Answer:
58.79 mL of juice
Step-by-step explanation:
To do this, let's gather the data first:
In 1 cup of orange juice we have 500 mg of potassium. A patient weights 135 lb, and he needs to take care of it's potassium intake and not exceed 2 mg of K / kg per day.
So obviously he cannot drink a whole cup of orange juice. It has to be less. In order to know this, we need to know first the weight in kg. 1 lb equals 0.4536 kg so in 135 lb:
W = 135 lb * 0.4536 kg/lb = 61.24 kg
Now, we need to know with this weight, how much potassium it can takes:
Intake = 61.24 kg * 2 mg/kg = 122.48 mg of K
So, the maximum amount of potassium per day is 122.48 mg. This means that the quantity of orange juice this person can take is:
Juice = 122.48 mg * 240 mL / 500 mg
Juice = 58.79 mL of juice or simply 59 mL
in the first quarter of the game the Giants gained 5 yards lost 13 yards gained 2 yards gained 6 yards and unfortunately lost 12 yards in their final play
Answer:
They lost a total of -12 yards.
Step-by-step explanation:
Do the calculation.
5- 13= -8
-8 + 2 + 6= 0
0 - 12 = -12
Express the inequality x≤−0.12 using interval notation.
Answer:
(0.12,∞)
Step-by-step explanation:
The inequality x>0.12 means "all numbers greater than 0.12." There is no upper end to the solution to this inequality. In interval notation, we express x>0.12 as (0.12,∞). Notice that the parenthesis symbol shows that the endpoint of the inequality, 0.12, is not included.
The inequality x ≤ - 0.12 is written in interval notation as,
⇒ x ∈ (- ∞, - 0.12 ]
What is Inequality?A relation by which we can compare two or more mathematical expression is called an inequality.
Given that;
The inequality is,
⇒ x ≤ - 0.12
Now, We can write the inequality in interval notation as;
⇒ x ≤ - 0.12
⇒ x ∈ (- ∞, - 0.12 ]
Learn more about the inequality visit:
https://brainly.com/question/25944814
#SPJ2
Consider the triangle.
Which statement is true about the lengths of the sides?
45°
Each side has a different length.
Two sides have the same length, which is less than the
length of the third side.
D. The three sides have the same length.
D. The sum of the lengths of two sides is equal to the
length of the third side.
45°
Answer:
Assuming this is a 45 - 45 - 90 right triangle, The answer would be B) Two sides have the same length, which is less than the length of the third side
Hence statements stated true false along with reason
What is triangle?A triangle is a three-sided polygon with three edges and three vertices in geometry. The sum of a triangle's interior angles equals 180 degrees is the most significant feature of a triangle.
Triangle of Isosceles: Triangle with Obtuse Angle
Triangle Inequality in the Scalene Triangle
Triangle Surface Area: Triangle with Sharp Angle
Triangle with Right Angles: Triangle Form of Pascal...
How to solve?Given a triangle and statements related to it let's check
Each side has a different length.
-This statement can't always be true as in equilateral triangle all sides are equal
Two sides have the same length, which is less than the
length of the third side.
-this statement is correct but when it is a right angles triangle where other two anges are 45degrees each then this can't be true.
The three sides have the same length.
-this statement is true for equilateral triangle
D. The sum of the lengths of two sides is equal to the
length of the third side.-
-This statement is true when we talk of only right angled triangle
Learn more about triangleshttps://brainly.com/question/17335144
#SPJ2
AB=
Round your answer to the nearest hundredth.
pleaseee
Answer:
[tex]c = \frac{2}{0.42} [/tex]
Step-by-step explanation:
AB = c
[tex] \frac{a}{sin \: A} = \frac{c}{sin \: C} \\ \frac{2}{sin \: 25} = \frac{c}{sin \: 90} \\ \frac{2}{0.42} = \frac{c}{1} \\ 0.42 \: c = 2 \\ c = \frac{2}{0.42} [/tex]
Answer:
4.73
Step-by-step explanation:
A data set with a mean of 34 and a standard deviation of 2.5 is normally distributed
According to the Empirical Rule, what percent of the data is in each of the following ranges? Round to the nearest tenth of a percent if necessary.
