Answer:
a. Cyclohexanone
Explanation:
The principle of IR technique is based on the vibration of the bonds by using the energy that is in this region of the electromagnetic spectrum. For each bond, there is a specific energy that generates a specific vibration. In this case, you want to study the vibration that is given in the carbonyl group C=O. Which is located around 1700 cm-1.
Now, we must remember that the lower the wavenumber we will have less energy. So, what we should look for in these molecules, is a carbonyl group in which less energy is needed to vibrate since we look for the molecule with a smaller wavenumber.
If we look at the structure of all the molecules we will find that in the last three we have heteroatoms (atoms different to carbon I hydrogen) on the right side of the carbonyl group. These atoms allow the production of resonance structures which makes the molecule more stable. If the molecule is more stable we will need more energy to make it vibrate and therefore greater wavenumbers.
The molecule that fulfills this condition is the cyclohexanone.
See figure 1
I hope it helps!
When titrating a strong acid with a strong base, after the equivalence point is reached, the pH will be determined exclusively by: Select the correct answer below:
A) hydronium concentration
B) hydroxide concentration
C) conjugate base concentration
D) conjugate acid concentration
Answer:
B) hydroxide concentration
Explanation:
Hello,
In this case, since we are talking about strong both base and acid, since the base is the titrant and the acid the analyte, once the equivalence point has been reached, some additional base could be added before the experimenter realizes about it, therefore, since the titrant is a strong base, it completely dissociates in hydroxide ions and metallic ions which allows us to compute the pOH of the solution by known the hydroxide ions concentration.
After that, due to the fact that the pH is related with the pOH as shown below:
pH=14-pOH
We can directly compute the pH.
Best regards.
243
Am
95
1. The atomic symbol of americium-243 is shown. Which of the following is correct?
• A. The atomic mass is 243 amu, and the atomic number is 95.
B. The atomic mass is 338 amu, and the atomic number is 95.
• C. The atomic mass is 95 amu, and the atomic number is 243.
D. The atomic mass is 243 amu, and the atomic number is 338.
Answer:
A. The atomic mass is 243 amu, and the atomic number is 95.
A piece of solid Fe metal is put into an aqueous solution of Cu(NO3)2. Write the net ionic equation for any single-replacement redox reaction that may be predicted. Assume that the oxidation state of in the resulted solution is 2 . (Use the lowest possible coefficients for the reaction. Use the pull-down boxes to specify states such as (aq) or (s). If a box is not needed, leave it blank. If no reaction occurs, leave all boxes blank and click on Submit.)
Answer:
Fe(s) + Cu^2+(aq) ---> Fe^2+(aq) + Cu(s)
Explanation:
The ionic equation shows the actual reaction that took place. It excludes the spectator ions. Spectator ions are ions that do not really participate in the reaction even though they are present in the system.
For the reaction between iron and copper II nitrate, the molecular reaction equation is;
Fe(s) + Cu(NO3)2(aq)----> Fe(NO3)2(aq) +Cu(s)
Ionically;
Fe(s) + Cu^2+(aq) ---> Fe^2+(aq) + Cu(s)