Answer:
27°C or 300K
Explanation
We were told that the pressureof the system decreased by 10 times implies that P2= P1/10
Where P2=final pressure
P1= initial pressure
Wew were also told that the volume of the system increased by 5 times this implies that V2= 5×V1
Where T2= final temperature =-123C= 273+(-123C)=150K
T1= initial temperature
But from gas law
PV=nRT
As n and R are constant
P1V1/T1 = P2V2/T2
T1= P1V1T2/P2V2
T1=2×T2
T1=2×150
T1=300K
=300-273
=27°C
the initial temperature (°C) of a system is 27°C
Which of the following provides a characteristic of
MgO(s) with a correct explanation?
Choose 1 answer:
А
It is hard because its ions are held together by strong
electrostatic attractions.
B
It is malleable because its atoms can easily move past
one another without disrupting the bonding.
It is a poor conductor of electricity because its
electrons are tightly held within covalent bonds and
lone pairs.
It has a high melting point because its molecules
interact through strong intermolecular forces.
Answer:
А It is hard because its ions are held together by strong electrostatic attractions.
B It is malleable because its atoms can easily move past one another without disrupting the bonding.
Explanation:
These are correct explanations of the properties of magnesium.
C is wrong. Mg is a good conductor of electricity and it has metallic bonds.
D is wrong. Mg has no molecules. It has no intermolecular forces.
What is the ph of 0.36M HNO3 ?
Answer:
0.44
Explanation:
We know that the pH of any acid solution is given by the negative logarithm of its hydrogen ion concentration. Hence, if I can obtain the hydrogen ion concentration of any acid, I can obtain its pH.
For the acid, HNO3, [H^+] = [NO3^-]= 0.36 M
pH= -log [H^+]
pH= - log[0.36]
pH= 0.44
When the nuclide bismuth-210 undergoes alpha decay:
The name of the product nuclide is_____.
The symbol for the product nuclide is_____
Fill in the nuclide symbol for the missing particle in the following nuclear equation.
_____ rightarrow 4He+ 234Th
2 90
Write a balanced nuclear equation for the following:
The nuclide radium-226 undergoes alpha emission.
Explanation:
An atom undergoes alpha decay by losing a helium atom.
So when bismuth undergoes alpha decay, we have;
²¹⁰₈₃Bi --> ⁴₂He + X
Mass number;
210 = 4 + x
x = 206
Atomic number;
83 = 2 + x
x = 81
The element is Thallium. The symbol is Ti.
For the second part;
X --> ⁴₂He + ²³⁴₉₀Th
Mass number;
x = 4 + 234 = 238
Atomic Number;
x = 2 + 90 = 92
The balanced nuclear equation is;
²³⁸₉₂U --> ⁴₂He + ²³⁴₉₀Th
When titrating a strong acid with a strong base, after the equivalence point is reached, the pH will be determined exclusively by: Select the correct answer below:
A) hydronium concentration
B) hydroxide concentration
C) conjugate base concentration
D) conjugate acid concentration
Answer:
B) hydroxide concentration
Explanation:
Hello,
In this case, since we are talking about strong both base and acid, since the base is the titrant and the acid the analyte, once the equivalence point has been reached, some additional base could be added before the experimenter realizes about it, therefore, since the titrant is a strong base, it completely dissociates in hydroxide ions and metallic ions which allows us to compute the pOH of the solution by known the hydroxide ions concentration.
After that, due to the fact that the pH is related with the pOH as shown below:
pH=14-pOH
We can directly compute the pH.
Best regards.
Write a balanced chemical equation for the base hydrolysis of methyl butanoate with NaOH. (Use either molecular formulas or condensed structural formulas, but be consistent in your equation.)
Explanation:
C5H10O2 + NaOH = C2H5COONa + C2H5OH
your result are : sodium propanoate and ethanol
A balanced chemical equation represents atoms and their numbers with their charge. The balanced equation for base hydrolysis is C₅H₁₀O₂ + NaOH → C₂H₅COONa + C₂H₅OH.
