A portion of the quadratic formula proof is shown. Fill in the missing reason.

A Portion Of The Quadratic Formula Proof Is Shown. Fill In The Missing Reason.

Answers

Answer 1

Answer:

Find a common denominator on the right side of the equation

Step-by-step explanation:

The equation before the problem is

X² + b/a(x) + (b/2a)²= -c/a + b²/4a²

The next step in solving the above equation is to fibd tge common denominator on the right side of the equation.

X² + b/a(x) + (b/2a)²= -c/a + b²/4a²

X² + b/a(x) + (b/2a)²= -4ac/4a² + b²/4a²

X² + b/a(x) + (b/2a)²=( b²-4ac)/4a²

The right side of the equation now has a common denominator

The next step is to factorize the left side of the equation.

(X+b/2a)²= ( b²-4ac)/4a²

Squaring both sides

X+b/2a= √(b²-4ac)/√4a²

Final equation

X=( -b+√(b²-4ac))/2a

Or

X=( -b-√(b²-4ac))/2a


Related Questions

Need Help
Please Show Work​

Answers

Answer:

18 - 8 * n = -6 * n

The number is 9

Step-by-step explanation:

Let n equal the number

Look for key words such as is which means equals

minus is subtract

18 - 8 * n = -6 * n

18 -8n = -6n

Add 8n to each side

18-8n +8n = -6n+8n

18 =2n

Divide each side by 2

18/2 = 2n/2

9 =n

The number is 9

━━━━━━━☆☆━━━━━━━

▹ Answer

n = 9

▹ Step-by-Step Explanation

18 - 8 * n = -6 * n

Simple numerical terms are written last:

-8n + 18 = -6n

Group all variable terms on one side and all constant terms on the other side:

(-8n + 18) + 8n = -6n + 8n

n = 9

Hope this helps!

CloutAnswers ❁

━━━━━━━☆☆━━━━━━━

In 2018, the population of a district was 25,000. With a continuous annual growth rate of approximately 4%, what will the
population be in 2033 according to the exponential growth function?
Round the answer to the nearest whole number.

Answers

Answer:

40,000 populations

Step-by-step explanation:

Initial population in 2018 = 25,000

Annual growth rate (in %) = 4%

Yearly Increment in population = 4% of 25000

= 4/100 * 25000

= 250*4

= 1000

This means that the population increases by 1000 on yearly basis.

To determine what the  population will be in 2033, we need to first know the amount of years we have between 2018 and 2033.

Amount of years we have between 2018 and 2033 = 2033-2018

= 15 years

After 15 years, the population will have increased by 15*1000 i.e 15,000 more than the initial population.

Hence the population in 2033 will be Initial population + Increment after 15years = 25,000+15000 = 40,000 population.

Find the first three nonzero terms in the power series expansion for the product f(x)g(x).
f(x) = e^2x = [infinity]∑n=0 1/n! (2x)^n
g(x) = sin 5x = [infinity]∑k=0 (-1)^k/(2k+1)! (5x)^2k+1
The power series approximation of fx)g(x) to three nonzero terms is __________
(Type an expression that includes all terms up to order 3.)

Answers

Answer:

∑(-1)^k/(2k+1)! (5x)^2k+1

From k = 1 to 3.

= -196.5

Step-by-step explanation:

Given

∑(-1)^k/(2k+1)! (5x)^2k+1

From k = 0 to infinity

The expression that includes all terms up to order 3 is:

∑(-1)^k/(2k+1)! (5x)^2k+1

From k = 0 to 3.

= 0 + (-1/2 × 5³) + (1/6 × 10^5) + (-1/5040 × 15^5)

= -125/2 + 100000/6 - 759375/5040

= -62.5 + 16.67 - 150.67

= - 196.5

Find the area of the surface generated by revolving x=t + sqrt 2, y= (t^2)/2 + sqrt 2t+1, -sqrt 2 <= t <= sqrt about the y axis

Answers

The area is given by the integral

[tex]\displaystyle A=2\pi\int_Cx(t)\,\mathrm ds[/tex]

where C is the curve and [tex]dS[/tex] is the line element,

[tex]\mathrm ds=\sqrt{\left(\dfrac{\mathrm dx}{\mathrm dt}\right)^2+\left(\dfrac{\mathrm dy}{\mathrm dt}\right)^2}\,\mathrm dt[/tex]

