Answer:
The roots are
[tex]x=-2+\dfrac{3}{2} \ i \ \ or \ \ x=-2-\dfrac{3}{2} \ i[/tex]
Step-by-step explanation:
4x² + 16x + 25 = 0
Using the quadratic formula
That's
[tex]x=\dfrac{-b\pm\sqrt{b^2-4ac} }{2a}[/tex]
From the question
a = 4 , b = 16 , c = 25
Substitute the values into the above formula and solve
We have
[tex]x=\dfrac{-16\pm\sqrt{16^2-4(4)(25)} }{2(4)}[/tex]
[tex]x=\dfrac{-16\pm\sqrt{256-400} }{8}[/tex]
[tex]x=\dfrac{-16\pm\sqrt{-144} }{8}[/tex]
[tex]x=\dfrac{-16\pm12 \ i}{8}[/tex]
Separate the real and imaginary parts
That's
[tex]x=\dfrac{-16}{8}\pm\dfrac{12}{8} \ i[/tex]
[tex]x=-2\pm\dfrac{3}{2} \ i[/tex]
We have the final answer as
[tex]x=-2+\dfrac{3}{2} \ i \ \ or \ \ x=-2-\dfrac{3}{2} \ i[/tex]
Hope this helps you
At the start of 2014
Mikes car was worth 12000 the value of the car decreased by 30%
Answer:
If the value of Mike's car decreased by 30%, we can calculate the new value of the car as follows:
New value = Original value - (Percentage decrease × Original value)
Percentage decrease = 30%
Original value = 12000
New value = 12000 - (0.30 × 12000)
New value = 12000 - 3600
New value = 8400
Therefore, at the end of the decrease, the value of Mike's car was 8400.
Place the three sets of conditions in order. Begin with the set that gives the greatest number of triangles, and end with the set that gives the smallest number of triangles. Condition A: One side is 6 inches long, another side is 5 inches long, and the angle between them measures 50°. Condition B: One angle measures 50°, another angle measures 40°, and a third angle measures 90°. Condition C: One side is 4 inches long, another side is 9 inches long, and a third side measures 5 inches.
The order from the greatest number of triangles to the smallest is: Condition A, Condition B, Condition C.
What is triangle inequality theorem?According to the Triangle Inequality Theorem, any two triangle sides' sums must be bigger than the length of the third side.
The triangle inequality theorem can be used to determine the order of the greatest to smallest triangle.
Condition A: Under this condition, we have two sides with lengths 5 and 6, and their angle is 50°. Using these requirements, we may create two separate triangles since 5 + 6 = 11, which is more than the third side.
Condition B: This condition results in a right triangle with a third angle that is 90° and two sharp angles that measure 40° and 50°. According to the Pythagorean theorem, the triangle's two legs must be 30 and 40 inches long, respectively, meaning that the hypotenuse must be 50 inches long. We can only create one triangle as a result.
Condition C: This condition provides us with three sides that are 4, 5, and 9 lengths long. Any two sides must have a length total larger than the third side in order for a triangle to be formed. The three sides provided, however, do not satisfy this since 4 + 5 = 9. Hence, under these circumstances, a triangle cannot be formed.
Learn more about triangle inequality theorem here:
https://brainly.com/question/1163433
#SPJ1
a red cap fire hydrant provides 1700 liters per minute of water. how long (in minutes to the nearest minute) will it take to fill a water truck with a tank of the following dimensions: 68 inches diameter and 24 feet long? when the tank is full of water, how heavy will the water load be in pounds (lbm) to the nearest pound?
It will take approximately 8 minutes to fill the water truck, and the weight of the water load will be approximately 30,296 pounds.
How to find out how long it will take to fill the tank.First, we need to convert the dimensions of the tank from inches to feet:
68 inches diameter = 68/12 feet = 5.67 feet diameter
24 feet long = 24 feet long
Next, we can calculate the volume of the tank in cubic feet:
Volume = [tex]pi x (diameter/2)^2 x length[/tex]Volume = [tex]3.14 x (5.67/2)^2 x 24[/tex]Volume = [tex]485.15 cubic feet[/tex]Since 1 cubic foot of water weighs 62.4 pounds, we can calculate the weight of the water in the tank in pounds:
Weight = Volume x DensityWeight = 485.15 x 62.4Weight = 30,296.16 poundsTo find out how long it will take to fill the tank, we can use the flow rate of the fire hydrant:
Flow rate = 1700 liters per minute1 liter = 0.264172 gallonsFlow rate = 1700 x 0.264172 = 449.10 gallons per minute1 gallon = 0.133681 cubic feetFlow rate = 449.10 x 0.133681 = 60.05 cubic feet per minuteFinally, we can divide the volume of the tank by the flow rate to find out how long it will take to fill the tank:
Time = Volume / Flow rateTime = 485.15 / 60.05Time = 8.08 minutesTherefore, it will take approximately 8 minutes to fill the water truck, and the weight of the water load will be approximately 30,296 pounds.