What is hydrolysis?Base hydrolysis is the splitting of the ester linkage by the basic molecule. As the result the acidic ester portion makes the salt, and also alcohol is produced as the by-product.
The base hydrolysis of methyl butanoate is shown as,
C₅H₁₀O₂ + NaOH → C₂H₅COONa + C₂H₅OH
Here, sodium propanoate and ethanol are produced by the splitting of methyl butanoate in the presence of the base (NaOH).
Therefore, C₅H₁₀O₂ + NaOH → C₂H₅COONa + C₂H₅OH is balanced reaction.
Learn more about hydrolysis here:
https://brainly.com/question/22078321
#SPJ2
Consider these metal ion/metal standard reduction potentials Cd2+(aq)|Cd(s) Zn2+(aq)|Zn(s) Ni2+(aq)|Ni(s) Cu2+(aq)|Cu(s) Ag+(aq)|Ag(s) -0.40 V -0.76 V ‑0.25 V +0.34 V +0.80 V Based on the data above, which species is the best reducing agent?
Answer:
The best reducing agent is Zn(s)
Explanation:
A reducing agent must to be able to reduce another compound, by oxidizing itself. Consequently, the oxidation potential must be high. The oxidation potential of a compound is the reduction potential of the same compound with the opposite charge. Given the reduction potentials, the best reducing agent will be the compound with the most negative reduction potential. Among the following reduction potentials:
Cd₂⁺(aq)|Cd(s) ⇒ -0.40 V
Zn²⁺(aq)|Zn(s) ⇒ -0.76 V
Ni²⁺(aq)|Ni(s) ⇒‑0.25 V
Cu²⁺(aq)|Cu(s) ⇒ +0.34 V
Ag⁺(aq)|Ag(s) ⇒ +0.80 V
The most negative is Zn²⁺(aq)|Zn(s) ⇒ -0.76 V
From this, the most reducing agent is Zn. Zn(s) is oxidized to Zn²⁺ ions with the highest oxidation potential (0.76 V).
A piece of solid Fe metal is put into an aqueous solution of Cu(NO3)2. Write the net ionic equation for any single-replacement redox reaction that may be predicted. Assume that the oxidation state of in the resulted solution is 2 . (Use the lowest possible coefficients for the reaction. Use the pull-down boxes to specify states such as (aq) or (s). If a box is not needed, leave it blank. If no reaction occurs, leave all boxes blank and click on Submit.)
Answer:
Fe(s) + Cu^2+(aq) ---> Fe^2+(aq) + Cu(s)
Explanation:
The ionic equation shows the actual reaction that took place. It excludes the spectator ions. Spectator ions are ions that do not really participate in the reaction even though they are present in the system.
For the reaction between iron and copper II nitrate, the molecular reaction equation is;
Fe(s) + Cu(NO3)2(aq)----> Fe(NO3)2(aq) +Cu(s)
Ionically;
Fe(s) + Cu^2+(aq) ---> Fe^2+(aq) + Cu(s)
Refer to the figure.
30. How many planes are shown in the figure?
31. How many planes contain points B, C, and E?
32. Name three collinear points.
3. Where could you add point G on plane N
so that A, B, and G would be collinear?
4. Name a point that is not coplanar with
A, B, and C.
5. Name four points that are coplanar.
BN
Answer:
30. 5 planes are shown
31. 1 plane
32. CEF
33. on line AB
34. E or F
35. ABCD or BCEF or CDEF or ACEF
Explanation:
30. Each of the surfaces of the rectangular pyramid is a plane. There are 5 planes.
__
31. 3 points define one plane only.
__
32. The only points shown on the same line segment are points E, F, and C.
__
33. If G is to be collinear with A and B, it must lie on line AB.
__
34. The only points shown that are not on plane N are points E and F. Either of those will do.
__
35. There are three planes that have 4 points shown on them. The four points that are on the same plane are any of ...
ABCDBCEFCDEFPlane ACEF is not shown on the diagram, but we know that those 4 points are also coplanar. (Any point not on line CE, together with the three points on that line, will define a plane with 4 coplanar points.)
