200,000 + 7,000 +500 + 3 written in standard form? True or false: A flexible budget reporting sales volumes at three different levels will have the same fixed costs. For a ,a relationship to be a function, which values cannot repeat: the x-values or the y-values? * should I get a Great Dane puppy or a German Shepred puppy If vectors i+j+2k, i+pj+5k and 5i+3j+4k are linearly dependent, the value of p is what? NEED HELP ASAPIn 1988, three gray whales were trapped in Arctic ice. Television crews captured the franticattempts of hundreds of people to save the whales. Eventually, a Soviet icebreaker and U.S.National Guard helicopters arrived to help free the whales. The cost of the rescue missionexceeded $5 million.i. Write a scientific question related to the whale story. (1 point) For the following graph, state the polar coordinate with a positive r and positive q (in radians). Explain your steps as to how you determined the coordinate (in your own words). I'm looking for answers that involve , not degrees for your angles. State the polar coordinate with (r, -q). Explain how you found the new angle. State the polar coordinate with (-r, q). Explain how you found the new angle. State the polar coordinate with (-r, -q). Explain how you found the new angle. Qu otros aspectos sobre el motivo/propsito de mi carta le voy a contar? Find the volume of a pyramid with a square base, where the side length of the base is 17 in 17 in and the height of the pyramid is 9 in 9 in. Round your answer to the nearest tenth of a cubic inch. please help ASAP.these are examination questions ..no nonsense answers .i will mark as brainliest if you got it correct . Face coverings are a better source control, meaningthey offer protection for everyonethey don't protect anyonethey only protect the wearerthey protect others from youHelp ASAP Bob is 1 foot taller than Jill. Observation or Inference? john always wears a shirt, pants, socks, and shoes. he owns 12 pairs of socks, 3 pairs of shoes, 5 pairs of pants, and 5 shirts. how many different outfits can john make? PLEASE ANSWER Solve for x and draw a number line. 3x91>87 AND 17x16>18 A manufacturer claims that the calling range (in feet) of its 900-MHz cordless telephone is greater than that of its leading competitor. A sample of 19 phones from the manufacturer had a mean range of 1160 feet with a standard deviation of 32 feet. A sample of 11 similar phones from its competitor had a mean range of 1130 feet with a standard deviation of 30 feet. Required:Do the results support the manufacturer's claim? In 2002, the population of a district was 22,800. With a continuous annual growth rate of approximately 5% what will the population be in 2012 according to the exponential growth function? In which of the following compounds does the carbonyl stretch in the IR spectrum occur at the lowest wavenumber?a. Cyclohexanone b. Ethyl Acetate c. - butyrolactone d. Pentanamide e. Propanoyl Chloride front wheel drive car starts from rest and accelerates to the right. Knowing that the tires do not slip on the road, what is the direction of the friction force the road applies to the rear tire Find the area of the surface generated by revolving x=t + sqrt 2, y= (t^2)/2 + sqrt 2t+1, -sqrt 2 In 2018, the population of a district was 25,000. With a continuous annual growth rate of approximately 4%, what will thepopulation be in 2033 according to the exponential growth function?Round the answer to the nearest whole number.