Answer:
-52
Step-by-step explanation:
Think of it this way. Opposite means to take the negation. So we are taking the negation of the negation of negative 52. This means mathematically:
- ( - ( -52 ) ) == -52
Cheers.
Bob cycles 5.4 km every morning.how many feet are in 5.4 km, given that 1 mile=1.609 km and 1 mile=5,280 feet?
Answer:
17,720 ft
Step-by-step explanation:
5.4 km * (1 mile)/(1.609 km) * (5280 ft)/(1 mile) = 17,720 ft
In order to study the mean blood pressure of people in his town, Richard samples the population by dividing the residents by age and randomly selecting a proportionate number of residents from each age group. Which type of sampling is used?
a. Convenience sampling
b. Cluster sampling
c. Stratified sampling
d. Systematic sampling
Answer:
C Stratified sampling
Step-by-step explanation:
Stratified sampling : Stratified sampling is a type of sampling technique in which the total population is divided into smaller groups or strata to complete the sampling process. The strata is formed based on some common characteristics in the data of the population.
One of the advantage of stratified random sampling is that it covers important population characteristics in the sample.
Common ratio 2/3, -2, 6
Answer:
The common ratio is - 3Step-by-step explanation:
To find the common ratio between the terms of the sequence divide the previous term by the next term.
That's
[tex] - 2 \div \frac{2}{3} = - 2 \times \frac{3}{2} = - 3[/tex]Or
[tex] \frac{6}{ - 2} = - 3[/tex]Therefore the common ratio of the sequence is - 3
Hope this helps you
Answer:
-3
Step-by-step explanation:
Find x.
A. 21(route)2
B. 7
C.21(route)3/2
D. 21(route)2/2
Answer:
Option (D)
Step-by-step explanation:
By applying Sine rule in the right ΔABD,
Sin(A) = [tex]\frac{\text{Opposite side}}{\text{Hypotenuse}}[/tex]
Sin(60)° = [tex]\frac{\text{BD}}{\text{AB}}[/tex]
[tex]\frac{\sqrt{3}}{2}=\frac{\text{BD}}{7\sqrt{3}}[/tex]
BD = [tex]7\sqrt{3}\times \frac{\sqrt{3} }{2}[/tex]
= [tex]\frac{21}{2}[/tex]
Now by applying Cosine rule in the right ΔBDC,
Cos(45)° = [tex]\frac{\text{Adjacent side}}{\text{Hypotenuse}}[/tex]
[tex]\frac{1}{\sqrt{2}}=\frac{\frac{21}{2}}{x}[/tex]
x = [tex]\frac{21}{2}\times \sqrt{2}[/tex]
x = [tex]\frac{21\sqrt{2}}{2}[/tex]
Therefore, Option (D) is the correct option.
The average value of a function f(x, y, z) over a solid region E is defined to be fave = 1 V(E) E f(x, y, z) dV where V(E) is the volume of E. For instance, if rho is a density function, then rhoave is the average density of E. Find the average value of the function f(x, y, z) = 5x2z + 5y2z over the region enclosed by the paraboloid z = 9 − x2 − y2 and the plane z = 0.
Answer:
An aluminum bar 4 feet long weighs 24 pounds
Step-by-step explanation:
Find 0.01 more than 9.154
Answer:
Hey!
Your answer is 9.164!!
Step-by-step explanation:
Adding 0.01 means just adding 1 to THE DIGIT IN THE HUNDRETH PLACE...2 SPACES RIGHT OF DECIMAL POINT!
5+1=6
SUB IN:
9.164
The image of (-4,6) reflected along the y-axis is
a. (4, -6)
b. (-4,-6)
c. (4, 6)
d. (-4, 6)
Answer:
C(4,6)
Step-by-step explanation:
the x turns into its opposite when reflected across y same thing for y when reflected across x
Answer:
c. (4, 6)
Step-by-step explanation:
The rule of an reflection about the y-axis is: [tex]A(x,y)\rightarrow A'(-x,y)[/tex]
Apply the rule to point (-4, 6):
[tex]\frac{(-4,6)\rightarrow\boxed{(4,6)}}{(x,y)\rightarrow(-x,y)}[/tex]
Option C should be the correct answer.
A particular country has total states. If the areas states are added and the sum is divided by , the result is square kilometers. Determine whether this result is a statistic or a parameter.
Answer:
Some texts are missing from the question, I found a possible match, and here it is:
A particular country has total of 45 states. If the areas of 35 states are added and the sum is divided by 35, the result is 135,600 square kilometres. Determine whether this result is a statistic or a parameter.