Learn more about feet here : brainly.com/question/29793314
#SPJ1
11x + 9y=-20 x= -5y-6
Use substitution method pls
The solution to the system of equations is (x, y) = (1, -1) where the given equations are 11x+9y=-20 and x=-5y-6.
What is substitution method?The substitution method is a technique used in algebra to solve systems of equations by replacing one variable with an expression containing another variable. The goal is to eliminate one of the variables so that we can solve for the other one.
According to question:We are given the following system of two equations with two variables:
11x + 9y = -20 (equation 1)
x = -5y - 6 (equation 2)
To solve the system using the substitution method, we need to solve one of the equations for one of the variables, and then substitute the expression for that variable into the other equation. Let's solve equation 2 for x:
x = -5y - 6
Now we can substitute this expression for x into equation 1, and solve for y:
11x + 9y = -20
11(-5y - 6) + 9y = -20 (substituting x = -5y - 6)
-55y - 66 + 9y = -20
-46y = 46
y = -1
Now that we have found y = -1, we can substitute this value back into equation 2 and solve for x:
x = -5y - 6
x = -5(-1) - 6
x = 1
Therefore, the solution to the system of equations is (x, y) = (1, -1).
To know more about substitution method visit:
https://brainly.com/question/14619835
#SPJ1
Sally did a survey amongst her friends to
see how many hours homework they
each did per month.
Tim
Mary
Keith
Sidra
KEY:
Equals 4 hours
00
a) How many hours homework
does Sidra do?
b) How many hours, in total, do
Sally's friends spend on
homework per month?
1. The number of hours which Sidra did on homework is 12 hours
2. The total number of hours which Sally's friends spend on homework per month is 64 hours.
How many hours homework does Sidra do?Sidra does 3 keys worth of homework, and since a key equals 4 hours, she does:
= 3 keys x 4 hours/key
= 12 hours of homework.
How many hours, in total, do Sally's friends spend on homework per month?To find the total number of hours that Sally's friends spend on homework per month, we need to add up the hours of homework done by each of her friends:
Tim: 5 keys x 4 hours/key = 20 hours
Mary: 2 1/2 keys x 4 hours/key = 10 hours
Keith: 5 1/2 keys x 4 hours/key = 22 hours
Sidra: 3 keys x 4 hours/key = 12 hours
Total hours of homework per month:
= 20 + 10 + 22 + 12
= 64 hours.
Read more about hours
brainly.com/question/302808
#SPJ1
2 Rema has two jobs. In one year, she worked 276 hours at her first job. In the same year, she worked 3 times the number of hours at her second job. How many hours did Rema work that year at her second job?
Answer:
Step-by-step explanation:
Kind of like rema from the song calm down calm down!!
you an find it on youtub
Chang each expression into radical form and then give the value. no calculators should be necessary.
The value of the given expressions are as follows: a. 25 b. 4 c. 1/4 d. 1/3.
What is expression?In mathematics, an expression is a combination of symbols and/or numbers that represents a mathematical object or quantity. Expressions can be written using variables, operations, functions, and mathematical symbols such as parentheses, exponents, and radicals. An expression can represent a value, an equation, or a formula, and can be evaluated or simplified using mathematical rules and properties. Examples of expressions include 2x + 5, sin(θ), and (a + b)².
Here,
a. [tex]125^{2/3}[/tex]
radical form:
[tex]\sqrt{ (125^2)} = 125^{1/2}[/tex]
[tex]125^{1/2}[/tex] = √125
= 5√5
Therefore, [tex]125^{2/3} = (125x^{1/3})^{2}[/tex]
= [tex](5^3)x^{2/3}[/tex]
= [tex]5x^{3*2/3}[/tex]
= 5²
= 25
b. √16
In radical form:
√16 = 4
Therefore, [tex]16x^{-1/2} = \sqrt{16}[/tex]
= 4
c. [tex]16^{1/2}[/tex]
In radical form:
1/√16 = 1/4
Therefore, [tex]16^{-1/2} = 1/\sqrt{16}[/tex]
= 1/4
d.[tex]\sqrt[4]{81}[/tex]
In radical form:
[tex]\sqrt[4]{81}[/tex] = √(√81)
= √9
= 3
Therefore, [tex]\sqrt[4]{81} = 1/\sqrt[4]{81}[/tex]
= 1/3
To know more about expression,
https://brainly.com/question/30091997
#SPJ1
What is the solution to the trigonometric inequality sin(x) > cos(x) over the interval 0 ≤ x ≤ 2pi radians?
From the given information provided, the solution to the given trigonometric inequality is (π/4, 5π/4).
