Answer:
81.432 minutes
Step-by-step explanation:
Given the following :
Video Games (Mins) - - - Time with Family(Mins)
40 - - - - - - - - - - - - - - - - - - - 80
55 - - - - - - - - - - - - - - - - - - - 75
70 - - - - - - - - - - - - - - - - - - - 69
85 - - - - - - - - - - - - - - - - - - - 64
Best fit line:
ý = -0.363x +94.5
For someone who spent 36 minutes playing video games, the predicted number of minutes spent with family according to the best fit line will be:
Here number of minutes playing video games '36' is the independent variable
ý is the dependent or predicted variable ;
94.5 is the intercept
ý = -0.363(36) +94.5
ý = −13.068 + 94.5
ý = 81.432 minutes
Which is about 81 minutes to the nearest whole number.
Question on Statistics and Confidence Intervals
A field test for a new exam was given to randomly selected seniors. The exams were graded, and the sample mean and sample standard deviation were calculated. Based on the results, the exam creator claims that on the same exam, nine times out of ten, seniors will have an average score within 5% of 75%.
Is the confidence interval at 90%, 95%, or 99%? What is the margin of error? Calculate the confidence interval and explain what it means in terms of the situation. (10 points)
The phrasing "nine times out of ten" means 9/10 = 0.90 = 90% is the confidence level. We're confident 90% of the time that the confidence interval captures the population parameter we're after (in this case mu = population mean)
The portion "have an average score within 5% of 75%" means that 75% = 0.75 is the center of the confidence interval, and it goes as low as 0.75 - 0.05 = 0.70 and as high as 0.75 + 0.05 = 0.80
This confidence interval is from 70% to 80%, meaning that nine times out of ten, we're confident that the average score is between 70% and 80%
We write the confidence interval as (0.70, 0.80). It's common to use the notation (L, U) to indicate the lower (L) and upper (U) boundaries. You might see the notation in the form L < mu < U. If so, then it would be 0.70 < mu < 0.80; either way they mean the same thing.
The margin of error is 0.05 as its the 5% radius of the interval. It tells us how far the most distant score is from the center (75%)
=========================================
In summary, we have these answers
confidence level = 90%margin of error = 5% = 0.05confidence interval = (0.70, 0.80)interpretation = We're 90% confident that the average exam score is between 0.70 and 0.80Which equation is equivalent to 3[x + 3(4x – 5)] = 15x – 24?15x – 15 = 15x – 2415x – 5 = 15x – 2439x – 45 = 15x – 2439x – 15 = 15x – 24?
Answer:
3[x + 3(4x – 5)] = (39x-15)
Step-by-step explanation:
The given expression is : 3[x + 3(4x – 5)]
We need to find the equivalent expression for this given expression. We need to simplify it. Firstly, open the brackets. So,
[tex]3[x + 3(4x -5)]=3[x+12x-15][/tex]
Again open the brackets,
[tex]3[x+12x-15]=3x+36x-45[/tex]
Now adding numbers having variables together. So,
[tex]3[x + 3(4x - 5)]=39x-15[/tex]
So, the equivalent expression of 3[x + 3(4x – 5)] is (39x-15).
The domain of the following relation has how many elements?
[(1/2, 3.14/6), (1/2, 3.14/4), (1/2, 3.14/3), (1/2,3.14/2)]
a. 0
b. 1
c. 4
Answer:
b. 1
Step-by-step explanation:
All first coordinates are 1/2.
Answer: b. 1
In how many years will
The Compounds interest
onRs. 14,000 be Rs. 4, 634 at 10%
p.a?
Answer:
3 years
Step-by-step explanation:
A = P(1 + r)^t
A = I + P
A = 14,000 + 4,634 = 18,634
18,634 = 14,000(1 + 0.1)^t
18,634/14,000 = 1.1^t
log (18,634/14,000) = log 1.1^t
log (18,634/14,000) = t * log 1.1
t = [log (18,634/14000)]/(log 1.1)
t = 3
Find the volume of the cylinder. Round your answer to the nearest tenth.
