Answer:
-2, 6
Step-by-step explanation:
(x - 6)(x + 2) = 0
x - 6 = 0 x+ 2 = 0
x = 6 x = -2
The values of x that would result in the given expression being equal to 0, in order from least to greatest, are -2 and 6.
What the correct answer now
Answer:
1001.66 in²
Step-by-step explanation:
The following data were obtained from the question:
Pi (π) = 3.14
Slant height (l) = 18 in
Diameter (d) = 22 in
Surface Area (SA) =.?
Next, we shall determine the radius of the cone. This can be obtained as follow:
Diameter (d) = 22 in
Radius (r) =.?
Radius = diameter /2
Radius = 22/2
Radius (r) = 11 in.
Finally, we determined the surface area of the cone as follow:
Pi (π) = 3.14
Slant height (l) = 18 in
Radius (r) = 11 in.
Surface Area (SA) =.?
SA = πr² + πrl
SA = (3.14 × 11²)+ (3.14 × 11 × 18)
SA = (3.14 × 121) + 621.72
SA = 379.94 + 621.72
SA = 1001.66 in²
Therefore, the surface area of the cone is 1001.66 in²
ochieng had sh 250 as pocket money at the begining of the term.in the middle of the term he was left with 2 over five of this amount .how much did she spend
Answer:
625
Step-by-step explanation:
250 × X = 2
X = 5
250 × 5 = 2
1250 = 2 after this step u divided it by 2
1250 ÷ 2
= 625
Flight time from Houston to Orlando is 2 hours to 20 minutes. I arrived at Orlando at 4:15 pm. What time did I set of ?
Answer:
1:55 pm
Step-by-step explanation:
So, you arrive at 4: 15 pm in Orlando after a 2 hr and 20 minute flight from Houston. So, lets start with the easy part: let's subtract the 2 hrs part.
2 hrs earlier from 4:15 pm is 2:15 pm.
Then, you have to subtract the 20 minutes. Well, it's quite obvious that if you left at 2:00 pm, that would be a total of 2 hrs and 15 minutes. Just subtract the 15 minutes from the 2:15 pm. However, it's 20 minutes, not 15, so you have to still subtract that last five minutes.
So, 2:00 pm minus 5 minutes would equal 1:55 pm.
How many faces does a dodecahedron have?
Answer:
A dodecahedron has 12 faces
Answer:
Answer is
Step-by-step explanation:
A dodecahedron has 12 faces.
Hope this helps....
Have a nice day!!!!
How would you write The product of 2 and the difference of a number and 9
Answer:
[tex]\large \boxed{2(x-9)}[/tex]
Step-by-step explanation:
Let the number be x.
The product of 2 and the difference of x and 9.
“product” is multiplication.
“difference” is subtraction.
[tex]2 \times (x-9)[/tex]
The mathematical expression is 2(n - 9) if the product of 2 and the difference of a number and 9.
What is an expression?It is defined as the combination of constants and variables with mathematical operators.
It is given that:
The product of 2 and the difference of a number and 9.
Let the number is n; n is the real number.
The difference of a number and 9 = n - 9
The linear expression can be defined as the relation between two variables, if we plot the graph of the linear expression we will get a straight line.
If in the linear expression, one variable is present, then the expression is known as the linear expression in one variable.
The product of 2 and (n - 9)
= 2(n - 9)
Thus, the mathematical expression is 2(n - 9) if the product of 2 and the difference of a number and 9.
Learn more about the expression here:
brainly.com/question/14083225
#SPJ2
The weights of ice cream cartons are normally distributed with a mean weight of ounces and a standard deviation of ounce. (a) What is the probability that a randomly selected carton has a weight greater than ounces? (b) A sample of cartons is randomly selected. What is the probability that their mean weight is greater than ounces? (a) The probability is nothing. (Round to four decimal places as needed.) (b) The probability is nothing. (Round to four decimal places as needed.)
Answer:
The answer is below
Step-by-step explanation:
The weights of ice cream cartons produced by a manufacturer are normally distributed with a mean weight of 10 ounces and a standard deviation of 0.5 ounce. (a) What is the probability that a randomly selected carton has a weight greater than 10.21 ounces? (b) You randomly select 25 cartons. What is the probability that their mean weight is greater than 10.21 ounces
Answer:
Given that:
Mean (μ) = 10 ounces, standard deviation (σ) = 0.5 ounces.