To solve the inequality sin(x) > cos(x) over the interval 0 ≤ x ≤ 2π radians, we can use the following steps:
Rewrite the inequality in terms of tangent:
Divide both sides by cos(x) to get:
tan(x) > 1
Find the solutions of the equation tan(x) = 1:
tan(x) = 1 when x = π/4 or x = 5π/4.
Check the sign of tangent in the intervals between the solutions:
We need to check the sign of tan(x) for x values in the following intervals:
(0, π/4), (π/4, 5π/4), and (5π/4, 2π).
In the interval (0, π/4), tan(x) is positive and less than 1.
In the interval (π/4, 5π/4), tan(x) is positive and greater than 1.
In the interval (5π/4, 2π), tan(x) is negative and less than -1.
Determine the solution set:
Since we are looking for x values that satisfy tan(x) > 1, the only interval that contains such values is (π/4, 5π/4). Therefore, the solution to the inequality sin(x) > cos(x) over the interval 0 ≤ x ≤ 2π radians is:
π/4 < x < 5π/4
In interval notation, we can write:
(π/4, 5π/4)
Learn more about inequality here: brainly.com/question/24372553
#SPJ4
What is the exact value of the trigonometric expression? State your answer in simplified radical form and include all work.
*Please reference included picture for problem. Thank you!
Answer:
The exact value of the given trigonometric expression is undefined.
Step-by-step explanation:
Given trigonometric expression:
[tex]\dfrac{\cos\left(\dfrac{2 \pi}{3}\right)}{\tan\left(-\dfrac{7 \pi}{4}\right)}+\csc(\pi)[/tex]
To find the exact value of the given trigonometric expression, begin by finding the exact values of each of the trigonometric functions in the expression
The exact value of cos(2π/3) is:
[tex]\implies \cos\left(\dfrac{2 \pi}{3}\right)=-\dfrac{1}{2}[/tex]
The exact value of tan(-7π/4) is:
[tex]\implies \tan\left(-\dfrac{7 \pi}{4}\right)=1[/tex]
Since the cosecant function is the reciprocal of the sine function, the exact value of csc(π) is:
[tex]\implies \csc (\pi)=\dfrac{1}{\sin(\pi)}=\dfrac{1}{0}=\textsf{unde\:\!fined}[/tex]
Therefore:
[tex]\begin{aligned}\implies \dfrac{\cos\left(\dfrac{2 \pi}{3}\right)}{\tan\left(-\dfrac{7 \pi}{4}\right)}+\csc(\pi)&=\dfrac{-\dfrac{1}{2}}{1}+\dfrac{1}{0}\\&=-\dfrac{1}{2}+\dfrac{1}{0}\\\\&=\textsf{unde\:\!fined}\end{aligned}[/tex]
Solve for X. Enter the solutions from least to greatest.
x^2+3x-4=0
Lesser x=
Greater x=
TEN POINTS!!!!
The sοlutiοns in οrder frοm least tο greatest are:
Lesser x = -4
Greater x = 1
Hοw dο yοu οrder frοm least tο greatest?Ascending οrder refers tο the arrangement οf numbers in which the smallest number cοmes befοre the largest.
Tο sοlve fοr x in the equatiοn [tex]x^2 + 3x - 4 = 0[/tex], we can use the quadratic fοrmula:
[tex]x= \frac{(-b+\sqrt{b^{2} -4ac} )}{2a} \\[/tex]
where a, b, and c are the cοefficients οf the quadratic equatiοn[tex]ax^2 + bx + c = 0.[/tex]
In this case, a = 1, b = 3, and c = -4. Substituting these values intο the quadratic fοrmula, we get:
[tex]x = (-3\± \sqrt{(3^2 - 4(1)(-4)))} / 2(1)\\\\x = (-3 \± \sqrt{(25))} / 2\\\\x = (-3 \± 5) / 2[/tex]
This gives twο pοssible sοlutiοns:
x1 = (-3 - 5) / 2 = -4
x2 = (-3 + 5) / 2 = 1
Therefοre, the sοlutiοns in οrder frοm least tο greatest are:
Lesser x = -4
Greater x = 1
To know more about least to greatest visit,
https://brainly.com/question/29342592
#SPJ1
The population of a city was 20000. The next year it increased by 2% find the new population
The city had 20,000 residents. The next year, it went up by 2%. The new population of the city after a 2% increase is 20400.
To find the new population of the city after a 2% increase from 20000, we need to use the following formula:
New population = Old population + (Percentage increase x Old population)
Substituting the given values into the formula, we get:
New population = 20000 + (2/100 x 20000)
New population = 20000 + 400
New population = 20400
It is important to note that this calculation assumes that the increase in population is the only factor affecting the total population. In reality, there may be other factors that affect the population, such as migration, birth rates, and mortality rates.
Additionally, this calculation only gives the estimated population based on the percentage increase, and the actual population may differ due to various factors.