One way the U.S. Environmental Protection Agency (EPA) tests for chloride contaminants in water is by titrating a sample of silver nitrate solution. Any chloride anions in solution will combine with the silver cations to produce bright white silver chloride precipitate. Suppose an EPA chemist tests a sample of groundwater known to be contaminated with nickel(II) chloride, which would react with silver nitrate solution like this:
Answer:
6.5 mg/L.
Explanation:
Step one: write out and Balance the chemical reaction in the Question above:
NiCl2 + 2AgNO3 =====> 2AgCl + Ni(NO3)2.
Step two: Calculate or determine the number of moles of AgCl.
So, we are given that the mass of AgCl = 3.6 mg = 3.6 × 10^-3 g. Therefore, the number of moles of AgCl can be calculated as below:
Number of moles AgCl = mass/molar mass = 3.6 × 10^-3 g / 143.32. = 2.5118 × 10^-5 moles.
Step three: Calculate or determine the number of moles of NiCl2.
Thus, the number of moles of NiCl2 = 2.5118 × 10^-5/ 2 = 1.2559 × 10^-5 moles.
Step four: detemine the mass of NiCl2.
Therefore, the mass of NiCl2 = number of moles × molar mass = 1.2559 × 10^-5 moles × 129.6 = 1.6 × 10^-3 g.
Step five: finally, determine the concentration of NiCl2.
1000/ 250 × 1.6 × 10^-3 g. = 6.5 mg/L.
For each bond, show the direction of polarity by selecting the correct partial charges. _________ Si-P _________ _________ Si-Cl _________ _________ Cl-P _________ The most polar bond is _______
Answer:
Siδ⁺ -- Pδ⁻⁻
Clδ⁻⁻ -- Pδ⁺
Siδ⁺ -- Clδ⁻⁻
Of the mentioned bonds the most polar bond is Si -- Cl
The polarity of the bond primarily relies upon the electronegativity difference between the two atoms that forms the bond. Therefore, if the electronegativity difference between the two atoms that forms the bond is more the bond will be more polar, and if it is less then the bond will be less polar. The electronegativity of the atoms mentioned is Si = 1.8 , P = 2.1 and Cl = 3.00.
Therefore, the Si - Cl atoms exhibit more electronegativity difference, thus, the Si - Cl bond will be the most polar bond.
Calculate the molarity of a solution containing 29g of glucose (C 6 H 12 O 6 ) dissolved in 24.0g of water. Assume the density of water is 1.00g/mL.
Answer:
whats the ph ofpoh=9.78
Explanation:
Calculate the amount of heat that must be absorbed by 10.0 g of ice at –20°C to convert it to liquid water at 60.0°C. Given: specific heat (ice) = 2.1 J/g·°C; specific heat (water) = 4.18 J/g·°C; ΔH fus = 6.0 kJ/mol.
Answer:
The amount of heat to absorb is 6,261 J
Explanation:
Calorimetry is in charge of measuring the amount of heat generated or lost in certain physical or chemical processes.
The total energy required is the sum of the energy to heat the ice from -20 ° C to ice of 0 ° C, melting the ice of 0 ° C in 0 ° C water and finally heating the water to 60 ° C.
So:
Heat required to raise the temperature of ice from -20 °C to 0 °CBeing the sensible heat of a body the amount of heat received or transferred by a body when it undergoes a temperature variation (Δt) without there being a change of physical state (solid, liquid or gaseous), the expression is used:
Q = c * m * ΔT
Where Q is the heat exchanged by a body of mass m, made up of a specific heat substance c and where ΔT is the temperature variation (ΔT=Tfinal - Tinitial).