The z score is used to determine by how many standard deviations the raw score is above or below the mean. The z score (z) is given by:
[tex]z=\frac{x-\mu}{\sigma} \\\\For\ a\ sample\ size(n):\\\\z=\frac{x-\mu}{\sigma/\sqrt{n} }[/tex]
a) For x = 10.21:
[tex]z=\frac{x-\mu}{\sigma}\\\\z=\frac{10.21-10}{0.5}=0.42[/tex]
From the normal distribution table, probability that a randomly selected carton has a weight greater than 10.21 ounces = P(x > 10.21) = P(z > 0.42) = 1 - P(z < 0.42) = 1 - 0.6628 = 0.3372
b ) For x = 10.21 and n = 25
[tex]\sqrt{x} \sqrt{x} z=\frac{x-\mu}{\sigma/\sqrt{n} }\\\\z=\frac{10.21-10}{0.5/\sqrt{25 } }=2.1[/tex]
From the normal distribution table, probability that a randomly selected carton has a weight greater than 10.21 ounces = P(x > 10.21) = P(z > 2.1) = 1 - P(z < 2.1) = 1 - 0.9826 = 0.0174
Point R is on line segment QS. Given RS=11 and QS=19, determine the length QR.
================================================
Explanation:
R is between Q and S and on segment QS, allowing us to say
QR + RS = QS
because of the segment addition postulate.
-------
Use substitution and solve for QR
QR + RS = QS
QR + 11 = 19
QR = 19 - 11 .... subtracting 11 from both sides
QR = 8
if the morning temperature started at -7 celsius but warmed during the day to 24 celsius . What is the temperature change
Answer:
31° change
Step-by-step explanation:
If we want to find the change between two numbers, we need to imagine it like a number line.
<-------------0------------->
Let's plot -7 and 24 on this number line.
<----------[tex]-7[/tex]--0------------24>
If we want to get from -7 to 0, we increase by 7. To get from 0 to 24, we increase by 24.
So the total change is [tex]7 + 24 = 31[/tex].
Hope this helped!
Which is the simplified form of r to the negative 7th power plus s to the negative twelve
Answer:
1/r^7 + 1/s^12
Step-by-step explanation:
Since there is a negative exponent, the term becomes a fraction. As we do not know the value of the term, it remains in its variable form with a positive exponent
Complete the conditional statement. If 2 > -a, then _____.
Well, in this case we can take a as the protagonist.
We can, for example, take the a in the first member of the disequation, the 2 in the second one, changing the signs
so
+ 2 > - a
a > - 2
In fact,
"If 2 > - a, then a > -2."
5 * 10^6 is how many times larger as 5 * 10^4
[tex]\dfrac{5\cdot10^6}{5\cdot10^4}=10^{6-4}=10^2=100[/tex]
Answer:
100 times more
Step-by-step explanation:
5*10^4 over 5*10^6 is 1/100
factor the polynomial by it's greatest common monomial factor 6x^3+8x^2-4x Help asap please
Answer:
Step-by-step explanation:
Hello,
First term is 2 * 3 * x * x * x
Second term is 2 * 2 * 2 * x * x
Last term is 2 * 2 * x
So we can factorise it as below.
[tex]\boxed{6x^3+8x^2-4x=2x(3x^2+4x-2)}[/tex]
Hope this helps.
Do not hesitate if you need further explanation.
Thank you
The factor should be [tex]2x ( 3x^2 +4x -2 )[/tex]
Given that,
The equation is [tex] 6x^3+8x^2-4x[/tex]Based on the above information, the calculation is as follows:
[tex] 6x^3+8x^2-4x[/tex]
[tex]2x ( 3x^2 +4x -2 )[/tex]
Learn more: https://brainly.com/question/4626564?referrer=searchResults
Please answer this question now
Answer:
m∠C = 102°
Step-by-step explanation:
The above diagram is a cyclic quadrilateral
Step 1
First we find m∠B
The sum of opposite angles in a cyclic quadrilateral is equal to 180°
m∠D + m∠B = 180°
m∠B = 180° - m∠D
m∠B = 180° - 80°
m∠B = 100°
Step 2
Since we have found m∠B
We can proceed to find the Angle outside to circle
m∠CDA = 2 × m∠B
m∠CDA = 2 × 100°
m∠CDA = 200°
m∠CDA = m∠CD + m∠DA
m∠DA = m∠CDA - m∠CD
m∠DA = 200° - 116°
m∠DA = 84°
Step 3
Find m∠DAB
m∠DAB = m∠DA + m∠AB
m∠DAB = 84° + 120°
m∠DAB = 204°
Step 4
Find m∠C
It you look at the cyclic quadrilateral properly,
m∠DAB is Opposite m∠C
Hence
m∠C = 1/2 × m∠DAB
m∠C = 1/2 × 204
m∠C = 102°
Therefore ,m∠C = 102°
what is the square root of 450
Answer:
[tex]15\sqrt{2}[/tex] or 21.2132
Step-by-step explanation:
[tex]\sqrt{450}[/tex]
[tex]\sqrt{15^{2} }[/tex] (root of a product is equal to the product of the roots of each factor)
[tex]\sqrt{15^{2} } \sqrt{2}[/tex] (simplify)
[tex]15\sqrt{2}[/tex] or ≈ 21.2132
Answer:
[tex]15\sqrt{2}[/tex] or 21.213
Step-by-step explanation:
For radical form: think of multiples of 450. Think of a pair that contains one perfect square, particularly the higher, the better . These 2 numbers are 25 and 18. 25 is the perfect square number since the two numbers that multiply to be 25 is 5 and 5.