To learn more about the population
https://brainly.com/question/27991860
#SPJ4
please help I need this complete
Answer: [tex]c-34=21[/tex]; 55 cups of lemonade.
Step-by-step explanation:
We are given the amount sold and the amount leftover so we need to figure out how many cups were there at the start. Since you are subtracting the amount of cups you sold from the amount you start with and it equals an end amount, the cups can be modeled by the equation [tex]c-34=21[/tex] rather than [tex]21+c=34[/tex].
Now to solve for c
[tex]c-34=21\\[/tex]
add 34 to both sides
[tex]c=55[/tex]
67% of teenagers, ages fifteen to seventeen, are concerned about their credit scores. Suppose we randomly select fifteen- to seventeen-year-old teenagers until we find one who is concerned about his/her credit score. Let X be the number of teenagers we select who are not concerned about their credit scores before we find the first teenager who is concerned . Let Y be the number of teenagers we select who are not concerned about their credit scores before the second teenager who is concerned is found.
a. What is the probability that none of the first three people are concerned about their credit scores?
b. What is the expected value of X?
c. What is the variance of X?
d. What is the probability that X = 0?
e. What is the probability that X ≤ 4?
f. What is the probability that Y = 6?
g. What is the probability that Y = 0?
The probability of the following parts is: a. 0.33 b. 1.925 c. 0.176 d. 0.67 e. 0.99955416 f. 0.018318006 g. 0.4489
a. To find out the probability that none of the first three people is concerned about their credit scores, we need to find: P(none of the first three is concerned about their credit scores)we have been given the probability that a teenager is concerned about his/her credit score is 0.67. So the probability that a teenager is not concerned about his/her credit score is 0.33. Now we can say that this is a binomial distribution since we are repeating a procedure until success is achieved. So we can use the binomial distribution to find the above probability: P(none of the first three are concerned about their credit scores) = (0.33)^3 = 0.0359375
b. The expected value of X is given by: E(X) = 1/p = 1/0.67 = 1.4925
c. Variance of X is given by: Var(X) = (1-p)/p^2 = (0.33)/(0.67)^2 = 0.176
d. Since X is the number of teenagers we select who are not concerned about their credit scores before we find the first teenager who is concerned. The probability that X = 0 is the probability that the first teenager we select is concerned about his/her credit score, which is given by: P(X = 0) = p = 0.67
e. To find out the probability that X ≤ 4, we can use the complement rule: P(X ≤ 4) = 1 - P(X > 4) = 1 - [P(X = 5) + P(X = 6) + ....... to ∞] = 1 - (1 - p)^5 = 1 - (0.33)^5 = 0.99955416
f. To find out the probability that Y = 6, we need to find: P(Y = 6)We know that for Y = 6, we need to select 7 teenagers such that the first and the second teenager we select are not concerned about their credit scores, and the third to the seventh teenager we select are concerned about their credit scores. The probability that the first and the second teenager we select are not concerned about their credit scores is given by: P(selecting 2 teenagers not concerned about their credit scores) = (0.33)^2 = 0.1089 And the probability that the third to the seventh teenager we select are concerned about their credit scores is:
P(selecting 5 teenagers concerned about their credit scores) = (0.67)^5 = 0.16806957Therefore, P(Y = 6) = P(selecting 2 teenagers not concerned about their credit scores) * P(selecting 5 teenagers concerned about their credit scores) = 0.018318006
g. To find out the probability that Y = 0, we need to select the first two teenagers who are concerned about their credit scores. P(Y = 0) = P(selecting the first two teenagers who are concerned about their credit scores) = (0.67)^2 = 0.4489.
To learn more about "Probability": brainly.com/question/30092244
#SPJ11
Part A: Graph the system of equations {−2x+y=6x−y=1
Part B: Determine the solution from Part A.
Answer:
Step-by-step explanation:
An important math tool is graphing. It can be a straightforward method for introducing more general concepts like most and least, greater than, or less than. It can also be a great way to get your child interested in math and get them excited about it. Using graphs and charts, you can break down a lot of information into easy-to-understand formats that quickly and clearly convey key points.
Given equation 2x + y = 6 we can drive from this equation that at x = 0 y will be 6 and y =0 x will be 3 hence we have two points of the line (0,6) and (3,0)
From the Given equation (2) 6X + 3Y = 12 we can drive from this equation that at x = 0 y will be 4 and y =0 x will be 2 hence we have two points of the line (0,4) and (2,0).
The bottom of a cylindrical container has an area of 10 cm2. The container is filled to a height whose mean is 4 cm, and whose standard deviation is 0.2 cm. LetVdenote the volume of fluid in the container. Find μV.
The value of μV is 40 cm³.
Given,The area of bottom of cylindrical container = 10 cm²The height of container = h = Mean height = 4 cm Standard deviation of height = σ = 0.2 cm We are supposed to find the mean volume of fluid in the container.In order to calculate the mean volume, first we need to calculate the volume of fluid in the container.Volume of a cylindrical container = πr²h Where, r is the radius of the base of the container.So, we need to calculate the value of r.The area of the bottom of the container is given as 10 cm².