Between
34 and 39
Less than
31.5
Between
29 and 36.5
Percentage
%
%
Answer:
a) [tex] z= \frac{34-34}{2.5}= 0[/tex]
[tex] z= \frac{39-34}{2.5}= 2[/tex]
And we want the probability from 0 to two deviations above the mean and we got 95/2 = 47.5 %
b) [tex] P(X<31.5) [/tex]
[tex] z= \frac{31.5-34}{2.5}= -1[/tex]
So one deviation below the mean we have: (100-68)/2 = 16%
c) [tex] z= \frac{29-34}{2.5}= -2[/tex]
[tex] z= \frac{36.5-34}{2.5}= 1[/tex]
For this case below 2 deviation from the mean we have 2.5% and above 1 deviation from the mean we got 16% and then the percentage between -2 and 1 deviation above the mean we got: (100-16-2.5)% = 81.5%
Step-by-step explanation:
For this case we have a random variable with the following parameters:
[tex] X \sim N(\mu = 34, \sigma=2.5)[/tex]
From the empirical rule we know that within one deviation from the mean we have 68% of the values, within two deviations we have 95% and within 3 deviations we have 99.7% of the data.
We want to find the following probability:
[tex] P(34 < X<39)[/tex]
We can find the number of deviation from the mean with the z score formula:
[tex] z= \frac{X -\mu}{\sigma}[/tex]
And replacing we got
[tex] z= \frac{34-34}{2.5}= 0[/tex]
[tex] z= \frac{39-34}{2.5}= 2[/tex]
And we want the probability from 0 to two deviations above the mean and we got 95/2 = 47.5 %
For the second case:
[tex] P(X<31.5) [/tex]
[tex] z= \frac{31.5-34}{2.5}= -1[/tex]
So one deviation below the mean we have: (100-68)/2 = 16%
For the third case:
[tex] P(29 < X<36.5)[/tex]
And replacing we got:
[tex] z= \frac{29-34}{2.5}= -2[/tex]
[tex] z= \frac{36.5-34}{2.5}= 1[/tex]
For this case below 2 deviation from the mean we have 2.5% and above 1 deviation from the mean we got 16% and then the percentage between -2 and 1 deviation above the mean we got: (100-16-2.5)% = 81.5%
What is the right answer!???????
Answer:
dont know need points
Step-by-step explanation:
Answer:
What points are needed?
Tia is planning a sailing party for her friends. The boat rental is $150 plus an
additional $15 per person. Tia has saved up $400 dollars. What is the
maximum number of people that can go sailing?
Identify the inequality to solve and the maximum number of people.
Answer:
16 people
Step-by-step explanation:
First subtract the cost of the rental from the amount of money:
$400-$150 = $250
Therefore Tia has $250 to spend for additional people. Then if each person is $15, divide the remaining amount of money by the amount of money per person:
$250/$15 = 16.67
Since you can't have 0.67 of a person she can have 16 people go with her.
This can also be modeled by this inequality:
[tex]150 + 15x \leqslant 400[/tex]
A movie theater decreased the size of its popcorn bags by 20%. If the old bags held 15 cups of popcorn, how much do the new bags hold
Answer:
Your answer will be [tex]12[/tex] cups of popcorn.
Step-by-step explanation:
To find out how much the new bags hold, you need to find out the discount.
[tex]\frac{20}{100 } = .2[/tex]
[tex]15 * .2 = 3[/tex]
We know that the discount is [tex]3[/tex].
To figure out how much the new bags hold, subtract by the old bags.
[tex]15 - 3 = 12[/tex]
The new bags hold 12 cups of popcorn.
PLEASE HELP!!! WILL MARK AS BRAINLIEST!!!
A colony of 300 bacteria doubles in size every 22 minutes can be represented by the exponential function y=300(2)x. If you want to know how many bacteria will be present about 66 minutes, what should you plug in for x?