Answer:
The result is a statistic because the data involved are samples.
Step-by-step explanation:
A Parameter is a numerical representation of an entire population. That is they are numbers summarizing data for an entire population. In this case, if all the 45 states were measured, the result would have been a parameter.
On the other hand, statistics are numbers that are subsets (representative portions) of an entire population. Since 35 states were chosen out of 45 states, the average area of the 35 states is a statistic and not a parameter.
Is 100 a good estimate for the difference of 712 and 589? If it is, explain why it is a good estimate. If it is not, explain why it is a bad estimate.
Benjamin’s and David’s ages add up to 36 years. The sum of twice their respective ages also add up to 72 years. Find their ages
Answer:
It can be any two numbers that sum up to 36.
eg:18+18,30+6,15+21
Step-by-step explanation:
Given:
Let Benjamin's age be x and David's age y.
x+y=36
2x+2y=72
Solution:
As twice of 36=72, any two numbers that add up to 36 ,will give a sum of 72 after multiplying them with 2.Therefore ,Benjamin's and David's age can be any set of numbers that sum up to 36.
qaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
Answer:
32.8 miles
Step-by-step explanation:
Amy is driving to Seattle. Suppose that the remaining distance to drive (in miles) is a linear function of her driving time (in minutes). When graphed, the function gives a line with a slope of -0.95. See the figure below. Amy has 48 miles remaining after 31 minutes of driving. How many miles will be remaining after 47 minutes of driving?
Answer: The general equation of a line is given as y = mx + c, where m is the slope of the line and c is the intercept on the y axis. Given that the slope is -0.95, substituting in the general equation :
y = -0.95x + c
Amy has 48 miles remaining after 31 minutes of driving, to find c, we substitute y = 48 and x = 31. Therefore:
48 = -0.95(31) + c
c = 48 + 0.95(31)
c = 48 + 29.45
c = 77.45
The equation of the line is
y = -0.95x + 77.45
After 47 minutes of driving, the miles remaining can be gotten by substituting x = 47 and finding y.
y = -0.95(47) + 77.45
y = -44.65 + 77.45
y = 32.8 miles
What is the minimum sample size required to estimate a population mean with 90% confidence when the desired margin of error is 1.25
Complete Question
What is the minimum sample size required to estimate a population mean with 90% confidence when the desired margin of error is 1.25? The standard deviation in a pre-selected sample is 7.5
Answer:
The minimum sample size is [tex]n =97[/tex]
Step-by-step explanation:
From the question we are told that
The margin of error is [tex]E = 1.25[/tex]
The standard deviation is [tex]s = 7.5[/tex]
Given that the confidence level is 90% then the level of significance is mathematically represented as
[tex]\alpha = 100 - 90[/tex]
[tex]\alpha =10\%[/tex]
[tex]\alpha =0.10[/tex]
Next we obtain the critical value of [tex]\frac{\alpha }{2}[/tex] from the normal distribution table
The value is [tex]Z_{\frac{ \alpha }{2} } = 1.645[/tex]
The minimum sample size is mathematically evaluated as
[tex]n = \frac{Z_{\frac{\alpha }{2} * s^2 }}{E^2 }[/tex]
=> [tex]n = \frac{1.645^2 * 7.5^2 }{1.25^2 }[/tex]
=> [tex]n =97[/tex]
If there are 25 students in a class - 11 are guys and 14 are girls what is the probability that one of the students on the class is a guy?
Answer:
0.44
Step-by-step explanation:
11/25 = 0.44 = 44%
Answer:
11/25
Step-by-step explanation:
since there are 25 students, there will be 25 choices, and the 25 will be the denominator
and there are 11 guys so there will be 11 choices of guys and the 11 will go on top
A jar contains 8 pennies, 5 nickels and 7 dimes. A child selects 2 coins at random without replacement from the jar. Let X represent the amount in cents of the selected coins. Be very precise with your answers.
a. Find the probability x = 2 cents.
b. Find the probability x = 6 cents.
c. Find the probability x = 10 cents.
d. Find the probability x = 11 cents.
e. Find the probability x = 15 cents.
f. Find the probability x = 20 cents.
g. Find the expected value of x.
Answer:
a. The probability x = 2 cents = 7/22
b. The probability x = 6 cents = 35/66
c. The probability x = 10 cents = 5/33
d. The probability x = 11 cents= 28/33
e. The probability x = 15 cents = 20/33
f. The probability x = 20 cents = 14/33
g. The expected value of x = 5.9
Step-by-step explanation:
This is a binomial probability distribution. The number of trials is known .
a. The probability x = 2 cents.