We know that the area of the base of a cylinder is given as:Area of base of cylinder = πr² We are given that area of the base is 10 cm². So,10 = πr²r² = 10/πr = √(10/π) We can find the volume of fluid using the values we have.Volume of fluid = πr²h = π(√(10/π))² x 4 = 40 cm³We know that mean volume, μV is given as:μV = πr²μh So, we need to calculate the value of μh. We know that standard deviation σh is given as:σh = 0.2 cm So,μh = h = 4 cm So,μV = πr²μh = π(√(10/π))² x 4 = 40 cm³
Learn more about Area
brainly.com/question/27683633
#SPJ11
an arm wrestler is the champion for a period of 75 hours. (here, by an hour, we mean a period starting from an ex- act hour, such as 1 p. m ., until the next hour.) the arm wrestler had at least one match an hour, but no more than 125 total matches. show that there is a period of consec- utive hours during which the arm wrestler had exactly 24 matches.
In the following question, among the conditions given, There must have been at least one 24-hour period in the 75-hour period in which the arm wrestler had exactly 24 matches.
The arm wrestler had at least 75 matches and no more than 125 total matches. This means that the arm wrestler had a maximum of 50 matches in any consecutive period of 75 hours. Therefore, there must be a period of consecutive hours during which the arm wrestler had exactly 24 matches.
To show this, let us consider the following: in the 75-hour period, there must have been at least 3 periods of consecutive 24-hour periods (24 matches per period). If we subtract 3 x 24 matches from the total of 75 matches, we are left with 3 matches. Therefore, there must have been at least one 24-hour period in the 75-hour period in which the arm wrestler had exactly 24 matches.
For more such questions on arm wrestler
https://brainly.com/question/23115120
#SPJ11
make a simple linear regression model using education level as independent variable. if the education level is 14 years, the estimated annual income is
The estimated annual income can be calculated using the equation above. If the data point is used to calculate the slope and y-intercept of the regression line, then the annual income can be estimated using the equation y = m(14) + b.
If the education level is 14 years,
To create a simple linear regression model using education level as the independent variable, you will need to input data for education level and annual income.
This data can be used to estimate the annual income for any given education level. The equation for this linear regression model is y = mx + b, where y represents the annual income, m is the slope of the line, x is the education level, and b is the y-intercept.
for such more questions on annual income
https://brainly.com/question/28185992
#SPJ11
trucks in a delivery fleet travel a mean of 120 miles per day with a standard deviation of 11 miles per day. the mileage per day is distributed normally. find the probability that a truck drives between 99 and 128 miles in a day. round your answer to four decimal places.
The probability that a truck drives between 99 and 128 miles in a day is 0.7734 rounded to four decimal places.
What is the standard deviation?Standard deviation is a statistical measurement that depicts the average deviation of each value in a dataset from the mean value. It tells you how much your data deviates from the mean value. It represents the typical variation between the mean value and the individual data points.
The formula for the probability that a truck drives between 99 and 128 miles in a day is:
[tex]Z = (X - \mu) /\sigma[/tex]
where, X is the number of miles driven per day; μ is the mean of the number of miles driven per day; σ is the standard deviation of the number of miles driven per day. The value of Z for 99 miles driven per day is:
[tex]Z = (99 - 120) / 11 = -1.91[/tex]
The value of Z for 128 miles driven per day is:
[tex]Z = (128 - 120) / 11 = 0.73[/tex]
Using a standard normal distribution table or calculator, the probability of a truck driving between 99 and 128 miles per day is:
[tex]P(-1.91 < Z < 0.73) = 0.7734[/tex]
Therefore, the probability that a truck drives between 99 and 128 miles in a day is 0.7734 rounded to four decimal places.
Learn more about Standard deviation here:
https://brainly.com/question/475676
#SPJ11
5x - 16xy +16y to the power of 2* +7x + 17y to the power of 2*
(16y and 17y are both to the power of 2)
The value of variable x for the given equation, 5x - 16xy +16y² +7x + 17y² is −33 y²/ 4(3 − 4y).
Give a brief account on algebraic expression.An algebraic expression is the idea of using letters or alphabets to represent numbers without specifying the actual values. Algebra Basics taught us how to use letters like x, y, and z to represent unknown values. These characters are called variables here. An algebraic expression said to be a combination of variables and constants. Any multiplied value that is prefixed to a variable is a factor. An algebraic expression in mathematics is an expression that consists of variables and constants and algebraic operations (addition, subtraction, etc.).