Answer:
[tex] y = 300 (2)^x[/tex]
Where x represent the number of period of times of 22 minutes. If we want to know the value of the population after 66 minutes we need to find the value of x on this way:
[tex] x = 66 minutes *\frac{1period}{22 minutes}= 3[/tex]
So then we need to replace the value of x =3 and we got:
[tex] y= 300 (2)^3 = 2400[/tex]
Step-by-step explanation:
For this case we have the following function:
[tex] y = 300 (2)^x[/tex]
Where x represent the number of period of times of 22 minutes. If we want to know the value of the population after 66 minutes we need to find the value of x on this way:
[tex] x = 66 minutes *\frac{1period}{22 minutes}= 3[/tex]
So then we need to replace the value of x =3 and we got:
[tex] y= 300 (2)^3 = 2400[/tex]
A 5000-seat theater has tickets for sale at $28 and $40. How many tickets should be sold at each price for a sellout performance to generate a total revenue of $153 comma 200?
Answer:
Let's denote:
x: number of ticket 28$
y: number of ticket 40$
Then, we have:
x + y =5000
28x + 40y = 153200
=> 28(5000 - y) + 40y = 153200
=> 12y = 153200 - 140000
=> 12y =13200
=> y = 1100 (ticket 40$)
=> x = 5000 - 1100 = 3900 (ticket 28$)
BRAINLIEST ASAP! LENGTH OF AC?
Answer:
2.33 units
Step-by-step explanation:
[tex]\tan 25\degree =\frac{AC}{5}\\\\0.46630 = \frac{AC}{5}\\\\AC = 0.46630 \times 5\\AC =2.3315\\AC = 2.33 \: units[/tex]
What is the Surface Area of the figure below?
A
60 units2
B
60 units3
C
104 units2
D
104 units3
Answer:
D
Step-by-step explanation:
I'm really sry if it's wrong!
Solve the proportion.
3x / 10 = 9 / 4
Answer:
x =7.5
Step-by-step explanation:
We can use cross products to solve
3x / 10 = 9 / 4
3x*4 = 10*9
12x = 90
Divide each side by 12
12x/12 = 90/12
x =7.5
A company that manufactures laptop batteries claims the mean battery life is 16 hours. Assuming the distribution of battery life is approximately normal, a consumer group will conduct a hypothesis test to investigate whether the battery life is less than 16 hours. The group selected a random sample of 14 of the batteries and found an average life of 15.6 hours with a standard deviation of 0.8 hour.
Which of the following is the correct test statistic for the hypothesis test?
A. t=15.6−160.8
B. t=16−15.60.8
C. t=15.6−160.813
D. t=15.6−160.814
E. t=16−15.60.814
Answer:
The correct test statistic for the hypothesis test is [tex]t = -1.87[/tex]
Step-by-step explanation:
The null hypothesis is:
[tex]H_{0} = 16[/tex]
The alternate hypotesis is:
[tex]H_{1} < 16[/tex]
The test statistic is:
[tex]t = \frac{X - \mu}{\frac{s}{\sqrt{n}}}[/tex]
In which X is the sample mean, [tex]\mu[/tex] is the value tested at the null hypothesis, s is the standard deviation of the sample and n is the size of the sample.
In this question:
[tex]X = 15.6, \mu = 16, s = 0.8, n = 14[/tex]
So
[tex]t = \frac{X - \mu}{\frac{s}{\sqrt{n}}}[/tex]
[tex]t = \frac{15.6 - 16}{\frac{0.8}{\sqrt{14}}}[/tex]
[tex]t = -1.87[/tex]
The correct test statistic for the hypothesis test is [tex]t = -1.87[/tex]
Hypothesis test used to check the results of the experiments gives true for the meaningful results.. The correct test statistic for the hypothesis test is -1.871.
Given information-
The mean battery life of the laptop is 16 hours claimed by the company.
The random sample for the test is 14.
Average life of the batteries found out as 15.6 hours.
The deviation for this result is 0.8 hours.