Probability ( X=2) P( selecting 2 dimes)= 7C2 / 12c2
= 21 / 66 = 7/22
b. The probability x = 6 cents.
Probability ( X=6) P( selecting a nickel and a dime)= 5C1 * 7C1/ 12c2
= 5*7 / 66 = 35/66
c. The probability x = 10 cents.
Probability ( X=10) P( selecting two nickels )= 5C2 / 12c2)
= 10/ 66 = 5/33
d. The probability x = 11 cents.
Probability ( X=11) P( selecting a penny and a dime)= 8C1 * 7C1/ 12c2)
= 8*7 / 66 = 56/66= 28/33
e. The probability x = 15 cents.
Probability ( X=15) P( selecting a penny and a nickel)= 8C1 * 5C1/ 12c2)
= 8*5 / 66 = 40/66= 20/33
f. The probability x = 20 cents.
Probability ( X=20) P( selecting 2 pennies )= 8C2 / 12c2)
= 28 / 66 = 14/33
g. The expected value of x.
E(X) = np
E(X) = 2 * (8C2+ 5C2+ 7C2)/(8+5+7) = 2( 28+10+21)/20
=2(59)/20= 5.9
If SSR is 2592 and SSE is 608, then A. the standard error would be large. B. the coefficient of determination is .23. C. the slope is likely to be insignificant. D. the coefficient of determination is .81.
Answer:
D. the coefficient of determination is .81.
Step-by-step explanation:
SST = SSE + SSR
where
SST is the summation of square total
SSE is the summation of squared error estimate = 608
SSR is the summation of square of residual = 2593
with these in mind we put the values into the formula
= 2592 + 608
=3200
Coefficient of determination = SSR/SST
= 2592/3200
= 0.81
Therefore option D is the correct answer to the question.
the point p(-3,4) is reflected in the line x +2=0. find the coordinate of the image x
Answer:
(- 1, 4 )
Step-by-step explanation:
The line x + 2 = 0 can be expressed as
x + 2 = 0 ( subtract 2 from both sides )
x = - 2
This is the equation of a vertical line parallel to the y- axis and passing through all points with an x- coordinate of - 2
Thus (- 3, 4 ) is 1 unit to the left of - 2
Under a reflection in the line x = - 2
The x- coordinate will be the same distance from x = - 2 but on the other side while the y- coordinate remains unchanged.
Thus
(- 3, 4 ) → (- 1, 4 )
Solve the following equation algebraically:
3x^2=12
a.+3
b. +2
C.+3.5
d. +1.5
Answer:
Step-by-step explanation:
answer is c just took test
Find the intersection point for the following liner function f(x)= 2x+3 g(x)=-4x-27
Answer:
( -5,-7)
Step-by-step explanation:
f(x)= 2x+3 g(x)=-4x-27
Set the two functions equal
2x+3 = -4x-27
Add 4x to each side
2x+3+4x = -4x-27+4x
6x+3 = -27
Subtract 3
6x+3 - 3 = -27-3
6x = -30
Divide each side by 6
6x/6 = -30/6
x =-5
Now we need to find the output
f(-5) = 2(-5) +3 = -10+3 = -7
Answer:
Step-by-step explanation:
big burgewr
Question
Consider these functions.
f(x) = -9x + 14
g(x)=-3x2
Select the correct answer from each drop-down menu.i
If x = 6, then f(6)
If g(x) -48, then x =
and x =
Submit
Answer:
[tex]\large \boxed{-40, \ 4, \ -4}[/tex]
Step-by-step explanation:
[tex]f(x)=-9x+14[/tex]
[tex]\sf Put \ x \ as \ 6.[/tex]
[tex]f(6)=-9(6)+14[/tex]
[tex]f(6)=-54+14[/tex]
[tex]f(6)=-40[/tex]
[tex]g(x)=-3x^2[/tex]
[tex]\sf Put \ g(x) \ as \ -48.[/tex]
[tex]-48=-3x^2[/tex]
[tex]\displaystyle \frac{-48}{-3} =\frac{-3x^2 }{-3}[/tex]
[tex]16=x^2[/tex]
[tex]\sqrt{16} =\sqrt{x^2 }[/tex]
[tex]x= \pm 4[/tex]
Answer:
F(6) = -9(6) + 14 = -54 + 14. f(6) = -40
G(x) = -48 / g(x) = -3(16) / g(4) = -48
Step-by-step explanation:
For the first one the drop answer is -40
For the second one its 4 then 16
I think because that whats im seeing but these are the right answers :)
An urn contains 9 red marbles, 6 white marbles, and 8 blue marbles marbles. A child randomly selects three (without replacement) from the urn. Find the probability all three marbles are the same color
Answer:
P(identical colours) = 160/1771 (0.0903 to four decimals)
Step-by-step explanation:
Given 9R, 6W and 8B marbles (total = 9+6+8 = 23)
Choose three without replacement.