Answer:
716.75 m^3
Step-by-step explanation:
Volume of a cylinder:
=> PI x R^2 x H
H = Height
R = Radius
=> PI x 3.9^2 x 15
=> PI x 15.21 x 15
=> PI x 228.15
=> 228.15 PI
or
=> 228.15 x 3.14159
=> 716.75 m^3
point estimate A sample of 81 observations is taken from a normal population with a standard deviation of 5. The sample mean is 40. Determine the 95% confidence interval for the population mean
Answer:
The 95 percent Confidence Interval is for the population is (38.911 , 41.089)
Step-by-step explanation:
To solve the above question, we would be making use of the confidence interval formula:
Confidence Interval = Mean ± z score × σ/√n
In the above question,
Mean = 40
σ = Standard deviation = 5
n = number of samples = 81
Confidence Interval = 95%
The z score for a 95% confidence interval = 1.96
Therefore, the confidence interval =
= 40 ± 1.96 (5/√81)
= 40 ± 1.96(5/9)
= 40 ± 1.0888888889
Confidence Interval
a)40 + 1.0888888889
= 41.0888888889
Approximately = 41.089
b ) 40 - 1.0888888889
= 38.911111111
Approximately = 38.911
Therefore, the 95 percent Confidence Interval is for the population is (38.911 , 41.089)
Can somebody explain how trigonometric form polar equations are divided/multiplied?
Answer:
Attachment 1 : Option C
Attachment 2 : Option A
Step-by-step explanation:
( 1 ) Expressing the product of z1 and z2 would be as follows,
[tex]14\left[\cos \left(\frac{\pi \:}{5}\right)+i\sin \left(\frac{\pi \:\:}{5}\right)\right]\cdot \:2\sqrt{2}\left[\cos \left(\frac{3\pi \:}{2}\right)+i\sin \left(\frac{3\pi \:\:}{2}\right)\right][/tex]
Now to solve such problems, you will need to know what cos(π / 5) is, sin(π / 5) etc. If you don't know their exact value, I would recommend you use a calculator,
cos(π / 5) = [tex]\frac{\sqrt{5}+1}{4}[/tex],
sin(π / 5) = [tex]\frac{\sqrt{2}\sqrt{5-\sqrt{5}}}{4}[/tex]
cos(3π / 2) = 0,
sin(3π / 2) = - 1
Let's substitute those values in our expression,
[tex]14\left[\frac{\sqrt{5}+1}{4}+i\frac{\sqrt{2}\sqrt{5-\sqrt{5}}}{4}\right]\cdot \:2\sqrt{2}\left[0-i\right][/tex]
And now simplify the expression,
[tex]14\sqrt{5-\sqrt{5}}+i\left(-7\sqrt{10}-7\sqrt{2}\right)[/tex]
The exact value of [tex]14\sqrt{5-\sqrt{5}}[/tex] = [tex]23.27510\dots[/tex] and [tex](-7\sqrt{10}-7\sqrt{2}\right))[/tex] = [tex]-32.03543\dots[/tex] Therefore we have the expression [tex]23.27510 - 32.03543i[/tex], which is close to option c. As you can see they approximated the solution.
( 2 ) Here we will apply the following trivial identities,
cos(π / 3) = [tex]\frac{1}{2}[/tex],
sin(π / 3) = [tex]\frac{\sqrt{3}}{2}[/tex],
cos(- π / 6) = [tex]\frac{\sqrt{3}}{2}[/tex],
sin(- π / 6) = [tex]-\frac{1}{2}[/tex]
Substitute into the following expression, representing the quotient of the given values of z1 and z2,
[tex]15\left[cos\left(\frac{\pi \:}{3}\right)+isin\left(\frac{\pi \:\:}{3}\right)\right] \div \:3\sqrt{2}\left[cos\left(\frac{-\pi \:}{6}\right)+isin\left(\frac{-\pi \:\:}{6}\right)\right][/tex] ⇒
[tex]15\left[\frac{1}{2}+\frac{\sqrt{3}}{2}\right]\div \:3\sqrt{2}\left[\frac{\sqrt{3}}{2}+-\frac{1}{2}\right][/tex]
The simplified expression will be the following,
[tex]i\frac{5\sqrt{2}}{2}[/tex] or in other words [tex]\frac{5\sqrt{2}}{2}i[/tex] or [tex]\frac{5i\sqrt{2}}{2}[/tex]
The solution will be option a, as you can see.