What is hypothesis test?Hypothesis test used to check the results of the experiments gives true for the meaningful results.
As the mean battery life of the laptop is 16 hours claimed by the company.The null hypothesis for the given problem is,
[tex]H_o\mu=16[/tex]
As average life of the batteries found out as 15.6 hours. Thus the alternate hypothesis for the given problem is,
[tex]H_1\mu<16[/tex]
One sample t test can be found using the below formula,
[tex]t=\dfrac{\overline x -\mu_o}{\dfrac{s}{\sqrt{n} } }[/tex]
Here, [tex]\overline x[/tex] is mean value, [tex]n[/tex] is the number of random sample and [tex]s[/tex] is the deviation.
Put the values,
[tex]t=\dfrac{15.6 -16}{\dfrac{0.8}{\sqrt{14} } }\\t=-1.871[/tex]
Thus the correct test statistic for the hypothesis test is -1.871.
Learn more about the hypothesis here;
https://brainly.com/question/2695653
What’s the correct answer for this?
Answer:
c
Step-by-step explanation:
For the functions f(x)=6x−4 and g(x)=2x2+5, find (g∘f)(x).
Answer:
72x^2-96x+37
Step-by-step explanation:
Giving brainliest for CORRECT awnser.
Answer:
64
Step-by-step explanation:
x^2 +16x+c
Take the coefficient of x
16
Divide by 2
16/2 =8
Square it
8^2 = 64
This is c
Answer:
c = 64
Step-by-step explanation:
The value for c is A. 64. That comes from the process of completing the square where you take half the linear term, square it, and add it in. Our linear term is 16. Half of 16 is 8, and 8 squared is 64.
Two linear functions, f(x) and g(x), are combined by addition to form h(x). The same two linear functions are combined by multiplication to form j(x). Graphs of the resulting combined functions are shown. Which statements are true? Check all that apply. Graph A represents j(x). Graph A represents h(x). The y-intercepts for f(x) and g(x) can be 1 and 3. The y-intercepts for f(x) and g(x) can be 3 and 4. The rate of change of the sum of f(x) and g(x) is greater than that of either function.
Answer: this is the right answer Graph A represents j(x). The y-intercepts for f(x) and g(x) can be 1 and 3. And The rate of change of the sum of f(x) and g(x) is greater than that of either function. your welcome
Step-by-step explanation:
The rate of change of the sum of f(x) and g(x) is greater than that of either function.
How to determine the true statement?From the question, we have the following parameters:
h(x) = f(x) + g(x)j(x) = f(x) * g(x)The graphs of the functions are not given;
However, if all the functions are linear functions, then the slopes of the sum of functions f(x) and g(x) could be greater than the slopes of h(x) and j(x)
Hence, the true statement (by observation) is (c)
Read more about linear functions at:
https://brainly.com/question/4025726
#SPJ1
The number of new contributors to a public radio station's annual fund drive over the last ten years is 63, 58, 61, 72, 98, 103, 121, 147, 163, 198 Using Microsoft Excel, develop a linear regression model that predicts the number of new contributors. Explain the slope of this model. Based on this model, how many new contributors would you predict for the following year?
Answer:
The number of potential members predicted in next year's estimate becomes 193. The further explanation is given below.
Step-by-step explanation:
The slope of the model,
m = 15.345
c = 24
After comparing with the equation,
⇒ [tex]y=mx+c[/tex]
we get,
⇒ [tex]=15.345x + 24[/tex]
The slope seems to be a positive value which also means that another always improves this as component decreases. Which ensures that perhaps the number of contributors rising as time went by.
So that the above is the right answer.
Solve this system of equations.
2x + 6y = −6,
4x − 3y = −12
What is the solution to the system of equations?
Answer:
x = -3 and y = 0
Step-by-step explanation:
It would be more direct to apply elimination in this problem, rather than substitution:
2x + 6y = -6 ⇒ 2x + 6y = -6 ⇒ 10x = - 30
+ 2(4x - 3y = -12) + 8x - 6y = -24
Now let us solve for x through simply algebra:
10x = -30,
x = -3
Substitute this value of x into the first equation to get the value of y:
2( -3 ) + 6y = -6,
-6 + 6y = -6,
6y = 0,
y = 0
Answer:
-3 and 0
Step-by-step explanation:
i hope this helps :)
Which expression has the same value as the one below?