Need probability three identical colours.
Use the multiplication rule.
P(RRR) = 9/23 * 8*22 * 7*21 = 12 / 253
P(WWW) = 6/23 * 5/22 * 4/21 = 20/1771
P(BBB) = 8/23 * 7/22 * 6/21 = 8/153
Probability of getting identical colours
= P(RRR)+P(WWW)+P(BBB)
= 160/1771 (0.0903 to four decimals)
Using the probability concept, it is found that there is a 0.0903 = 9.03% probability all three marbles are the same color.
-----------------
A probability is the number of desired outcomes divided by the number of total outcomes.The order in which the marbles are chosen is not important, and they are also chosen without replacement, which means that the combination formula is used to find the number of outcomes.-----------------
Combination formula:
[tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
-----------------
The desired outcomes can be:
3 from a set of 9(all red).3 from a set of 6(all white).3 from a set of 8(all blue).Thus:
[tex]D = C_{9,3} + C_{6,3} + C_{8,3} = \frac{9!}{3!6!} + \frac{6!}{3!3!} + \frac{8!}{3!5!} = 160[/tex]
-----------------
The total outcomes are 3 from a set of 9 + 6 + 8 = 23. Thus:
[tex]T = C_{23,3} = \frac{23!}{3!20!} = 1771[/tex]
The probability is:
[tex]p = \frac{D}{T} = \frac{160}{1771} = 0.0903[/tex]
0.0903 = 9.03% probability all three marbles are the same color.
A similar problem is given at https://brainly.com/question/10896842
A researcher reports a 98% confidence interval for the proportion of Drosophila in a population with mutation Adh-F to be [0.34, 0.38]. Therefore, there is a probability of 0.98 that the proportion of Drosophola with this mutation is between 0.34 and 0.38. True or False
Answer:
False
Step-by-step explanation:
The 98% is confidence interval its not a probability estimate. The probability will be different from the confidence interval. Confidence interval is about the population mean and is not calculated based on sample mean. Every confidence interval contains the sample mean. There is 98% confidence that the proportion of Drosophola with his mutation is between 0.34 and 0.38.
Pablo rented a truck for one day. There was a base fee of $19.99, and there was an additional charge of 80 cents for each mile driven. Pablo had to pay
$221.59 when he returned the truck. For how many miles did he drive the truck?
Answer:
252 miles
Step-by-step explanation:
19.99 + .80x = 221.59
,80x = 201.60
x = 252
State whether the data described below are discrete or continuous, and explain why.
The widths (in centimeters) of different paintings in an art museum
nothing
Choose the correct answer below.
A. The data are continuous because the data can only take on specific values.
B. The data are discrete because the data can only take on specific values.
C. The data are discrete because the data can take on any value in an interval.
D. The data are continuous because the data can take on any value in an interval.
How many solutions does the following equation have ?
−3x+9−2x=−12−5x
[tex]\text{Solve for x:}\\\\-3x+9-2x=-12-5x\\\\\text{Combine like terms}\\\\-5x+9=-12-5x\\\\\text{Add 5x to both sides}\\\\9=-12\\\\\text{Since that's not valid, there would be no solutions}\\\\\boxed{\text{No solutions}}[/tex]
Answer two questions about Equations A and B: A.5x=20 \ B.x=4 1) How can we get Equation B from Equation A? Choose 1 answer: (Choice A) Multiply/divide both sides by the same non-zero constant (Choice B,) Multiply/divide both sides by the same variable expression (Choice C) Add/subtract the same quantity to/from both sides (Choice D) Add/subtract a quantity to/from only one side
Answer:
Multiply/divide both sides by the same non-zero constant
Step-by-step explanation:
5x = 20
Divide each side by 5
5x/5 = 20/5
x = 4
To obtain (B) from (A) "Multiply/divide both sides by the same non-zero constant"
Given the equations :
5x = 20 ___ (A)x = 4 _____ (B)To obtain the value ; x = 4 from A
We multiply (A) by the same non-zero constantHere, the constant value which can be used is 5 in other to isolate 'x'
5x/5 = 20/5
x = 4
Therefore, to obtain (B) from (A) "Multiply/divide both sides by the same non-zero constant"
Learn more on equations :https://brainly.com/question/2972832
#SPJ6
Rational equation of 3/x+1=2/x-3
Answer:
x = 11
Step-by-step explanation:
3/x+1=2/x-3
Solve by using cross products
2 (x+1) = 3 (x-3)
Distribute
2x+2 = 3x-9
Subtract 2x
2x+2-2x = 3x-2x-9
2 = x-9
Add 9 to each side
2+9 =x-9+9
11 =c
Determine whether the sequence converges or diverges. If it converges, find the limit. (If an answer does not exist, enter DNE.)
an = (−3^n)/(4n!)