John painted his most famous work, in his country, in 1930 on composition board with perimeter 101.14 in. If the rectangular painting is 5.43 in. taller than it is wide, find the dimensions of the painting.
Answer:
22.57 x 28
Step-by-step explanation:
10.86 + 4x = 101.14
-10.86 -10.86
4x = 90.28
/4 /4
x = 22.57
5.43 + 22.57 = 28
22.57
The perpendicular bisectors of ΔKLM intersect at point A. If AK = 25 and AM = 3n - 2, then what is the value of n?
Answer:
n = 9 is the answer.
Step-by-step explanation:
Given a Triangle [tex]\triangle KLM[/tex] with its perpendicular bisectors intersecting at a point A.
AK = 25 units and
AM = 3n -2
To find:
Value of n = ?
Solution:
First of all, let us learn about perpendicular bisectors and their intersection points.
Perpendicular bisector of a line PQ is the line which divides the line PQ into two equal halves and is makes an angle of [tex]\bold{90^\circ}[/tex] with the line PQ.
And in a triangle, the perpendicular bisectors of 3 sides meet at one point and that point is called Circumcenter of the triangle.
We can draw a circle from circumcenter so that the circle passes from the three vertices of the triangle.
i.e.
Circumcenter of a triangle is equidistant from all the three vertices of the triangle.
In the given statement, we are given that A is the circumcenter of the [tex]\triangle KLM[/tex].
Please refer to the attached image for the given triangle and sides.
The distance of A from all the three vertices will be same.
i.e. AK = AM
[tex]\Rightarrow 25 = 3n-2\\\Rightarrow 3n =25+2\\\Rightarrow 3n =27\\\Rightarrow \bold{n = 9}[/tex]
Therefore, n = 9 is the answer.
the length of a mathematical text book the is approximately 18.34cm and its width is 11.75 calculate ?
the approximate perimeter of the front cover?
the approximate area of the front cover of the book?
Answer:
Perimeter=60.18cm
Area=215.495cm^2
Step-by-step explanation:
Given:
Length of book=18.34cm
Breadth=11.75cm
Solution:
Perimeter=2(l +b)
P=2(18.34+11.75)
P=2 x 30.09
P=60.18cm
Area=l x b
A=18.34 x 11.75
A=215.495 cm^2
Thank you!
A box is 90 cm long. Which of these is closest to the length of this box in feet?{1 inch= 2.54cm} (1 point)
Answer:
2.952755906 ft
Step-by-step explanation:
We need to convert 90 cm to inches
90 cm * 1 inch / 2.54 cm =35.43307087 inches
Now convert inches to ft
12 inches = 1ft
35.43307087 inches * 1 ft/ 12 inches =2.952755906 ft
the product of two consecutive positive integer is 306
Answer:
[tex]\Large \boxed{\sf 17 \ and \ 18}[/tex]
Step-by-step explanation:
The product means multiplication.
There are two positive consecutive integers.
Let the first positive consecutive integer be x.
Let the second positive consecutive integer be x+1.
[tex](x) \times (x+1) =306[/tex]
Solve for x.
Expand brackets.
[tex]x^2 +x =306[/tex]
Subtract 306 from both sides.
[tex]x^2 +x -306=306-306[/tex]
[tex]x^2 +x -306=0[/tex]
Factor left side of the equation.
[tex](x-17)(x+18)=0[/tex]
Set factors equal to 0.
[tex]x-17=0[/tex]
[tex]x=17[/tex]
[tex]x+18=0[/tex]
[tex]x=-18[/tex]
The value of x cannot be negative.
Substitute x=17 for the second consecutive positive integer.
[tex](17)+1[/tex]
[tex]18[/tex]
The two integers are 17 and 18.
The product of two consecutive positive integers is 306.