In this case, m= 10 g, specific heat of the ice= 2.1 [tex]\frac{J}{g*C}[/tex] and ΔT=0 C - (-20 C)= 20 C
Replacing: Q= 10 g*2.1 [tex]\frac{J}{g*C}[/tex] *20 C and solving: Q=420 J
Heat required to convert 0 °C ice to 0 °C waterThe heat Q necessary to melt a substance depends on its mass m and on the called latent heat of fusion of each substance:
Q= m* ΔHfusion
In this case, being 1 mol of water= 18 grams: Q= 10 g*[tex]6.0 \frac{kJ}{mol} *\frac{1 mol of water}{18 g}[/tex]= 3.333 kJ= 3,333 J (being kJ=1,000 J)
Heat required to raise the temperature of water from 0 °C to 60 °CIn this case the expression used in the first step is used, but being: m= 10 g, specific heat of the water= 4.18 [tex]\frac{J}{g*C}[/tex] and ΔT=60 C - (0 C)= 60 C
Replacing: Q= 10 g*4.18 [tex]\frac{J}{g*C}[/tex] *60 C and solving: Q=2,508 J
Finally, Qtotal= 420 J + 3,333 J + 2,508 J
Qtotal= 6,261 J
The amount of heat to absorb is 6,261 J
The amount of heat to absorb is 6,261 J.
Calculation for heat:Heat required to raise the temperature of ice from -20 °C to 0 °C.
The formula for specific heat is used to calculate the amount of heat
Q = c * m * ΔT
Where,
Q =heat exchanged by a body,
m= mass of the body
c= specific heat
ΔT= change in temperature
Given:
m= 10 g,
specific heat of the ice= 2.1
ΔT=0 C - (-20 C)= 20 C
On substituting the values:
Q= 10 g*2.1 *20 C
Q=420 J
Heat required to convert 0 °C ice to 0 °C water.
The heat Q necessary to melt a substance depends on its mass m and on the called latent heat of fusion of each substance:
Q= m* ΔHfusion
Heat required to raise the temperature of water from 0 °C to 60 °C
m= 10 g,
Specific heat of the water= 4.18
ΔT=60 C - (0 C)= 60 C
On substituting:
Q= 10 g*4.18 *60 C
Q=2,508 J
Thus, Qtotal= 420 J + 3,333 J + 2,508 J
Qtotal= 6,261 J
The amount of heat to absorb is 6,261 J
Find more information about Specific heat here:
brainly.com/question/13439286
Select the true statement concerning voltaic and electrolytic cells. Select one: a. Voltaic cells involve oxidation-reduction reactions while electrolytic cells involve decomposition reactions. b. Voltaic cells require applied electrical current while electrolytic cells do not. . c. all electrochemical cells, voltaic and electrolytic, must have spontaneous reactions. d. Electrical current drives nonspontaneous reactions in electrolytic cells.
Answer:
Electrical current drives nonspontaneous reactions in electrolytic cells.
Explanation:
Electrochemical cells are cells that produce electrical energy from chemical energy.
There are two types of electrochemical cells; voltaic cells and electrolytic cells.
A voltaic cell is an electrochemical cell in which electrical energy is produced from spontaneous chemical process while an electrolytic cell is an electrochemical cell where electrical energy is produced from nonspontaneous chemical processes. Current is needed to drive these nonspontaneous chemical processes in an electrolytic cell.
Answer:
electrolytic cells generate electricity through a non-spontaneous reaction while voltaic cells absorb electricity to drive a spontaneous reaction.
Explanation:
Answer via Educere/ Founder's Education
How does the spontaneity of the process below depend on temperature? PCl5(g)+H2O(g)→POCl3(g)+2HCl(g) ΔH=−126 kJ mol−1, ΔS=146 J K−1mol−
The given question is incomplete, the complete question is:
How does the spontaneity of the process below depend on temperature? PCI5(9)+H2O(g)POCI3(g) +2HCI(g) -126 kJ mol1, AS = 146 J K-'mol1 ΔΗ Select the correct answer below: nonspontaneous at all temperatures spontaneous at all temperatures spontaneous at high temperatures and nonspontaneous at low temperatures spontaneous at low temperatures and nonspontaneous at high temperatures
Answer:
The correct answer is spontaneous at all the temperatures.
