Answer:
x = 8
Step-by-step explanation:
undefined slope => m = oo
passes (8, -3) => (x1, y1)
the equation is : y-y1 =m(x-x1)
y+3 = oo(x-8)
=> x -8 = (y+3)/oo
x -8 = 0
x = 8
so, the equation is: x = 8
Một cuộc điều tra tại một đô thị cho kết quả: 20% dân số dùng một loại sản phẩm A, 50% dân số
dùng một loại sản phẩm B, 15% dân số dùng cả hai loại A và B. Chọn ngẫu nhiên một người dân
trong đô thị đó, tìm xác suất để:
a. Người đó dùng sản phẩm A hoặc B.
b. Người đó không dùng sản phẩm A cũng không dùng sản phẩm B.
c. Người đó chỉ dùng đúng một trong hai loại sản phẩm A hoặc B.
d. Người đó chỉ dùng duy nhất sản phẩm A.
if x and y are linear pair of angel then x +y=
Answer: x + y = 180²
Step-by-step explanation:
A linear pair is a pair of adjacent, supplementary angles.
Adjacent means next to each other.
Supplementary means that the measures of the two angles add up to equal 180 degrees.
Therefore, by definition, if x and y are linear pairs of angles, then x + y = 180.
In the diagram below, circle O has a radius of 10. If the measure of arc AB is 72°, find the area of shaded sector AOB, in terms of π. Show all your work that leads to the final answer.
Answer:
62.8
Step-by-step explanation:
Area of sector=(pi*r^2)*(theta/360)
Area of sector=(pi*100)*(72/360)=62.8
The area of the shaded sector AOB in terms of π is 20π units squared.
How to find area of a sector?
The area of a sector can be described as follows;
area of sector = ∅ / 360 × πr²
where
r = radius of the circleTherefore,
r = 10 units
∅ = 72°
Hence,
area of the sector = 72° / 360° × π10²
area of the sector = 7200 / 360 π
area of the sector = 20π units²
learn more on sector here: https://brainly.com/question/24351015
#SPJ2
Tickets to a local movie were sold at $6.00 for adults and $4.50 for students. If 390 tickets were sold for a total of $2190.00, how many student tickets were sold
Answer: Therefore 100 student tickets were sold
Step-by-step explanation:
Let the number of student tickets be x
So adult tickets = 390 - x
ATQ
4.5(x) + 6(390-x) = 2190
4.5x + 2340 - 6x = 2190
-1.5x + 2340 = 2190
-1.5x = 2190-2340
-1.5x = -150
x = -150/-1.5
x = 100
Therefore 100 student tickets were sold
please click thanks and mark brainliest if you like :)
Find the absolute extrema of the function over the region R. (In each case, R contains the boundaries.) Use a computer algebra system to confirm your results. (Order your answers from smallest to largest x, then from smallest to largest y.)
f(x, y) = x2 − 4xy + 5
R = {(x, y): 1 ≤ x ≤ 4, 0 ≤ y ≤ 2}
f(x, y) = x ² - 4xy + 5
has critical points where both partial derivatives vanish:
∂f/∂x = 2x - 4y = 0 ==> x = 2y
∂f/∂y = -4x = 0 ==> x = 0 ==> y = 0
The origin does not lie in the region R, so we can ignore this point.