22+(-32)
○ 22+(-22)+(-10)
○22+(22)+(-10)
○22+(-22)+(10)
○22+0+32
Answer:
Option A
Step-by-step explanation:
22+(-32) is the same thing as 22-32.
[tex]22-32=-10[/tex]
Let's see if the given options are equal:Option A:
[tex]22+(-22)+(-10) \\22-22-10\leftarrow \text{Distribute -1 into the Parentheses.} \\0-10\\\boxed {-10}[/tex]
Option A's expression has the same value as the expression given.
Option B:
22+(22)+(-10)
[tex]22+22-10\\44-10\\\boxed {34}[/tex]
Option B's expression does not have the same value as the expression given.
Option C:
[tex]22+(-22)+(10)\\22-22+10\\0+10\\\boxed {10}[/tex]
Option C's expression does not have the same value as the expression given.
Option D:
[tex]22+0+32\\22+32\\\boxed{54}[/tex]
Option D's expression does not have the same value as the expression given.
The correct answer should be A: 22+(-22)+(-10).Answer:
the answer is A
hoped this helped
what kind of novel is nutshell?
Answer:
i dont know what is it
den
What is the amplitude of y=3sin(2x−1)+4?
Answer:
3
Step-by-step explanation:
Amplitude is the number in front of the sin or the number multiplied by the whole equation. In this case its 3
Bob, Paula and Sam invest $50000 in a business. Bob invests $4000 more than Paul does and Paul invests $5000 more than Sam does. If the total profit was $70000, select the correct answer. Note that the profit is distributed proportionally based on the respective amount each invested. A. The ratio of the investment of Bob, Paula and Sam is 11:15:10. B. The ratio of the investment of Bob, Paula and Sam is 12:17:21. C. The ratio of the investment of Bob, Paula and Sam is 12:5:4. D. The profit of Paula was $23,800
Answer:
D
Step-by-step explanation:
since sam invest the least, let a be the amount invested by sam
sam = a
paul = a + 5000
bob = a + 5000 + 4000
3a + 14000 = 50000
3a = 36000
a = 12000
thus sam is 12000, paul is 17000 and Bob is 21000
therefore the ratio of B:P:S is 21:17:12
profit by paula is 17/50 x 70000 = 23800
The profit by Paula is 17/50 x 70000 = 23800.
We have given that Bob, Paula and Sam invest $50000 in a business. Bob invests $4000 more than Paul does and Paul invests $5000 more than Sam does. If the total profit was $70000
Since sam invest the least, let a be the amount invested by sam
Therefore we get,
sam = a
What is the investment of Paul?
The investment of Paul = a + 5000
Bob = a + 5000 + 4000
3a + 14000 = 50000
3a = 36000
divide both sides by 3 so we get,
a=36000/3
a = 12000
Therefore, sam is 12000,
paul =5000+12000=17000 and
Bob =12000+9000= 21000
Therefore the ratio of B:P:S is 21:17:12
The profit by Paula is 17/50 x 70000 = 23800.
To learn more about the investement visit:
https://brainly.com/question/25300925
100 POINTS
PLEASE PROVIDE STEPS
FIND FIRST DERIVATIVE AND SIMPLIFY ANSWER
Answer:
h'(x) = (-x² ln x + x² + 1) / (x (x² + 1)^(³/₂))
Step-by-step explanation:
h(x) = ln x / √(x² + 1)
You can either use quotient rule, or you can rewrite using negative exponents and use product rule.