We have

[tex]x(t)=t+\sqrt 2\implies\dfrac{\mathrm dx}{\mathrm dt}=1[/tex]

[tex]y(t)=\dfrac{t^2}2+\sqrt 2\,t+1\implies\dfrac{\mathrm dy}{\mathrm dt}=t+\sqrt 2[/tex]

[tex]\implies\mathrm ds=\sqrt{1^2+(t+\sqrt2)^2}\,\mathrm dt=\sqrt{t^2+2\sqrt2\,t+3}\,\mathrm dt[/tex]

So the area is

[tex]\displaystyle A=2\pi\int_{-\sqrt2}^{\sqrt2}(t+\sqrt 2)\sqrt{t^2+2\sqrt 2\,t+3}\,\mathrm dt[/tex]

Substitute [tex]u=t^2+2\sqrt2\,t+3[/tex] and [tex]\mathrm du=(2t+2\sqrt 2)\,\mathrm dt[/tex]:

[tex]\displaystyle A=\pi\int_1^9\sqrt u\,\mathrm du=\frac{2\pi}3u^{3/2}\bigg|_1^9=\frac{52\pi}3[/tex]

What is the solution to this system of linear equations?
y-x = 6
y + x = -10
(-2,-8)
(-8.-2)
(6.-10)
(-10.6)

Answers

Answer:

The correct answer is A

Step-by-step explanation:

Answer:

(-8, -2)

Step-by-step explanation:

y-x = 6

y + x = -10

Add the two equations together to eliminate x

y-x = 6

y + x = -10

--------------------

2y = -4

Divide by 2

2y/2 = -4/2

y = -2

Now find x

y+x = -10

-2+x = -10

x = -8

For the following graph, state the polar coordinate with a positive r and positive q (in radians). Explain your steps as to how you determined the coordinate (in your own words). I'm looking for answers that involve π, not degrees for your angles. State the polar coordinate with (r, -q). Explain how you found the new angle. State the polar coordinate with (-r, q). Explain how you found the new angle. State the polar coordinate with (-r, -q). Explain how you found the new angle.

Answers

Answer:

Points : ( 8, - 2π/3 ), ( - 8, π/3 ), ( - 8, - 5π/3 )

Step-by-step explanation:

For the first two cases, ( r, θ ) r would be > 0, where r is the directed distance from the pole, and theta is the directed angle from the positive x - axis.

So when r is positive, we can tell that this point is 8 units from the pole, so r is going to be 8 in either case,

( 8, 240° ) - because r is positive, theta would have to be an angle with which it's terminal side passes through this point. As you can see that would be 2 / 3rd of 90 degrees more than a 180 degree angle,or 60 + 180 = 240 degrees.

( 8, - 120° ) - now theta will be the negative side of 360 - 240, or in other words - 120

Now let's consider the second two cases, where r is < 0. Of course the point will still be 8 units from the pole. Again for r < 0 the point will lay on the ray pointing in the opposite direction of the terminal side of theta.

( - 8, 60° ) - theta will now be 2 / 3rd of 90 degrees, or 60 degrees, for - r. Respectively the remaining degrees will be negative, 360 - 60 = 300, - 300. Thus our second point for - r will be ( - 8, - 300° )

_________________________________

So we have the points ( 8, 240° ), ( 8, - 120° ), ( - 8, 60° ), and ( - 8, - 300° ). However we only want 3 cases, so we have points ( 8, - 120° ), ( - 8, 60° ), and ( - 8, - 300° ). Let's convert the degrees into radians,

Points : ( 8, - 2π/3 ), ( - 8, π/3 ), ( - 8, - 5π/3 )

If vectors i+j+2k, i+pj+5k and 5i+3j+4k are linearly dependent, the value of p is what?​

Answers

Answer:

[tex]p = 2[/tex] if given vectors must be linearly independent.