Now check the boundaries:
• x = 1 ==> f (1, y) = 6 - 4y
Then
max{f (1, y) | 0 ≤ y ≤ 2} = 6 when y = 0
max{f (1, y) | 0 ≤ y ≤ 2} = -2 when y = 2
• x = 4 ==> f (4, y) = 12 - 16y
Then
max{f (4, y) | 0 ≤ y ≤ 2} = 12 when y = 0
max{f (4, y) | 0 ≤ y ≤ 2} = -4 when y = 2
• y = 0 ==> f (x, 0) = x ² + 5
Then
max{f (x, 0) | 1 ≤ x ≤ 4} = 21 when x = 4
min{f (x, 0) | 1 ≤ x ≤ 4} = 6 when x = 1
• y = 2 ==> f (x, 2) = x ² - 8x + 5 = (x - 4)² - 11
Then
max{f (x, 2) | 1 ≤ x ≤ 4} = -2 when x = 1
min{f (x, 2) | 1 ≤ x ≤ 4} = -11 when x = 4
So to summarize, we found
max{f(x, y) | 1 ≤ x ≤ 4, 0 ≤ y ≤ 2} = 21 at (x, y) = (4, 0)
min{f(x, y) | 1 ≤ x ≤ 4, 0 ≤ y ≤ 2} = -11 at (x, y) = (4, 2)
Help plz last question
Answer:
224π in^2
Step-by-step explanation:
Just plug in the values,
Surface area=2πr(h+r) [Factoring]
r=7in
h=9in
2πr(h+r)=2π*7(9+7)=14π(16)=224π in^2
A cylinder with a base diameter of x units has a volume of excubic units.
Which statements about the cylinder are true,Select
two options.
1)The radius of the cylinder is 2x units.
2)The area of the cylinder's base is 1/4 piex^2square units.
3)The area of the cylinder's base is 1/2 piex^2 square units.
4)The height of the cylinder is 2x units.
5)The height of the cylinder is 4x units.
Answer:3 and 4
Step-by-step explanation:
Write the point-slope form of an equation of the line through the points (-1, 4) and (-2, 2).
Answer:
Point-slope form: y-4=2(x+1)
Slope intercept form: y=2x+6
I hope this helps!
Answer:
[tex]y-4=2(x+1)[/tex]
Step-by-step explanation:
Point-slope form is equal to
[tex]y-y_1=m(x-x_1)[/tex]
where y and y1 are the known y coordinates of two points on the line, and x and x1 are the known x coordinates of two points on the line. All we need now is m, which is the slope:
[tex]4-2=m(-1-(-2))[/tex]
We can simplify negative one minus negative two as positive 1.
[tex]4-2=m(1)[/tex]
4 minus 2 is 2, so m times 1 is 2. That means m is 2.
Now, we have the slope, so we can convert to point-slope form using one of the two points. Let's use (-1, 4). We can plug those values in for x1 and y1:
[tex]y-4=2(x+1)[/tex]
The sum of 3 times a number and 4 is 9.
Answer: x = 5/3
Step-by-step explanation:
Let the number be x
Then
3x + 4 = 9
3x = 9-4
3x = 5
x = 5/3
please click thanks and mark brainliest if you like :)
PLEASE gelp me with this, gelp me please oh please gelp me!
Answer:
V = 2143.57 cm^3
Step-by-step explanation:
The volume of a sphere is
V = 4/3 pi r^3
The diameter is 16 so the radius is 1/2 of the diameter or 8
V = 4/3 ( 3.14) (8)^3
V =2143.57333
Rounding to the nearest hundredth
V = 2143.57 cm^3
Answer:
2143.57 cm^3
Step-by-step explanation:
V = 4/3 * 3.14 * r^3
r = 1/2 * 16 = 8
So V = 4/3 * 3.14 * 8^3
= 2143.57 cm^3.
5. Given a test in which there is overlap of the test results for diseased and non-diseased individuals (e.g., normal individuals are found who have test results ranging in value from 8 to 15, and diseased individuals are found who have test results ranging in value from 12 to 25, so that in the range of values 12 to 15 there are both normal and diseased individuals), if the current cutoff value lies in the range of this overlap and you move the cutoff value toward the normal population (lower numbers in this example), the true negative numbers will _____________________ . (5 points)
Answer:
True negative numbers are considered as diseased individual. So, the true negative numbers will increase
Step-by-step explanation:
True negative numbers are considered as diseased individual. So, the true negative numbers will increase.
[tex]2i+3x=4-ix[/tex]
Show work.
No wrong answers or you will be reported. I will mark Brainliest! Thank you!