Now take the perfect square of 25 and put it outside of the radical. The 18 remains inside: [tex]5\sqrt{18}[/tex]
Now, since 18 is a high number that needs to get reduced, do the same for 18 as we did for 450--find two numbers, one of which is a perfect square. These two numbers are 9 and 2.
Now take the perfect square of 9. This is 3. Take it out of the radical so that only the two remains inside. The 3 will now multiply with the 5: [tex]5*3\sqrt{2}[/tex]
Multiply 5 and 3 to get 15. The 15 stays outside the radical. Your answer is:
[tex]15\sqrt{2}[/tex]
Find the value of x.
76
Write in point-slope form an equation of the line that passes through the point (8, 9) with slope 7.
Answer:
y=7x-47Step-by-step explanation:
[tex](8,9)=(x1,y1) \\ m=7 \\ y−y1=m(x−x1) \\ y−9=7(x−8)
[/tex]
[tex]y - 9 = 7x - 56 \\ y = 7x - 56 + 9 \\ y = 7x - 47[/tex]
Drag each label to the correct location on the table. Each label can be used more than once. A cross country coach records the number of miles his athletes on the Junior Varsity and Varsity teams ran today and displays the data in the provided dot plots. Given the shape of each distribution, determine which measures of center and spread are appropriate for him to use to summarize the data from each team. mean mean interquartile range interquartile range standard deviation standard deviation median median
Answer:
a.) For the Junior Varsity Team, mean would be the appropriate measure of center since the data is symmetric or well-proportioned while we should use standard deviation for getting the measure of spread since it also measures the center and how far the values are from the mean.
b.) For the Varsity Team, the median would be the appropriate measure of the center since the data is skewed left and not evenly distributed so median could be used since it does not account for outliers while we use IQR or interquartile range in measuring the spread of data since IQR does not account for the data that is skewed.
For the Junior Varsity Team, the mean would be the appropriate measure of the center since the data is symmetric or well-proportioned .
What is median?Median represents the middle value of the given data when arranged in a particular order.
Since the data for the Junior Varsity Team is symmetric or well-proportioned, the mean would be the best way to determine the center, and standard deviation, which also measures the center and how far the values deviate from the mean, should be used to determine the spread.
The median could be utilized for the Varsity Team since the data is not evenly distributed and skewed to the left, and it does not take into account outliers.
We can use the interquartile range (IQR) to quantify the spread of the data because IQR does not take into account the skewed data.
Therefore, the varsity squad competes in intercollegiate or international competitions on behalf of the high school or institution while we should use standard deviation for getting the measure of spread since it also measures the center and how far the values are from the mean.
Learn more about the Varsity team here
brainly.com/question/14655123
#SPJ7
I don’t understand how to solve this. Please help!
Answer:
GH = 16; CH = 12
Step-by-step explanation:
First of all, you need to understand the meaning of "perpendicular bisector." It means that GH is divided into two equal parts by line AC, and that AC makes a right angle to GH.
The right angle is marked.
(a) The length of one of the halves of GH is marked as being 8 units long, so the other half will also be 8 units long. Of course, the length of GH is the sum of its two halves:
GH = GB +BH = 8 + 8
GH = 16
__
(b) Triangles CBG and CBH share side CB, so have that length in common. They have equal lengths BG and BH because BC bisects GH. They have a right-angle at B in common, so can be considered congruent by SAS, the fact that two congruent sides have a congruent angle between them.