Answer:
[tex]a_{i} = \frac{(-3)^{i}}{4\cdot i!}[/tex] converges.
Step-by-step explanation:
The convergence analysis of this sequence is done by Ratio Test. That is to say:
[tex]r = \frac{a_{n+1}}{a_{n}}[/tex], where sequence converges if and only if [tex]|r| < 1[/tex].
Let be [tex]a_{i} = \frac{(-3)^{i}}{4\cdot i!}[/tex], the ratio for the expression is:
[tex]r =-\frac{3}{n+1}[/tex]
[tex]|r| = \frac{3}{n+1}[/tex]
Inasmuch [tex]n[/tex] becomes bigger, then [tex]r \longrightarrow 0[/tex]. Hence, [tex]a_{i} = \frac{(-3)^{i}}{4\cdot i!}[/tex] converges.
An empty swimming pool is to be filled to the top. The pool is shaped like a rectangular prism with length 10m, width 8m , and depth 4m. Suppose water is pumped into the pool at a rate of 16m cubed per hour. How many hours does it take to fill the empty pool?
Answer:
20 hours
Step-by-step explanation:
10*8*4=320 (volume of the pool)
320/16=20 hours
Answer:
20 hours
Step-by-step explanation:
10x8x4 = 320
320 / 16 = 20
it takes 20 hours to fill the empty pool
Maria operates a taco truck in her neighborhood. She has created a graph based on her business performance in the previous year. The price she currently sells tacos for is $2.30. Which two statements correctly interpret this graph? Revenue and Cost Functions 1)Maria’s business is incurring losses. 2)Maria’s costs are rising over time. 3)Maria is running a profitable business. 4)Maria’s total revenue exceeds her total profit. 5)Maria’s total profit exceeds her total revenue.
Answer:
3)Maria is running a profitable business.
4)Maria’s total revenue exceeds her total profit.
Step-by-step explanation:
The graph shows variation of revenue and cost with respect to price of product and not with respect to time .
The price of the product is 2.30 . From this graph , we see that at this price revenue exceeds total cost . So maria is running a profitable business .
Total profit can not exceed total revenue as
Total revenue - total cost = total profit .
So total profit will always be less than total revenue .
Given a population with a mean of µ = 100 and a variance of σ2 = 1600, the central limit theorem applies when the sample size is n ≥ 25. A random sample of size n = 50 is obtained. • What are the mean and variance of the sampling distribution for the sample means? • What is the probability that ¯X > 110?
Answer:
The probability that the sample mean is more than 110 is 0.0384.
Step-by-step explanation:
According to the Central Limit Theorem if we have an unknown population with mean μ and standard deviation σ and appropriately huge random samples (n > 30) are selected from the population with replacement, then the sampling distribution of the sample mean will be approximately normally distributed.
Then, the mean of the sampling distribution of sample mean is given by:
[tex]\mu_{\bar x}=\mu[/tex]
And the variance of the sampling distribution of sample mean is given by:
[tex]\sigma^{2}_{\bar x}=\frac{\sigma^{2}}{n}[/tex]
The information provided is:
[tex]n=50\\\\\mu=100\\\\\sigma^{2}=1600[/tex]
Since n = 50 > 30, the central limit theorem can be applied to approximate the sampling distribution of sample mean by the normal distribution.
The mean variance of the sampling distribution for the sample mean are:
[tex]\mu_{\bar x}=\mu=100\\\\\sigma^{2}_{\bar x}=\frac{\sigma^{2}}{n}=\frac{1600}{50}=32[/tex]
That is, [tex]\bar X\sim N(100, 32)[/tex].
Compute the probability that the sample mean is more than 110 as follows:
[tex]P(\bar X>110)=P(\frac{\bar X-\mu_{\bar x}}{\sigma_{\bar x}}>\frac{110-100}{\sqrt{32}})[/tex]
[tex]=P(Z>1.77)\\=1-P(Z<1.77)\\=1-0.96164\\=0.03836\\\approx 0.0384[/tex]
*Use a z-table.
Thus, the probability that the sample mean is more than 110 is 0.0384.