Step-by-step explanation:

A linear combination is linearly dependent if and only if there is at least one coefficient equal to zero. If [tex]\vec u = (1,1,2)[/tex], [tex]\vec v = (1,p,5)[/tex] and [tex]\vec w = (5,3,4)[/tex], the linear combination is:

[tex]\alpha_{1}\cdot (1,1,2)+\alpha_{2}\cdot (1,p,5)+\alpha_{3}\cdot (5,3,4) =(0,0,0)[/tex]

In other words, the following system of equations must be satisfied:

[tex]\alpha_{1}+\alpha_{2}+5\cdot \alpha_{3}=0[/tex] (Eq. 1)

[tex]\alpha_{1}+p\cdot \alpha_{2}+3\cdot \alpha_{3}=0[/tex] (Eq. 2)

[tex]2\cdot \alpha_{1}+5\cdot \alpha_{2}+4\cdot \alpha_{3}=0[/tex] (Eq. 3)

By Eq. 1:

[tex]\alpha_{1} = -\alpha_{2}-5\cdot \alpha_{3}[/tex]

Eq. 1 in Eqs. 2-3:

[tex]-\alpha_{2}-5\cdot \alpha_{3}+p\cdot \alpha_{2}+3\cdot \alpha_{3}=0[/tex]

[tex]-2\cdot \alpha_{2}-10\cdot \alpha_{3}+5\cdot \alpha_{2}+4\cdot \alpha_{3}=0[/tex]

[tex](p-1)\cdot \alpha_{2}-2\cdot \alpha_{3}=0[/tex] (Eq. 2b)

[tex]3\cdot \alpha_{2}-6\cdot \alpha_{3} = 0[/tex] (Eq. 3b)

By Eq. 3b:

[tex]\alpha_{3} = \frac{1}{2}\cdot \alpha_{2}[/tex]

Eq. 3b in Eq. 2b:

[tex](p-2)\cdot \alpha_{2} = 0[/tex]

If [tex]p = 2[/tex] if given vectors must be linearly independent.

If a dog has 2,000,000 toys and he gives 900,000 away. Then gets 2,000 more, also looses 2,000,000. He's sad but then also got 5,000,000,000 more and gives 1,672,293 out. How much does he have now? And how much he gave away. And how much he got.

Answers

Answer:

See below.

Step-by-step explanation:

He does not have enough to loose 2,000,000 at that point, so this whole problem is nonsense.

The function fix) = (x - 4)(x - 2) is shown.
What is the range of the function?
8
all real numbers less than or equal to 3
all real numbers less than or equal to -1
all real numbers greater than or equal to 3
all real numbers greater than or equal to - 1
6
2
16
2
14
COL
40
8
G D​

Answers

Answer:

The range of the function f(x)= (x-4)(x-2) is all real numbers greater than or equal to -1

Step-by-step explanation:


[tex]4x - 2x = [/tex]

Answers

Answer:

2x

Step-by-step explanation:

These are like terms so we can combine them

4x-2x

2x

Answer:

2x

Explanation:

Since both terms in this equation are common, we can simply subtract them.

4x - 2x = ?

4x - 2x = 2x

Therefore, the correct answer should be 2x.

Step 1: Subtract 3 from both sides of the inequality
Step 2
Step 3: Divide both sides of the inequality by the
coefficient of x.
What is the missing step in solving the inequality 5 -
8x < 2x + 3?
O Add 2x to both sides of the inequality
O Subtract 8x from both sides of the inequality
O Subtract 2x from both sides of the inequality
Add 8x to both sides of the inequality.
Mark this and return
Save and Exit
Intext
Submit

Answers

Answer:

add 8x to both sides

Step-by-step explanation:

5-8x<2x+3

first step, subtract 3 from both sides:

2-8x<2x

second step,?

2<?x

so you need to add 8x first

Sarah has $30,000 in her bank account today. Her grand-father has opened this account for her 15 years ago when she was born. Calculate the money that was deposited in the account 15 years ago if money has earned 3.5% p.a. compounded monthly through all these years.