Explanation:
Gibbs Free energy is an essential relation that determines the spontaneity of any reaction, that is, ΔG = ΔH - TΔS
When ΔG is less than zero, that is, negative, the reaction is considered to be in spontaneous state. Based on the given information, ΔH = -126 kJ/mol
= -126000 J/mol, it is negative
ΔS = 146 J/K/mol, it is positive
Now, ΔG = ΔH-TΔS
= (-ve) - T (+ve), Thus, when ΔH, is -ve, ΔS is +ve, -TΔS is -ve, the ΔG will be -ve. Therefore, reaction will be spontaneous at all the temperatures.
Heterocyclic aromatic compounds undergo electrophilic aromatic substitution in a similar fashion to that undergone by benzene with the formation of a resonance-stabilized intermediate. Draw all of the resonance contributors expected when the above compound undergoes bromination
Answer:
See explanation
Explanation:
When we talk about electrophilic substitution, we are talking about a substitution reaction in which the attacking agent is an electrophile. The electrophile attacks an electron rich area of a compound during the reaction.
The five membered furan ring is aromatic just as benzene. This aromatic structure is maintained during electrophilic substitution reaction. The attack of the electrophile generates a resonance stabilized intermediate whose canonical structures have been shown in the image attached.
9
What might happen if acidic chemicals were emitted into
the air by factories? Choose the best answer.
A
The acid would destroy metallic elements in the air
B
The acid would be neutralized by bases within clouds
C
Acid rain might destroy ecosystems and farmland
D
Violent chemical reactions would take place within the
atmosphere
co search
O
BI
(a) Identify the name of the method used below for the separation.
(b) Give one more application of this method of separation.
(c) What is the name for the line at position B ?
(d) what conclusions can you draw about the colours present in sweets C and D ?
Answer:
(a) Chromatography
(b) DNA fingerprinting
(c) Origin
(d) Sweet C consists of more colours than sweet D.
ii. The speed of colours in sweet C are proportional to one another, while that of colours in D is not.
Explanation:
Chromatography is one of the physical method of separating mixtures. This process composed of the ability of the constituents in a mixture to separate by virtue of rate of movement through a medium, thus separates into constituents.
It can be used to determine the soluble constituents of a given mixture. And for purification purpose.
g Which ONE of the following pairs of organic compounds are NOT pairs of isomers? A) butanol ( CH3-CH2-CH2-CH2-OH ) and diethyl ether ( CH3–CH2–O–CH2–CH3 ) B) isopentane ( (CH3)2-CH-CH2-CH3 ) and neopentane ( (CH3)4C ) C) ethanolamine ( H2N-CH2-CH2-OH ) and acetamide ( CH3-CO-NH2 ) D) acrylic acid ( CH2=CH-COOH ) and propanedial ( OHC–CH2–CHO ) E) trimethylamine ( (CH3)3N ) and propylamine ( CH3-CH2-CH2-NH2 )
Answer:
ethanolamine ( H2N-CH2-CH2-OH ) and acetamide ( CH3-CO-NH2 )
Explanation:
Isomers are compounds that have the same molecular formula but different structural formulas. Hence any pair of compounds that can be represented by exactly the same molecular formula are isomers of each other.
If we look at the pair of compounds; ethanolamine ( H2N-CH2-CH2-OH ) and acetamide ( CH3-CO-NH2 ), one compound has molecular formula, C2H7ON while the other has a molecular formula, C2H5ON, hence they are not isomers of each other.
A chemist prepares a solution of sodium chloride by measuring out 25.4 grams of sodium chloride into a 100. mL volumetric flask and filling the flask to the mark with water. Calculate the concentration in mol/L of the chemist's sodium chloride solution. Be sure your answer has the correct number of significant digits.