5x - 16xy +16y² +7x + 17y²
= 12x - 16xy + 33y²
Using the Quadratic Formula, we have:
x = −33 y²/ 4(3 − 4y)
To know more about Quadratic Formula, visit:
https://brainly.com/question/22364785
#SPJ1
1. Describe the relationship you see between elevation and temperature in these data sets.
In response to the stated question, we may state that The scatter plot indicates a clustering pattern in the data, and as elevation increases, temperature drops.
What exactly is a scatter plot?"Scatter plots are graphs that show the association of two variables in a data collection. It is a two-dimensional plane or a Cartesian system that represents data points. The X-axis represents the independent variable or characteristic, while the Y-axis represents the dependent variable. These plots are sometimes referred to as scatter graphs or scatter diagrams."
"A scatter plot is also known as a scatter chart, scattergram, or XY graph. The scatter diagram plots numerical data pairings, one variable on each axis, to demonstrate their connection."
Because the graph is a scatter plot, the data displays a clustering pattern.
We may deduce from the figure that as height increases, temperature falls.
As a result, C and E are the proper choices.
To know more about scatter plot visit:
https://brainly.com/question/13984412
#SPJ1
The correct question is -
The scatter plot shows the relationship between elevation and temperature on a certain mountain peak in North America. Which statements are correct?
A. The data shows one potential outlier
B. The data shows a linear association
C. The data shows a clustering pattern
D. The data shows a negative association
E. As elevation increases, temperature decreases
Helppppppppppp me please
Answer:
Step-by-step explanation:\Write an expression for the sequence of operations describe below Add C and the quotient of 2 and D do not simplify any part of the expression
Help me with this it's to hard for me
Answer:
Part B: Calculate the range and interquartile range (IQR) for each group and interpret what they tell us about the data.
For Group A:
Range = 5 - 1 = 4
Q1 = 2
Q3 = 4
IQR = Q3 - Q1 = 2
For Group B:
Range = 5 - 2 = 3
Q1 = 2
Q3 = 4
IQR = Q3 - Q1 = 2
The range for Group A is larger than the range for Group B, indicating that there is more variability in the growth of the plants in Group A. However, both groups have the same IQR, indicating that the middle 50% of the data in each group is similar. This suggests that while there may be some variability in the growth of the plants, the overall distribution of growth is similar between the two fertilizers.
Question 2
On a bicycle, Ivanna rides for 5 hours and is 12 miles from her house. After riding for 9 hours, she is 20 miles
away.
What is Ivanna's rate?
By answering the presented question, we may conclude that As a result, expressions Ivanna's average speed is approximately 2.311 miles per hour.
what is expression ?In mathematics, an expression is a collection of integers, variables, and complex mathematical (such as arithmetic, subtraction, multiplication, division, multiplications, and so on) that describes a quantity or value. Phrases can be simple, such as "3 + 4," or complicated, such as They may also contain functions like "sin(x)" or "log(y)". Expressions can be evaluated by swapping the variables with their values and performing the arithmetic operations in the order specified. If x = 2, for example, the formula "3x + 5" equals 3(2) + 5 = 11. Expressions are commonly used in mathematics to describe real-world situations, construct equations, and simplify complicated mathematical topics.
We can use the formula:
rate = distance / time
Let's calculate Ivanna's rate for the first part of her journey:
rate = distance divided by time = 12 miles divided by 5 hours = 2.4 miles per hour
Let us now compute Ivanna's rate for the second leg of her journey:
rate = distance divided by time = 20 miles divided by 9 hours = 2.222... miles per hour
As a result, Ivanna's overall rate is the average of these two rates:
rate = (2.4 miles per hour + 2.222... miles per hour) / 2 = 2.311... miles per hour
As a result, Ivanna's average speed is approximately 2.311 miles per hour.
To know more about expressions visit :-
https://brainly.com/question/14083225
#SPJ1
An article reports that in a sample of 123 hip surgeries of a certain type, the average surgery time was 136.9 minutes with a standard deviation of 24.1 minutes.
find
A. The 95% confidence interval is (,)
B.The 99.5% confidence interval is(,)
C. A surgeon claims that the mean surgery time is between 133.71 and 140.09 minutes. With what level of confidence can this statement be made? Express the answer as a percent and round to two decimal places.
D. Approximately how many surgeries must be sampled so that a 95% confidence interval will specify the mean to within ±3 minutes? Round up the answer to the nearest integer.
F.Approximately how many surgeries must be sampled so that a 99% confidence interval will specify the mean to within ±3 minutes? Round up the answer to the nearest integer.
The minimum sample size required to get a 99% confidence interval that will specify the mean to within ±3 minutes is 597 (Rounded up to the nearest integer).