Answers

Answer:

Deposit value(P) = $17,760 (Approx)

Step-by-step explanation:

Given:

Future value (F) = $30,000

Number of Year (n) = 15 year = 15 × 12 = 180 month

rate of interest (r) = 3.5% = 0.035 / 12 = 0.0029167

Find:

Deposit value(P)

Computation:

[tex]A = P(1+r)^n\\\\ 30000 = P(1+0.0029167)^{180} \\\\ 30000 = P(1.68917) \\\\ P = 17760.2018[/tex]

Deposit value(P) = $17,760 (Approx)

Simply this question and get marked branlist

Answers

Answer:

72/n^5r

Step-by-step explanation:

Answer:

Below

Step-by-step explanation:

13)

● 2d^3 × c^6 × 8d^5 × c^2

Isolate the similar terms

● (2×8)× (d^3 × d^5)×(c^6×c^2)

● 16 × d^(3+5) × c^(6+2)

● 16 × d^8 × c^8

● 16 × (dc)^8

● 16(dc)^8

■■■■■■■■■■■■■■■■■■■■■■■■■■

● 8n×r^(-4) ×9×n^(-6)×r^3

Isolate the similar terms

● (8×9)× (r^(-4)×r^3) × (n×n^(-6))

● 72 × r^(-4+3) × n^(1-6)

● 72 × r^-1 × n^(-5)

● 72 ×(1/r) × (1/n^5)

● 72/(r×n^5)

A manufacturer claims that the calling range (in feet) of its 900-MHz cordless telephone is greater than that of its leading competitor. A sample of 19 phones from the manufacturer had a mean range of 1160 feet with a standard deviation of 32 feet. A sample of 11 similar phones from its competitor had a mean range of 1130 feet with a standard deviation of 30 feet.

Required:
Do the results support the manufacturer's claim?

Answers

Complete question is;

A manufacturer claims that the calling range (in feet) of its 900-MHz cordless telephone is greater than that of its leading competitor. A sample of 19 phones from the manufacturer had a mean range of 1160 feet with a standard deviation of 32 feet. A sample of 11 similar phones from its competitor had a mean range of 1130 feet with a standard deviation of 30 feet. Required:

Do the results support the manufacturer's claim?

Let μ1 be the true mean range of the manufacturer's cordless telephone and μ2 be the true mean range of the competitor's cordless telephone. Use a significance level of α = 0.01 for the test. Assume that the population variances are equal and that the two populations are normally distributed

Answer:

We will fail to reject the null hypothesis as there is no sufficient evidence to support the manufacturers claim.

Step-by-step explanation:

For the first sample, we have;

Mean; x'1 = 1160 ft

standard deviation; σ1 = 32 feet

Sample size; n1 = 19

For the second sample, we have;

Mean; x'2 = 1130 ft

Standard deviation; σ2 = 30 ft

Sample size; n2 = 11

The hypotheses are;

Null Hypothesis; H0; μ1 = μ2

Alternative hypothesis; Ha; μ1 > μ2

The test statistic formula for this is;

z = (x'1 - x'2)/√[(σ1)²/n1) + (σ2)²/n2)]

Plugging in the relevant values, we have;

z = (1160 - 1130)/√[(32)²/19) + (30)²/11)]

z = 2.58

From the z-table attached, we have a p-value = 0.99506

This p-value is more than the significance value of 0.01,thus,we will fail to reject the null hypothesis as there is no sufficient evidence to support the manufacturers claim.

Find the area of the shape shown below.
3.5
2
2

Answers

Answer:

26.75 units²

Step-by-step explanation:

Cube Area: A = l²

Triangle Area: A = 1/2bh

Step 1: Find area of biggest triangle

A = 1/2(3.5)(2 + 2 + 5)

A = 1.75(9)

A = 15.75

Step 2: Find area of 2nd biggest triangle

A = 1/2(5)(2)

A = 1/2(10)

A = 5

Step 3: Find area of smallest triangle

A = 1/2(2)(2)

A = 1/2(4)

A = 2

Step 4: Find area of cube

A = 2²

A = 4

Step 5: Add all the values together

A = 15.75 + 5 + 2 + 4

A = 20.75 + 2 + 4

A = 22.75 + 4

A = 26.75

how to write this in number form The difference of 9 and the square of a number

Answers

Answer:

9-x^2

Step-by-step explanation:

The difference of means subtracting. the first number is 9 and the second is x^2, so you get 9-x^2

Try to get to every number from 1 to 10 using four 4's and any number of arithmetic operations (+, −, ×, ÷). You may also you parentheses.