Answer:
The concentration in mol/L = 4.342 mol/L
Explanation:
Given that :
mass of sodium chloride = 25.4 grams
Volume of the volumetric flask = 100 mL
We all know that the molar mass of sodium chloride NaCl = 58.5 g/mol
and number of moles = mass/molar mass
The number of moles of sodium chloride = 25.4 g/58.5 g/mol
The number of moles of sodium chloride = 0.434188 mol
The concentration in mol/L = number of mol/ volume of the solution
The concentration in mol/L = 0.434188 mol/ 100 × 10⁻³ L
The concentration in mol/L = 4.34188 mol/L
The concentration in mol/L = 4.342 mol/L
A 1.0 L buffer solution is 0.250 M HC2H3O2 and 0.050 M LiC2H3O2. Which of the following actions will destroy the buffer?
A. adding 0.050 moles of NaOH
B. adding 0.050 moles of LiC2H3O2
C. adding 0.050 moles of HC2H3O2
D. adding 0.050 moles of HCl
E. None of the above will destroy the buffer.
Answer:
D
Explanation:
Addition of 0.05 M HCl, will react with all of the C2H3O2- from LiAc which will give 0.05 M more HAc. So there will be no Acetate ion left to make the solution buffer. Hence, the correct option for the this question is d, which is adding 0.050 moles of HCl.
The action that destroys the buffer is option c. adding 0.050 moles of HCl.
What is acid buffer?It is a solution of a weak acid and salt.
Here, The buffer will destroy at the time when either HC2H3O2 or NaC2H3O2 should not be present in the solution.
The addition of equal moles of HCl finishly reacts with equal moles of NaC2H3O2. Due to this, there will be only acid in the solution.
Since
moles of HC2H3O2 = 1*0.250 = 0.250
moles of NaC2H3O2 = 1*0.050 = 0.050.
moles of HCl is added = 0.050
Now
The reaction between HCl and NaC2H3O2
[tex]HCl + NaC_2H_3O_2 \rightarrow HC_2H_3O_2 + NaCl[/tex]
Now
BCA table is
NaC2H3O2 HCl HC2H3O2
Before 0.050 0.050 0.250
Change -0.050 -0.050 +0.050
After 0 0 0.300
Now, the solution contains the acid (HC2H3O2 ) only.
Therefore addition of 0.050 moles of HCl will destroy the buffer.
Learn more about moles here: https://brainly.com/question/24817060
Chemistry
What is a chemical reaction
Answer:
A process that involves rearrangement
Explanation:
A chemical reaction is the process that involves rearrangement of the molecular or ironic structure of a substance, as a distinct from a change in physical form or a nuclear reaction.
Answer:
Explanation:
Chemistry
The chemical reaction H2(g) + ½ O2(g) → H2O(l) describes the formation of water from its elements.
The reaction between iron and sulfur to form iron(II) sulfide is another chemical reaction, represented by the chemical equation:
8 Fe + S8 → 8 FeS
Explain your reasoning. Match each explanation to the appropriate blanks in the sentences on the right.
1. the atomic radius decreases
2. the number of gas molecules decreases
3. molar mass and structure complexity decreases
4. structure complexity decreases
5. molar mass decreases
6. each phase (gas, liquid, solid) becomes more ordered
A (I_2(g), Br_2 (g), Cl_2 (g), F_2 (B): The ranking can best be explained by the trend entropy decreases as______.
B (H_2O_2 (g), H_2S(g), H_2O(g): The ranking can best be explained by the decreases a trend entropy decreases as_______.
C. (C(s, amorphous), C(s, graphite), C(s, diamond): The ranking can best be explained by the trend entropy decreases as_______.
Answer:
A (I_2(g), Br_2 (g), Cl_2 (g), F_2 (B): The ranking can best be explained by the trend entropy decreases as 5. molar mass decreases.
B (H_2O_2 (g), H_2S(g), H_2O(g): The ranking can best be explained by the decreases a trend entropy decreases as 3. molar mass and structure complexity decreases.
C. (C(s, amorphous), C(s, graphite), C(s, diamond): The ranking can best be explained by the trend entropy decreases as 4. structure complexity decreases.
Explanation:
Hello.