Answer:
Step-by-step explanation:
I am assuming i is the imaginary number:
Factor:
(3 + i)x - (4-2i) = 0.
In order for this to equal 0, x must be equal to 1-i.
I don't want to be reported to so take my word for it.
Also I plugged it into wolfram alpha so if it is wrong, blame the most powerful math equation solver available on the internet.
Using BTS he properties, find the unit's digit of the cube of each of the following numbers
A line passes through the point (-4, -6) and has a slop of 5. Write an equation for this line.
OLVE
(a) 3^2x+1=9^
2x-1
Answer:
x=2
Step-by-step explanation:
you first have to make the bases the same
3^2x+1=9^2x-1
3^2x+1=3^2(2x-1) if you make the bases the same you will use 3^2 because it's equal to 9
3^2x+1=3^4x-2
2x+1=4x-2
2x-4x=-2-1
-2x/-2=-4/-2
x=2
I hope this helps
HELP WILL GIVE BRAINLYIST
Answer:
The parent cubic function has been vertically stretched by a factor of 4.
Equation:G(x)= 4[tex]\sqrt[3]{x}[/tex]
Answer: Option B
OAmalOHopeO
The weight of an object above the surface of the Earth varies inversely with the square of the
distance from the center of the Earth. If a body weighs 50 pounds when it is 3,960 miles from
Earth's center, what would it weigh if it were 4,015 miles from Earth's center?
Answer:
weight =48.71228786pounds
Step-by-step explanation:
[tex]w = \frac{k}{ {d}^{2} } \\ 50 = \frac{k}{ {3960}^{2} } \\ \\ k = 50 \times {3960}^{2} \\ k = 50 \times 15681600 \\ k = 784080000 \\ \\ w = \frac{784080000}{ {d}^{2} } \\ w = \frac{784080000}{16120225} \\ \\ w = 48.71228786 \\ w = 48.7pounds[/tex]
If a body weighs 50 pounds when it is 3,960 miles from Earth's center, it would weigh approximately 48.547 pounds if it were 4,015 miles from Earth's center, according to the inverse square law formula.
We know the inverse square law formula:
W₁ / W₂ = D²₂ / D²₁
Where W₁ is the weight of the body at the initial distance D₁, and W₂ is the weight at the final distance D₂.
So we have,
W₁ = 50
D₁ = 3,960
D₂ = 4015
We know that the body weighs 50 pounds when it is 3,960 miles from Earth's center,
So we can plug in those values as follows:
50 / W₂ = (4,015)²/ (3,960)²
To solve for W₂, we can cross-multiply and simplify as follows:
W₂ = 50 x (3,960)² / (4,015)²
W₂ = 50 x 15,681,600 / 16,120,225
W₂ = 48.547 pounds (rounded to three decimal places)
Therefore, if the body were 4,015 miles from Earth's center, it would weigh approximately 48.547 pounds.
To learn more about inverse square law visit:
https://brainly.com/question/30562749
#SPJ2
what are the factor of pair of number?
a.45 and 60
b.45 and 70
c.40 and 80
d.30 and 50
please help me with geometry
Answer:
x = 7
Explaination:
ABC = 40°
and BD bisects the angle so ABD = 20°
so 3x-1=20
solving for x gets us
x = 7
Find the missing segment in the image below
Answer:
x = 42
Step-by-step explanation:
24+8 = 32
[tex]\frac{x}{24}[/tex] = [tex]\frac{x+14}{32}[/tex]
32x = 24(x+14)
32x = 24x+336
8x = 336
x = 42
Put 1.09, 1.0, 1.9, 1.19, 1.1 on a number line in order?
Answer:
1.0, 1.09, 1.1, 1.19, 1.9
Step-by-step explanation:
Basic ordering of decimals
11 10 Find the area of the shaded region. Round your answer to the nearest tenth.
Jordan buys sandals and sunglasses for a trip to the beach. The sunglasses cost $6. The sandals cost 3 times as much as the sunglasses. How much do the sandals cost?