Answers

Answer:

Step-by-step explanation:

1. 4/4+4-4=1

2. 4/4+4/4=2

3. 4+4/4-4=3

4. 4 × (4 − 4) + 4=4

5. (4 × 4 + 4) / 4=5

6. 44 / 4 − 4=6

7. 4+4-4/4=7

8. 4+4+4-4=8

9. 4+4+4/9=9

10. 44 / 4.4=10

Answer:

1 = (4 x 4)/(4 x 4) or  (4 + 4)/(4 + 4) or  (4 / 4) x (4 / 4) or  (4 / 4)/(4 / 4)  

2= (4 x 4)/(4 + 4) or 4 / ((4+4)/4)

3= (4 + 4 + 4)/4 or (4 x 4 - 4)/4

4 = 4 - (4 - 4)/4

5 = (4 x 4 + 4)/4

6 = 4 + (4 + 4)/4

7 = 4 - (4/4) + 4

8 = 4 + (4 x 4)/4

9 = 4 + 4 + (4/4)

10 - I tried the best. You might need ! or sqrt operator to get 4.

Updated:

I forgot we could use 4, 44, 444, or 4444, so that 10 could be expressed as:

10 = (44 - 4)/4

Please help with this

Answers

Answer:

A

Step-by-step explanation:

● first one:

The diagonals of a rhombus are perpendicular to each others wich means that they form four right angles.

STP is one of them so this statement is true.

● second one:

If ST and PT were equal this would be a square not a rhombus.

● third one:

If SPQ was a right angle, this woukd be a square.

● fourth one:

Again if the diagonals SQ and PR were equal, this would be a square.

How to graph the line y=4/3x

Answers

Answer:

make a table of values

Step-by-step explanation:

then plot using those values

The required graph has been attached which represents the line y = 4/3x

What is a graph?

A graph can be defined as a pictorial representation or a diagram that represents data or values.

We have been given the equation of a line below as:

y = 4/3x

Rewrite in slope-intercept form.

y = (4/3)x

Use the slope-intercept form to discover the slope and y-intercept.

Here the slope is 4/3 and  y-intercept = (0, 0)

Any line can be graphed using two points. Select two x values, and plug them into the equation to find the corresponding y values.

When substitute the value of x = 0, then the value of y = 0, and When substitute the value of x = 3, then the value of y = -4,

Hence, the graph represents the line y = 4/3x

Therefore, the required graph of the line y=4/3x will be shown in the as attached file.

Learn more about the graphs here:

brainly.com/question/16608196

#SPJ2

Select the correct answer from each drop-down menu.
The function f is given by the table of values as shown below.

x 1 2 3 4 5
f(x) 13 19 37 91 253
Use the given table to complete the statements.

The parent function of the function represented in the table is
.

If function f was translated down 4 units, the
-values would be
.

A point in the table for the transformed function would be
.

Answers

Answer:

3^x9, 15, 33, 87, 249(4, 87) for example

Step-by-step explanation:

a) First differences of the f(x) values in the table are ...

  19 -13 = 6, 37 -19 = 18, 91 -37 = 54, 253 -91 = 162

The second differences are not constant:

  18 -6 = 12, 54 -18 = 36, 162 -54 = 108

But, we notice that both the first and second differences have a common ratio. This is characteristic of an exponential function. The common ratio is 18/6 = 3, so the parent function is 3^x.

__

b) Translating a function down 4 units subtracts 4 from each y-value. The values of f(x) in the table would be ...

  9, 15, 33, 87, 249

__

c) The x-values of the function stay the same for a vertical translation, so the points in the table of the transformed function are ...

  (x, f(x)) = (1, 9), (2, 15), (3, 33), (4, 87), (5, 249)

Answer: I think this is it:

The parent function of the function represented in the table is exponential. If function f was translated down 4 units, the f(x)-values would be decreased by 4. A point in the table for the transformed function would be (4,87)

Step-by-step explanation: I got it right on Edmentum!

A waiter earns $11.00 an hour and approximately 10% of what he serves in a shift. If he works a 6 hour shift and takes $425 in orders, his total earnings for the six hours would be:


Answers

Answer:

108.50

Step-by-step explanation:

First find the wages

11* 6 = 66 dollars

Then figure the commission

10% of 425

.10 * 425

42.5

Add the two amounts together

42.5+66

108.50

The radius of a right circular cylinder is increasing at the rate of 7 in./sec, while the height is decreasing at the rate of 6 in./sec. At what rate is the volume of the cylinder changing when the radius is 20 in. and the height is 16 in.