In this case, we can understand a higher entropy when more disorder is present and a lower entropy when less disorder is present, thus:
A (I_2(g), Br_2 (g), Cl_2 (g), F_2 (B): The ranking can best be explained by the trend entropy decreases as 5. molar mass decreases since iodine has the greatest molar mass (254 g/mol) and fluorine the least molar mass (38 g/mol).
B (H_2O_2 (g), H_2S(g), H_2O(g): The ranking can best be explained by the decreases a trend entropy decreases as 3. molar mass and structure complexity decreases since hydrogen peroxide weights 34 g/mol as well as hydrogen sulfide but the peroxide has more bonds (more complex, higher entropy).
C. (C(s, amorphous), C(s, graphite), C(s, diamond): The ranking can best be explained by the trend entropy decreases as 4. structure complexity decreases since diamond has a well-ordered structure and amorphous carbon has a very disordered one.
Best regards.
Which of the following contains a nonpolar covalent bond?
O A. Co
B. NaCl
O C. 02
O D. HE
Answer:
The answer is o2
Explanation:
I took the test
Solid cesium bromide has the same kind of crystal structure as CsCl which is pictured below: If the edge length of the unit cell is 428.7 pm, what is the density of CsBr in g/cm3.
Answer:
[tex]\mathbf {density \ d =4.4845 \ g/cm^3}[/tex]
Explanation:
Let recall the crystal structure of CsBr obtains a BCC structure. In a BCC structure, there exist only two atom per cell.
The density d of CsBr in g/cm³ can be calculated by using the formula:
[tex]\mathtt{ density \ d = \dfrac{z \times molar\ mass \ (M)}{ edge \ length \ (a) \ \times avogadro's \ number \ (N)}}[/tex]
where;
z = 1 mole of CsBr
edge length = 428.7 pm = (4.287 × 10⁻⁸)³ cm
molar mass of CsBr = 212.81 g/mol
avogadro's number = 6.023 × 10²³
[tex]\mathtt{ density \ d = \dfrac{1 \times 212.81}{(4.287 \times 10^{-8})^3 \times 6.023 \times 10^{23}}}[/tex]
[tex]\mathtt{ density \ d = \dfrac{ 212.81}{47.4540533}}[/tex]
[tex]\mathbf {density \ d =4.4845 \ g/cm^3}[/tex]
g Does a reaction occur when aqueous solutions of barium hydroxide and aluminum sulfate are combined
Answer:
3BaO + Al₂(SO₄)₃ → Al₂O₃+ 3BaSO₄
Explanation:
Yes! A reactiin occurs between barium hydroxide and auminium sulphate.
barium sulfate (BaSO4) and aluminum hydroxide (Al(OH)3) are the products obtained in this reaction.
The reaction is given by the equation below;
3BaO + Al₂(SO₄)₃ → Al₂O₃+ 3BaSO₄
243
Am
95
1. The atomic symbol of americium-243 is shown. Which of the following is correct?
• A. The atomic mass is 243 amu, and the atomic number is 95.
B. The atomic mass is 338 amu, and the atomic number is 95.
• C. The atomic mass is 95 amu, and the atomic number is 243.
D. The atomic mass is 243 amu, and the atomic number is 338.
Answer:
A. The atomic mass is 243 amu, and the atomic number is 95.
15. Calculate the critical angle of glass and water combination. Show your calculation. 16. What is the critical angle for the interface between Mystery A and glass
Answer:
15. Critical angle of glass and water combination, θ = 62.45°
16. Critical angle for the interface between Mystery A and glass, θ = 37.93°
Note; The question is incomplete. The complete question is as follows:
Medium Air Water Glass Mystery A Mystery B Table-2 Speed (m/s) 1.00 C 0.75 c 0.67 0.41 c 0.71 c n 1.00 1.33 1.50 Index of Refraction n of a given medium is defined as the ratio of speed of light in vacuum, c to the speed of light in a medium, v. n = c/v
Table-4: Incident Angle (degrees) Reflected Angle Refracted angle (degrees) (degrees) % Intensity of reflected ray 0 10 20 30 40 50 N/A N/A N/A 30 40 50 0 11.3 22.7 34.2 46.3 59.5 N/A N/A N/A 0.67 1.22 3.08 % Intensity of refracted ray 100 100 100 99.33 98.78 96.92
When rays travel from a denser medium to a less dense medium, we can define a critical angle of incidence θ such that refracted angle θ₂ = 90°. Applying Snell's law: Critical angle θ = sin-1(n₂/n₁).