A) The 95% confidence interval for a sample of 123 hip surgeries of a certain type with an average surgery time of 136.9 minutes and a standard deviation of 24.1 minutes is (130.82, 142.98).Explanation:Given,Sample size, n = 123Average surgery time, μ = 136.9 minutesStandard deviation, σ = 24.1 minutesWe know that for a sample of size n, the 95% confidence interval is given by, (Formula1)Where, z is the z-score, α/2 = 0.05/2 = 0.025 is the level of significance and n - 1 = 122 degrees of freedom.Now, substituting the given values in (Formula1), we get the 95% confidence interval as(130.82, 142.98)Thus, the 95% confidence interval for a sample of 123 hip surgeries of a certain type with an average surgery time of 136.9 minutes and a standard deviation of 24.1 minutes is (130.82, 142.98).B) The 99.5% confidence interval for a sample of 123 hip surgeries of a certain type with an average surgery time of 136.9 minutes and a standard deviation of 24.1 minutes is (127.93, 145.87).Explanation:We know that for a sample of size n, the 99.5% confidence interval is given by, (Formula2)Where, z is the z-score, α/2 = 0.005/2 = 0.0025 is the level of significance and n - 1 = 122 degrees of freedom.Now, substituting the given values in (Formula2), we get the 99.5% confidence interval as (127.93, 145.87).Thus, the 99.5% confidence interval for a sample of 123 hip surgeries of a certain type with an average surgery time of 136.9 minutes and a standard deviation of 24.1 minutes is (127.93, 145.87).C) The surgeon's claim that the mean surgery time is between 133.71 and 140.09 minutes is equivalent to the confidence interval (133.71, 140.09). The surgeon's claim falls inside the 95% confidence interval, (130.82, 142.98), therefore we can say that the surgeon's claim can be made with 95% confidence.D) The formula to find the minimum sample size for a 95% confidence interval that will specify the mean to within ±3 minutes is given by (Formula3)Where, n is the sample size and σ is the standard deviation.Now, substituting the given values in (Formula3), we get the minimum sample size as 424.15.The minimum sample size required to get a 95% confidence interval that will specify the mean to within ±3 minutes is 425 (Rounded up to the nearest integer).F) The formula to find the minimum sample size for a 99% confidence interval that will specify the mean to within ±3 minutes is given by (Formula4)Where, n is the sample size and σ is the standard deviation.Now, substituting the given values in (Formula4), we get the minimum sample size as 596.73.The minimum sample size required to get a 99% confidence interval that will specify the mean to within ±3 minutes is 597 (Rounded up to the nearest integer).
Learn more about Minimum
brainly.com/question/21426575
#SPJ11
Exercise 16.8. Prove Theorem 16.8 following the outline below: Let p be a prime number that is irreducible in Zi]. We wish to show that Z,[i] is a field. Let [c] + [d]i be a nonzero element of Zp[i], with [c] and [d] in Zp. (Thus we may take c and d to be integers representing their congruence classes.) We need to prove that [cl+ Idi is a unit. 1. Notice that [c +(di is a unit if one of [e and [d is [0 and the other is not. 2. Having taken care of the case in which one of [c and [d is the zero congruence class in Zp, suppose now that [cj and [d are both nonzero elements of Zp[i]. Observe that in Zj, the prime p cannot divide c + di (why?), so that p and c+ di are relatively prime. 3. Deduce that in this case, by Theorem 16.7, there exist Gaussian integers r and s such that (c + d)r = 1 + ps. 4. Supposer e fi for integers e and f. Deduce that in Zp[l. 5. Conclude that Zpli] is a field.
The theorem is Every nonzero element in the ring has an inverse, hence we deduce that Z[i]/(p) is a field. For any prime number p that is irreducible in Z[i], as asserted, Z[i]/(p) is a field.
Proof of Theorem is Let p be a prime number that is irreducible in Z[i]. We want to show that Z[i]/(p) is a field, where (p) denotes the ideal generated by p.
Suppose that [c] + [d]i is a nonzero element of [tex]Z[i]/(p)[/tex], where [c] and [d] are congruence classes in Zp.
If one of [c] and [d] is [0], then [c] + [d]i is a unit, since the other element is nonzero. So, suppose that [c] and [d] are both nonzero in Zp.
We observe that p cannot divide c + di in Z[i] since p is irreducible in Z[i] and it cannot divide both c and d. Therefore, p and c + di are relatively prime in Z[i].
By Theorem 16.7, there exist Gaussian integers r and s such that [tex](c + di)r = 1 + ps.[/tex]
Now, suppose that [e] + [f]i is another nonzero element of Z[i]/(p), where [e] and [f] are congruence classes in Zp. We want to show that [e] + [f]i is also a unit.
Since p and c + di are relatively prime, there exist integers u and v such that [tex]pu + (c + di)v = 1[/tex] , by Bezout's identity.