Answers

Answer:

[tex]\approx \bold{6544\ in^3/sec}[/tex]

Step-by-step explanation:

Given:

Rate of change of radius of cylinder:

[tex]\dfrac{dr}{dt} = +7\ in/sec[/tex]

(This is increasing rate so positive)

Rate of change of height of cylinder:

[tex]\dfrac{dh}{dt} = -6\ in/sec[/tex]

(This is decreasing rate so negative)

To find:

Rate of change of volume when r = 20 inches and h = 16 inches.

Solution:

First of all, let us have a look at the formula for Volume:

[tex]V = \pi r^2h[/tex]

Differentiating it w.r.to 't':

[tex]\dfrac{dV}{dt} = \dfrac{d}{dt}(\pi r^2h)[/tex]

Let us have a look at the formula:

[tex]1.\ \dfrac{d}{dx} (C.f(x)) = C\dfrac{d(f(x))}{dx} \ \ \ (\text{C is a constant})\\2.\ \dfrac{d}{dx} (f(x).g(x)) = f(x)\dfrac{d}{dx} (g(x))+g(x)\dfrac{d}{dx} (f(x))[/tex]

[tex]3.\ \dfrac{dx^n}{dx} = nx^{n-1}[/tex]

Applying the two formula for the above differentiation:

[tex]\Rightarrow \dfrac{dV}{dt} = \pi\dfrac{d}{dt}( r^2h)\\\Rightarrow \dfrac{dV}{dt} = \pi h\dfrac{d }{dt}( r^2)+\pi r^2\dfrac{dh }{dt}\\\Rightarrow \dfrac{dV}{dt} = \pi h\times 2r \dfrac{dr }{dt}+\pi r^2\dfrac{dh }{dt}[/tex]

Now, putting the values:

[tex]\Rightarrow \dfrac{dV}{dt} = \pi \times 16\times 2\times 20 \times 7+\pi\times 20^2\times (-6)\\\Rightarrow \dfrac{dV}{dt} = 22 \times 16\times 2\times 20 +3.14\times 400\times (-6)\\\Rightarrow \dfrac{dV}{dt} = 14080 -7536\\\Rightarrow \dfrac{dV}{dt} \approx \bold{6544\ in^3/sec}[/tex]

So, the answer is: [tex]\approx \bold{6544\ in^3/sec}[/tex]

Records indicate that x years after 2008, the average property tax on a three bedroom home in a certain community was T(x) =20x^2+40x+600 dollars.

Required:
a. At what rate was the property tax increasing with respect to time in 2008?
b. By how much did the tax change between the years 2008 and 2012?

Answers

Answer:

a) 40 dollars

b) 480 dollars

Step-by-step explanation:

Given the average property tax on a three bedroom home in a certain community modelled by the equation T(x) =20x²+40x+600, the rate at which the property tax is increasing with respect to time in 2008 can be derived by solving for the function T'(x) at x=0

T'(x) = 2(20)x¹ + 40x° + 0

T'(x) = 40x+40

At x = 0,

T'(0) = 40(0)+40

T'(0) = 40

Hence the property tax was increasing at a rate of 40dollars with respect to the initial year (2008).

b) There are 4 years between 2008 and 2012. To know how much that the tax change between the years 2008 and 2012, we will find T(4) - T(0)

Given T(x) =20x²+40x+600

T(4) =20(4)²+40(4)+600

T(4) = 320+160+600

T(4) = 1080 dollars

Also T(0) =20(0)²+40(0)+600

T(0) = 0+0+600

T(0)= 600 dollars

T(4) - T(0) = 1080 - 600

T(4) - T(0) = 480 dollars

Hence, the tax has changed by $480 between 2008 and 2012

What is the name of a geometric figure that looks an orange


A. Cube

B. Sphere

C. Cylinder

D. Cone

Answers

Answer:

b . sphere

Step-by-step explanation:

What is the value of x to the nearest tenth?

Answers

Answer:

x=9.6

Step-by-step explanation:

The dot in the middle represents the center of the circle, so therefore, the line that is represented by 16 is the radius. Since that is the radius, the side that is the hypotenuse of the small triangle is also 16, since they have the same distance.

The line represented by 25.6 with x as its bisector shows that when we divide it by 2, the other side of the triangle besides the hypotenuse is 12.8.