h(x) = (ln x) (x² + 1)^(-½)
h'(x) = (ln x) (-½) (x² + 1)^(-³/₂) (2x) + (1/x) (x² + 1)^(-½)
h'(x) = (-x ln x) (x² + 1)^(-³/₂) + (1/x) (x² + 1)^(-½)
h'(x) = (x² + 1)^(-³/₂) (-x ln x + (1/x) (x² + 1))
h'(x) = (1/x) (x² + 1)^(-³/₂) (-x² ln x + x² + 1)
h'(x) = (-x² ln x + x² + 1) / (x (x² + 1)^(³/₂))
Solution:
h(x) = ln(x)/√x^2+1
h(x) = ln(x) * (x^2 + 1)^-1/2
h(x) = ln(x) * (-1/2) * (x^2 + 1)^-3/2 * 2x + 1/x * (x^2 + 1)^-1/2
h(x) = -x ln(x) * (x^2 + 1)^-3/2 + 1/x * (x^2 + 1)^-1/2
h(x) = (x^2 + 1)^-3/2 * (-x ln(x) + 1/x * (x^2 + 1))
h(x) = -x^2ln(x)+x^2+1/(x(x^2+1)^3/2)
Best of Luck!
The altitude of an airplane is decreasing at a rate of 44 feet per second. What is the change in altitude of the airplane over a period of 34 seconds?
Answer:
1320 feet
Step-by-step explanation:
All we have to do is multiply the rate of change of altitude by the time it took the altitude to change.
The altitude of an airplane is decreasing at a rate of 44 feet per second. After 30 seconds, the change is altitude is:
44 * 30 = 1320 feet
The altitude of the airplane has changed by 1320 feet.
In the right triangle shown DF=EF=3. How long is DE?
Answer:
4.24
Step-by-step explanation:
To solve this, use the Pythagorean therom. A^2 + b^2 = C^2
in this case a = 3 and b = 3
so 9 + 9 = sqrt 18
4.24
Answer:3√(2)
Step-by-step explanation:
DF=3
EF=3
DE=√(3^2 + 3^2)
DE=√(3x3 + 3x3)
DE=√(9+9)
DE=√(18)
DE=√(2 x 9)
DE=√(2) x √(9)
DE=√(2) x 3
DE=3√(2)
How far can a dog run into the woods?
Answer:
Half way
Step-by-step explanation:
Half way, because the dog can run all the way through the woods, but only half of the time he is going in, the rest of the time he is going out.
After 3 minutes, a submarine had descended to −320 feet. After 8 minutes, the submarine had descended to −420 feet. Assuming a linear function, write an equation in the form d(t)=mt+b that shows the depth, d(t), after t minutes.
Answer:
d(t) = -20t -260
Step-by-step explanation:
We are given two points ...
(t, d) = (3, -320) and (8, -420)
The 2-point form of the equation of a line can be useful when 2 points are given.
y = (y2 -y1)/(x2 -x1)(x -x1) +y1
Substituting the given points, we have ...
d(t) = (-420 -(-320))/(8 -3)(t -3) -320
d(t) = -20(t -3) -320
d(t) = -20t -260
Determine the number of solutions to a system of equation:
Please help
Answer:
Step-by-step explanation:
These equations are all written in slope-intercept form, so the question is relatively easy to answer. These rules apply.
if slopes are different: 1 solutionif slopes are the same and y-intercepts are different, 0 solutionsif slopes are the same and y-intercepts are the same, infinitely many1. y=-6x-2; y=-6x-2 --- infinitely many
2. y=0.5x+5; y=0.5x+1 --- zero
3. y=0.25x-2; y=5x-4 --- one
4. y=2x+3; y=4x-1 --- one
5. y=2x+1.5; y=2x+1.5 --- infinitely many
6. y=-x-3; y=-x+3 --- zero
_____
Slope-intercept form is ...
y = mx +b
m is the slope
b is the y-intercept
Answer:
Step-by-step explanation: 1. y=-6x-2; y=-6x-2 --- infinitely many
2. y=0.5x+5; y=0.5x+1 --- zero
3. y=0.25x-2; y=5x-4 --- one
4. y=2x+3; y=4x-1 --- one
5. y=2x+1.5; y=2x+1.5 --- infinitely many
6. y=-x-3; y=-x+3 --- zero