Multiplying both sides by e + fi, we get:
[tex]pue + (c + di)ve + (ce - df) + (cf + de)i = e + fi[/tex]
Therefore, [tex](e + fi)(ue + vi(c + di)) = (e + fi)(1 - (cf + de)i)[/tex]
Multiplying both sides by the conjugate of (e + fi), we get:
[tex](e + fi)(e - fi)(ue + vi(c + di)) = (e^2 + f^2)[/tex]
Since p is irreducible in Z[i], it is also prime. Thus, Z[i]/(p) is an integral domain, which means that the product of two nonzero elements is nonzero. Therefore, [tex]e^2 + f^2[/tex] is nonzero in Zp, and
so [tex](e + fi) (ue + vi(c + di))[/tex] is a unit in Z[i]/(p).
We conclude that Z[i]/(p) is a field since every nonzero element has an inverse in the ring.
Therefore, Z[i]/(p) is a field for any prime number p that is irreducible in Z[i], as claimed
Learn more about the prime number that is irreducible at: https://brainly.com/question/4166249
#SPJ11
Angela made 23 cards for her friends. She wants to make 19 more cards. How many cards will she make in all?
By using addition calculation, we determine that Angela will end up making 42 cards in total.
Angela made 23 cards for her friends, but she wants to make even more to share with others. To determine how many cards she will make in total, we need to add the number of cards she has already made with the number of cards she plans to make.
So, we add 23 (the number of cards she has made) and 19 (the number of cards she plans to make) so in total, she will make:
23 + 19 = 42
Therefore, Angela will make 42 cards in all.
By using simple arithmetic calculation of basic addition, we find that Angela will make 42 cards in all.
To know more about addition:
https://brainly.com/question/19829044
#SPJ4
-4
5 positive exponent form
A negative exponent indicates that the base should be inverted or flipped, and the exponent should become positive. Therefore, -45 in positive exponent form would be: 1/ (45²1) or 1/45
What is a negative component?
A negative exponent is a mathematical notation indicating that the number or variable should be inverted or flipped, and the exponent should be made positive. In other words, a negative exponent represents the reciprocal of the number or variable raised to the corresponding positive exponent.
For example, 2²-3 is read as "2 to the power of negative 3" and represents 1/(2²3), which is equal to 1/8. Similarly, x²-2 is read as "x to the power of negative 2" and represents 1/(x²2), which is the reciprocal of x squared.
Negative exponents are used in various mathematical and scientific applications, such as in calculations involving very small or large numbers, in scientific notation, and in the rules of exponents.
To know more about Negative Component visit:
https://brainly.com/question/29009712
#SPJ1
Complete question:
Write -45 in positive exponent form.
Need help to solve this please!!
Answer:
0.999
Step-by-step explanation:
If the driver wore a seat belt, that is the only column we have to look at.
The chance the driver survived is number survived / number total.
Plugging in, we get 412,042/412,493, or about 0.999.
Hope this helps!
Will give brainly award
Using the other endpoint of the diameter, and the center of the circle write an equation of the circle
Answer:
Step-by-step explanation:
C(1,2), radius=6
Equation using [tex](x-h)^2+(y-k)^2=r^2[/tex]:
[tex](x-1)^2+(y-2)^2=36[/tex]
a. in the sample: i. what is the average value of birthweight for all mothers? ii. for mothers who smoke? iii. for mothers who do not smoke? b. i. use the data in the sample to estimate the difference in average birth weight for smoking and nonsmoking mothers. ii. what is the standard error for the estimated difference in (i)? iii. construct a 95% confidence interval for the difference in the average birth weight for smoking and nonsmoking mothers.
a. In the sample:i. The average value of birth weight for all mothers is 7.17 pounds.
ii. For mothers who smoke is 6.82 pounds.
iii. For mothers who do not smoke is 7.28 pounds.b. i. The difference in average birth weight for smoking and nonsmoking mothers can be estimated using the sample data. The difference is given by the formula:
Difference = X1 – X2, where X1 is the average birth weight of mothers who smoke and X2 is the average birth weight of mothers who do not smoke.Using the sample data, the estimated difference in average birth weight for smoking and nonsmoking mothers is: 7.28 – 6.82 = 0.46 pounds.ii. The standard error for the estimated difference can be calculated using the formula:SE(Difference) = sqrt[(SE1)^2 + (SE2)^2]where SE1 and SE2 are the standard errors of the two sample means.Using the sample data, the standard error for the estimated difference is:SE(Difference) = sqrt[(0.23)^2 + (0.12)^2] = 0.26 pounds.iii. The 95% confidence interval for the difference in average birth weight for smoking and nonsmoking mothers can be calculated using the formula:CI(Difference) = Difference ± (t-value) × (SE(Difference))where (t-value) is the value from the t-distribution table for a 95% confidence level with n1 + n2 – 2 degrees of freedom (where n1 and n2 are the sample sizes for smoking and nonsmoking mothers).Using the sample data, the 95% confidence interval for the difference in average birth weight is:CI(Difference) = 0.46 ± (2.048) × (0.26) = (0.04, 0.88) pounds.
for such more questions on standard error
https://brainly.com/question/14467769
#SPJ11