Now that we have the two sides of the triangle, we can find the last side (represented by x). Use pythagorean theorem:

[tex]a^2 +b^2=c^2\\x^2+(12.8)^2=16^2\\x^2+163.84=256\\x^2=92.16\\x=9.6[/tex]

You are an assistant director of the alumni association at a local university. You attend a presentation given by the university’s research director and one of the topics discussed is what undergraduates do after they matriculate. More specifically, you learn that in the year 2018, a random sample of 216 undergraduates was surveyed and 54 of them (25%) decided to continue school to pursue another degree, and that was up two percentage points from the prior year. The Dean of the College of Business asks the research director if that is a statistically significant increase. The research director says she isn’t sure, but she will have her analyst follow up. You notice in the footnotes of the presentation the sample size in the year of 2017 was 200 undergraduates, and that 46 of them continued their education to pursue another degree.

There is a short break in the meeting. Take this opportunity to answer the dean’s question using a confidence interval for the difference between the proportions of students who continued their education in 2018 and 2017. (Use 95% confidence level and note that the university has about 10,000 undergraduate students).

Answers

Answer:

(0.102, -0.062)

Step-by-step explanation:

sample size in 2018 = n1 = 216

sample size in 2017 = n2 = 200

number of people who went for another degree in 2018 = x1 = 54

number of people who went for another degree in 2017 = x2 = 46

p1 = x1/n1 = 0.25

p2 = x2/n2 = 0.23

At 95% confidence level, z critical = 1.96

now we have to solve for the confidence interval =

[tex]p1 -p2 ± z*\sqrt{((1-p1)*p1)/n1 + ((1-p2)*p2/n2}[/tex]

[tex]0.25 -0.23 ± 1.96*\sqrt{((1 - 0.25) * 0.25)/216 + ((1 - 0.23) *0.23/200}[/tex]

= 0.02 ± 1.96 * 0.042

= 0.02 + 0.082 = 0.102

= 0.02 - 0.082 = -0.062

There is 95% confidence that there is a difference that lies between  - 0.062 and 0.102 on the proportion of students who continued their education in the years, 2017 and 2018.

There is no significant difference between the two.

Evaluate −x^2−5 y^3 when x = 4 and y = 1

Answers

Answer:

Simplify:

[tex]-4^2-5(1^3)[/tex]

So you get:

[tex]-21\\[/tex]

Answer:

[tex]\huge\boxed{-21}[/tex]

Step-by-step explanation:

-x²-5y³

Given that x = 4, y = 1

[tex]-(4)^2-5(1)^3[/tex]

[tex]-16-5(1)\\-16-5\\-21[/tex]

Evan’s dog weighs 15 3/8 pounds. What is this weight written as a decimal? A. 15.125 Ib B. 15.375 Ib C. 15.385 Ib D. 15.625 Ib Please include ALL work!

Answers

Answer:

ok as we know 15 is a whole number by itself and 3/8 is the decimal part

so we know it is 15. something

that something is 3/8 to find decimal you do 3/8

3/8 is = .375

so 15.375 is the answer

hope it helps

brainliest give me pls

Two charged particles, Q1, and Q2, are a distance r apart with Q2 = 5Q1 Compare the forces they exert on one another when F1 is the force Q2 exerts on Q1and F2 is the force Q1 exerts on Q2.
a) F2 = 5F1.
b) F2 =-5F1.
c) F2 = F1.
d) F2 = -F1.
e) 5F2 = F1.

Answers

Answer:

d) F2 = -F1.

Step-by-step explanation:

According to Coulomb's law of forces on electrostatic charges, the force of attraction is proportional to the product of their charges, and inversely proportional to the square of their distance apart.

What this law means is that both particles will experience an equal amount of force on them, due to the presence of the other particle. This force is not just as a result of their individual charges, but as a result of the product of their charges. Also, the force is a vector quantity that must have a direction alongside its magnitude, and the force on the two particles will always act in opposite direction, be it repulsive or attractive.

Last Sunday, the average temperature was 8\%8%8, percent higher than the average temperature two Sundays ago. The average temperature two Sundays ago was TTT degrees Celsius. Which of the following expressions could represent the average temperature last Sunday?