Since triangles CBG and CBH are congruent, their corresponding sides CG and CH are also congruent. Side CG is marked 12 units long, so CH will be 12 units long, also.
CH = 12
You could shortcut all of the congruent triangle logic by recognizing that an altitude (CB) is a perpendicular bisector of the base (GH) if and only if the triangle is isosceles. The sides of an isosceles triangle are always congruent, so CG = CH = 12.
__
In part (c), you're supposed to choose possible theorems for demonstrating the congruence of the triangles we described above.
slope of (-2,2) and (3,4)
Answer:
2/5
Step-by-step explanation:
Good luck!
Can u guys answer my question 13 and 14 pls
Answer:
√2=1.414
then :√8 +2√32 +3√128+4√50
√8=√2³ =2√2
2√32=√2^5 = 4*2√2 = 8√2
3√128 = 3√2^6*2=8*3√2 =24√2
4√50 =4√5²*2= 20√2
add results : 2√2+8√2 +24√2+20√2=54√2
54√2=54×1.414=76.356 ( it is not in the options)x=7-4√3
√x+ 1/√x
√(7-4√3) +1/√(7-4√3) =
(8-4√3)/√(7-4√3)
(8-6.93)/√(7-6.93) = 4 ( after rounded to the nearest whole number)
4 is your answer
Tammy got a new credit card with an APR of 21% a month ago, and she just
got her first credit card statement. She charged a bracelet for $17, a purse for
$36, and some sunglasses for $11. If her credit card charges interest on the
previous monthly balance, how much should Tammy pay now so that she
doesn't have any interest charged to her on next month's statement?
Answer:
$64
Step-by-step explanation:
She should pay the entire amount which is $17 + $36 + $11 = $64
Answer:
64
Step-by-step explanation:
yezzir
El Pirata Barba Plata ha llegado a la isla del Coral para buscar un tesoro. En el mapa pone que, desde la orilla, debe recorrer 37 hm a la pata coja hacia el centro de la isla, y después otros 85 dam dando volteretas en la misma dirección. ¿Cuántos metros recorrerá en total desde la orilla hasta el tesoro? Expresa el resultado también en kilómetros.
Answer:
4550m ; 4
Step-by-step explanation:
Recall
1 hectometre = 100m
1 decameter = 10m
Distance from shore to center of island = 37hm
Another 85 decameter toward stge se direction
Therefore total metres it will travel in other to get to the treasure :
37 hectometre + 85 decameter
(37 * 100)m + (85 * 10)m
3700m + 850m = 4550m
In kilometers :
1000 meters = 1 kilometers
4550 meters =
(4550 / 1000)meters
= 4.55km
1. Find the greatest common divisor of the term 144x3y2and 81xy4
Answer:
[tex]1296x^3y^4[/tex]
Step-by-step explanation:
Given the terms:
[tex]144x^3y^2[/tex]
and [tex]81xy^4[/tex]
To find:
Greatest Common Divisor of the two terms or Least Common Multiple (LCM) of two numbers = ?
Solution:
First of all, let us find the HCF (Highest Common Factor) for both the terms.
i.e. the terms which are common to both.
Let us factorize them.
[tex]144x^3y^2 = \underline{3 \times 3} \times 16\times \underline x \times x^{2}\times \underline{y^{2} }[/tex]
[tex]81xy^4= \underline {3\times 3}\times 9 \times \underline{x} \times \underline{y^2}\times y^2[/tex]
Common terms are underlined.
So, HCF of the terms = [tex]9xy^2[/tex]
Now, we know the property that product of two numbers is equal to the product of the numbers themselves.
HCF [tex]\times[/tex] LCM = [tex]144x^3y^2[/tex] [tex]\times[/tex] [tex]81xy^4[/tex]
[tex]LCM = \dfrac{144x^3y^2 \times 81xy^4}{9xy^2}\\\Rightarrow LCM = 144x^3y^2 \times 9x^{1-1}y^{4-2}\\\Rightarrow LCM = 144x^3y^2 \times 9x^{0}y^{2}\\\Rightarrow LCM = \bold{1296x^3y^4 }[/tex]
the price of sugar increase from shs 1000 to shs 1200.In what percentage did the price increase
Answer:
20%
Step-by-step explanation:
1000×120%=1200
120-100=20
[tex] \frac{5 + n}{4} = - 1[/tex]
What is n?