Answer:
18 dollars
Step-by-step explanation:
sunglasses = 6 dollars
sandals = 3 * sunglasses
= 3 * 6 dollars
= 18 dollars
a number has 7 at the tens place .there is zero in the thousand place. the number 5 is at the hundreds place .there is number 1at the ten thousand place..what is the number?
A lottery ticket has a grand prize of $30.1 million. The probity of winning the grand prize is .000000038
Deteman the expected value of the lottery ticket
Answer:
$30.1 million * .000000038
$1.14
did the question say how much the ticket cost?
if it was $1 then you would have to subtract $1 so the expected value would be 14 cents
Step-by-step explanation:
The length L of the base of a rectangle is 5 less than twice its height H. Write the algebraic expression to model the area of the rectangle.
Answer:
Area of rectangle = 2H² - 5H
Step-by-step explanation:
Let the length be L.Let the height be H.Translating the word problem into an algebraic expression, we have;
Length =2H - 5
To write the algebraic expression to model the area of the rectangle;
Mathematically, the area of a rectangle is given by the formula;
Area of rectangle = L * H
Where;
L is the Length.H is the Height.Substituting the values into the formula, we have;
Area of rectangle = (2H - 5)*H
Area of rectangle = 2H² - 5H
If a ∥ b and b ⊥ y, then _____
Answer:
a ⊥ y
Step-by-step explanation:
since b is parallel to a & perpendicular to y , line y will eventually cut across line a at a 90 degree angle as well
Answer:
a ⊥ y
Step-by-step explanation:
Look at the image given below.
For each of the following angles, assume that the terminal ray of the angle opens up in the counter-clockwise direction. A circle with a radius 7 cm long is centered at Angle A's vertex, and Angle A subtends an arc length of 9.8 cm along this circle. The subtended arc is how many times as long as the circle's radius
9514 1404 393
Answer:
1.4
Step-by-step explanation:
We want to find the multiplier n such that ...
arc length = n × radius
n = arc length / radius = (9.8 cm)/(7 cm)
n = 1.4
The subtended arc is 1.4 times as long as the circle's radius.
Let x represent the average annual salary of college and university professors (in thousands of dollars) in the United States. For all colleges and universities in the United States, the population variance of x is approximately σ2
= 47.1. However, a random sample of 15 colleges and universities in Kansas showed that x has a sample variance σ2 = 83.2. Use a 5% level of significance to test the claim that the variance for colleges and universities in Kansas is greater than 47.1. Use the traditional method. Assume that a simple random sample is selected from a normally distributed population.
a. Check requirements.
b. Establish H0 and H1 and note the level of significance.
c. Find the sample test statistic.
d. Find Critical Value.
e. Conclude the test and interpret results.
Answer:
Kindly check explanation
Step-by-step explanation:
Given that :
The hypothesis :
H0 : σ²= 47.1
H1 : σ² > 47.1
α = 5% = 0.05
Population variance, σ² = 47.1
Sample variance, s² = 83.2
Sample size, n = 15
The test statistic = (n-1)*s²/σ²
Test statistic, T = [(15 - 1) * 83.2] ÷ 47.1
Test statistic = T = [(14 * 83.2)] * 47.1
Test statistic = 1164.8 / 47.1
Test statistic = 24.73
The degree of freedom, df = n - 1 ; 10 = 9
Critical value (0.05, 9) = 16.92 (Chisquare distribution table)
Reject H0 ; If Test statistic > Critical value
Since ; 24.73 > 16.92 ; Reject H0 and conclude that variance is greater.
how many ways can this be done. if a committee of 5 people from 7 men and 8 women?
Answer:
3003 ways
Step-by-step explanation:
(7+8)C5
= 15C5
= 15!/(5!10!)
= 3003
The measurements of a circular object are given in the ratio table.
a. Find the missing dimensions of other circular objects by completing the ratio table.
b. Graph the pairs of values.
Answer:
answer hajandtb Tj.yfs5bsyb