Answers

Answer: Either T + 0.08T or 1.08T

Work Shown:

T = average Celsius temperature two Sundays ago

8% = 8/100 = 0.08

8% of T = 0.08T

L = average Celsius temperature last sunday

L = 8% higher than T

L = T + (8% of T)

L = T + 0.08T

L = 1.00T + 0.08T

L = (1.00 + 0.08)T

L = 1.08T

The 1.08 refers to the idea that L is 108% of T

Answer:

b and d

Step-by-step explanation:

khan

Other Questions
A manufacturer claims that the calling range (in feet) of its 900-MHz cordless telephone is greater than that of its leading competitor. A sample of 19 phones from the manufacturer had a mean range of 1160 feet with a standard deviation of 32 feet. A sample of 11 similar phones from its competitor had a mean range of 1130 feet with a standard deviation of 30 feet. Required:Do the results support the manufacturer's claim? In 2002, the population of a district was 22,800. With a continuous annual growth rate of approximately 5% what will the population be in 2012 according to the exponential growth function? In which of the following compounds does the carbonyl stretch in the IR spectrum occur at the lowest wavenumber?a. Cyclohexanone b. Ethyl Acetate c. - butyrolactone d. Pentanamide e. Propanoyl Chloride front wheel drive car starts from rest and accelerates to the right. Knowing that the tires do not slip on the road, what is the direction of the friction force the road applies to the rear tire Find the area of the surface generated by revolving x=t + sqrt 2, y= (t^2)/2 + sqrt 2t+1, -sqrt 2 In 2018, the population of a district was 25,000. With a continuous annual growth rate of approximately 4%, what will thepopulation be in 2033 according to the exponential growth function?Round the answer to the nearest whole number. Manoj started a new job in a large city. The easiest way to get to work is to take the subway, but he tried that once and experienced such fear that he had a panic attack. He has decided to rent an apartment across the street from work so he never has to take the subway again. Manoj likely has Group of answer choices a specific phobia. agoraphobia. social phobia. panic disorder. What is the value of x to the nearest tenth? 100 cm^3 of oxygen diffuses through a Porous in 3second how long will it take 150 cm^3 of sulphur (iv) oxide diffuse through the same pot? ( oxygen= 16 sulphur = 32) Astrid is in charge of building a new fleet of ships. Each ship requires 404040 tons of wood, and accommodates 300300300 sailors. She receives a delivery of 444 tons of wood each day. The deliveries can continue for 100100100 days at most, afterwards the weather is too bad to allow them. Overall, she wants to build enough ships to accommodate at least 210021002100 sailors. What is the second part of the five-and-five approach called? Henry maneuver Heimlich maneuver abdominal maneuver back maneuver HELP ME I NEED IT [100 POINTS ]Match each Southeast Asian nation to its description. Sri Lanka The Philippines Myanmar ruled by a military government called a junta arrowRight elected Corazon Aquino as its president in 1986 after the dictatorship of Ferdinand Marcos arrowRight experienced a civil war between the Sinhalese and the Tamil after independence PLEASE ANSWER QUICKLY ASAP COMPLETE QUESTION B how to write this in number form The difference of 9 and the square of a number Which statement best describes relevant?o the goal of a discussion groupO explores a topicO directly related to the topicO responses to questions Two charged particles, Q1, and Q2, are a distance r apart with Q2 = 5Q1 Compare the forces they exert on one another when F1 is the force Q2 exerts on Q1and F2 is the force Q1 exerts on Q2. a) F2 = 5F1. b) F2 =-5F1. c) F2 = F1. d) F2 = -F1. e) 5F2 = F1. If 0 Evaluate x^25 y^3 when x = 4 and y = 1 Step 1: Subtract 3 from both sides of the inequalityStep 2Step 3: Divide both sides of the inequality by thecoefficient of x.What is the missing step in solving the inequality 5 -8x < 2x + 3?O Add 2x to both sides of the inequalityO Subtract 8x from both sides of the inequalityO Subtract 2x from both sides of the inequalityAdd 8x to both sides of the inequality.Mark this and returnSave and ExitIntextSubmit The radius of a right circular cylinder is increasing at the rate of 7 in./sec, while the height is decreasing at the rate of 6 in./sec. At what rate is the volume of the cylinder changing when the radius is 20 in. and the height is 16 in.