When the angle of incidence is greater than the critical angle, 100% of the light intensity is reflected. This is called total internal reflection because all the light is reflected.
15. Calculate the critical angle of glass and water combination. Show your calculation.
16. What is the critical angle for the interface between Mystery A and glass?
Explanation:
15. Applying Snell's law; Critical angle θ = sin-1(n₂/n₁).
where n₂,refractive index of water = 1.33, n₁, refractive index of glass = 1.50 since glass is denser than water
θ = sin-1(1.33/1.50)
θ = 62.45°
Critical angle of glass and water combination, θ = 62.45°
16. Refractive index of mystery A , n = c/v
where v = 0.41 c
therefore, n = c / 0.41 c = 2.44
Critical angle for the interface between Mystery A and glass, θ = sin-1(n₂/n₁).
where n₂,refractive index of glass = 1.50, n₁, refractive index of mystery A = 2.44 since mystery A is denser than glass as seen from its refractive index
θ = sin-1(1.50/2.44)
θ = 37.93°
Critical angle for the interface between Mystery A and glass, θ = 37.93°
Because of movements at the Mid-Atlantic Ridge, the Atlantic Ocean widens by about 2.5 centimeters each year. Explain which type of plate boundary causes this motion.
Answer:
A divergent plate boundary
Explanation:
At a divergent boundary, the plates pull away from each other and generate new crust.
Answer:
Because the ocean becomes larger, this is a divergent plate boundary. Divergent plates cause the ocean floor to expand, making the ocean larger.
Explanation:
PLATO ANSWER
The half-life of radium-226 is 1620 years. What percentage of a given amount of the radium will remain after 900 years
Answer:
68%
Explanation:
Since we need a percentage we can use any number we want for our initial value.
5(1/2)^900/1620 = 3.40
(3.40 / 5)*100 = 68%
To make sure lets use a different initial amount
1(1/2)^900/1620 = 0.68
(0.68/1) * 100 = 68%
To solve this question, we'll assume the initial amount of radium-226 to be 1.
Now, we shall proceed to obtaining the percentage of radium-226 that will after 900 years. This can be obtained as illustrated below:
Step 1Determination of the number of half-lives that has elapsed.
Half-life (t½) = 1620 years
Time (t) = 900 years
Number of half-lives (n) =?[tex]n = \frac{t}{t_{1/2}}\\\\n = \frac{900}{1620}\\\\n = \frac{5}{9}[/tex]
Step 2:Determination of the amount remaining
Initial amount (N₀) = 1
Number of half-lives (n) = 5/9
Amount remaining (N) =?[tex]N = \frac{N_{0} }{2^{n}}\\\\N = \frac{1}{2^{5/9}}[/tex]
N = 0.68Step 3Determination of the percentage remaining.
Initial amount (N₀) = 1
Amount remaining (N) = 0.68
Percentage remaining =?Percentage remaining = N/N₀ × 100
Percentage remaining = 0.68/1 × 100
Percentage remaining = 68%Therefore, the percentage amount of radium-226 that remains after 900 years is 68%
Learn more: https://brainly.com/question/10406952
If the theoretical yield of a reaction is 332.5 g and the percent yield for the reaction is 38 percent, what's the actual yield of product in grams? \
A. 8.74 g
B. 12616 g
C. 116.3 g
D. 126.4 g
Answer: D - 126.4g
Explanation:
% Yield = Actual Yield/Theoretical Yield
38% = Actual Yield/332.5
38/100 = Actual Yield/332.5
(.38)(332.5) = 126.35 g = 126.4 g Actual Yield
Answer:
is D. the correct answer
Explanation:
I'm not sure if it is. Please let me know if I'm mistaking.