Answer:
n= -9
Step-by-step explanation:
Answer:
-9
Step-by-step explanation:
5 + n
==== = -1
4
Multiply both sides by 4
5 + n = - 1 * 4
5 + n = - 4
Subtract 5 from both sides
5-5 + n = - 4 - 5
n = - 9
Congratulations on being able to use latex.
If $a>0$ and $b>0$, a new operation $\nabla$ is defined as follows:$$a \nabla b = \dfrac{a + b}{1 + ab}.$$For example,$$3 \nabla 6 = \dfrac{3 + 6}{1 + 3 \times 6} = \dfrac{9}{19}.$$For some values of $x$ and $y$, the value of $x \nabla y$ is equal to $\dfrac{x + y}{17}$. How many possible ordered pairs of positive integers $x$ and $y$ are there for which this is true?
This happens when
1 + a b = 17 ==> a b = 16
With a and b both positive integers, and 16 = 2^4, we can have
• a = 1 and b = 16
• a = 2 and b = 8
• a = b = 4
and vice versa. So there are 5 possible ordered pairs.
find the perimeter of a square of length of 5cm
Answer:
20cm
Step-by-step explanation:
If each side of the square = 5 cm, 5 cm times 4 sides = 20 cm.
Answer:
P=20cm
Step-by-step explanation:
To find the perimeter of a square, you just add all the four sides.
Because it says the sides are 5cm, and squares always have the same length, you just:
5+5+5+6=20cm
So, the perimeter of this square is 20cm.
Hope this helps, and have a nice day:)
Please answer quick Find the standard form of the equation of the parabola with a focus at (-2, 0) and a directrix at x = 2. (5 points) y^2 = 4x 8y = x^2 x = 1 divided by 8 y^2 y = 1 divided by 8 x^2
Answer:
Step-by-step explanation:
If you plot the focus and the directrix on a coordinate plane, because the parabola wraps itself around the focus away from the directrix, we know that this parabola opens to the left. That means its general form is
[tex]4p(x-h)=-(y-k)^2[/tex] where h and k are the coordinates of the vertex and p is the distance between the vertex and either the focus or the directrix because both distances are the same. Knowing that both distances are the same, it logically follows that the vertex is directly in between the focus and the directrix. So the vertex is at the origin, (0, 0). p is 2 because the vertex is at an x value of 0 and the directrix is at the x value of 2, and because the focus is at an x value of -2. Filling in the equation, then:
[tex]4(2)(x-0)=-(y-0)^2[/tex] which simplifies to
[tex]8x=-y^2[/tex] and, solving for x:
[tex]x=-\frac{1}{8}y^2[/tex]
Let P (2,-3), Q (-2, 1) be the vertices of the triangle PQR. If the centroid of ΔPQR lies on the line 2x +3y = 1, then the locus of R is a. 2x + 3y = 9 b. 2x - 3y = 9 c. 3x + 2y = 5 d. 3x - 2y = 5
Answer:
Correct answer is a. 2x + 3 y = 9.
Step-by-step explanation:
Let the coordinates of centroid be (h,k)
{h/3 , (-2+k)/3}
h = (2 – 2 + a)/3 = a/3 ---eqn 1
k= ( - 3+ 1 + b )/3 = (-2 + b)/3 -----eqn 2
Where (x,y) are any point on the line 2x+3y=1
3h = a and 3k + 2 = b
From 2x +3y = 1,
Then, 2h +3k = 1, 3k = 1 - 2h -----eqn 3
b = 1 - 2h + 2 = 3 - 2h
also b = 3 - 2a/3
b = (9 -2a)/3
3b = 9 - 2a
3b + 2a = 9
Now (x,y) satisfy the point on the line 2x+3y=9
So the locus is 2x + 3 y = 9.
Rick is driving to his uncle's house in Greensville, which is 120 miles from Rick's town. After covering x miles, Rick sees a sign stating that Greensville is 20 miles away. Which equation, when solved, will give the value of x?
Answer:
The equation which will give the value of x when solved is C. x + 20 = 120
x=100
Step-by-step explanation:
Total distance=120 miles
Distance covered=x miles
Distance remaining=20 miles
The equation is
Total distance=Distance covered + distance remaining
120 miles= x miles + 20 miles
120 miles - 20 miles = x miles
100 miles =x miles
Check:
Total distance=Distance covered + distance remaining
120 miles = 100 miles + 20 miles
120 miles =120 miles
The equation which will give the value of x when solved is C. x+20=120