We need to find the integers
solution : Let two consecutive numbers are x and (x + 1)
A/C to question,
product of x and (x + 1) = 306
⇒x(x + 1) = 306
⇒x² + x - 306 = 0
⇒ x² + 18x - 17x - 306 = 0
⇒x(x + 18) - 17(x + 18) = 0
⇒(x + 18)(x - 17) = 0⇒ x = 17 and -18
so x = 17 and (x +1) = 18
Therefore the numbers are 17 and 18.
Hope it helped u if yes mark me BRAINLIEST
TYSM!
Find the value of x to the nearest tenth. A) 5 B) 9.2 C) 3.3 D) 2.9
Answer:
B) 9.2
Step-by-step explanation:
tan(57)=x/6 multiply 6 on both sides
6.tan(57)=x use calculator to find answer
9.2 rounded
Answer:9.2 is correct
Step-by-step explanation:
Question 36 of 40
The distance of a line bound by two points is defined as
L?
O A. a line segment
B. a ray
O
c. a plane
O D. a vertex
SUBMI
Answer:
A. a line segment
Step-by-step explanation:
a ray is directing in one dxn, and has no end pointa plane is a closed, so more than 2 points a vertex is a single point itselfAccording to the Federal Communications Commission, 70% of all U.S. households have vcrs. In a random sample of 15 households, what is the probability that fewer than 13 have vcrs?
Answer:
The probability is [tex]P(x < 13) = 0.8732[/tex]
Step-by-step explanation:
From the question we are told that
The probability of success is p = 0.70
The sample size is [tex]n = 15[/tex]
Generally the distribution of U.S. households have vcrs follow a binomial distribution given that there are only two outcome (household having vcrs or household not having vcrs )
The probability of failure is mathematically evaluated as
[tex]q = 1- p[/tex]
substituting values
[tex]q = 1- 0.70[/tex]
[tex]q = 0.30[/tex]
The probability that fewer than 13 have vcrs is mathematically represented as
[tex]P(x < 13) = 1- [P(13) + P(14) + P(15)][/tex]
=> [tex]P(x < 13) = 1-[( \left 15 } \atop {}} \right. C_{13} *p^{13}* q^{15-13})+ (\left 15 } \atop {}} \right. C_{14} *p^{14}* q^{15-14}) +( \left 15 } \atop {}} \right. C_{15} *p^{15}* q^{15-15}) ][/tex]
Here [tex]\left 15 } \atop {}} \right. C_{13}[/tex] means 15 combination 13 and the value is 105 (obtained from calculator)
Here [tex]\left 15 } \atop {}} \right. C_{14}[/tex] means 15 combination 14 and the value is 15 (obtained from calculator)
Here [tex]\left 15 } \atop {}} \right. C_{15}[/tex] means 15 combination 15 and the value is 1 (obtained from calculator)
So
[tex]P(x < 13) = 1-[(105 *p^{13}* q^{2})+ (15 *p^{14}* q^{1}) +(1*p^{15}* q^{0}) ][/tex]
substituting values
[tex]P(x < 13) = 1-[(105 *(0.70)^{13}* (0.30)^{2})+ (15 *(0.70)^{14}* (0.30)^{1}) +(1*(0.70)^{15}* (0.30)^{0}) ][/tex]
[tex]P(x < 13) = 0.8732[/tex]
On a coordinate plane, a line goes through (negative 3, 3) and (negative 2, 1). A point is at (4, 1). What is the equation, in point-slope form, of the line that is parallel to the given line and passes through the point (4, 1)? y − 1 = −2(x − 4) y – 1 = Negative one-half(x – 4) y – 1 = One-half(x – 4) y − 1 = 2(x − 4)
Answer:
y - 1 = -2(x - 4).
Step-by-step explanation:
First, we need to find the slope. Two sets of coordinates are (-3, 3), and (-2, 1).
(3 - 1) / (-3 - -2) = 2 / (-3 + 2) = 2 / (-1) = -2.
The line will be parallel to the given line, so the slope is the same.
Now that we have a point and the slope, we can construct an equation in point-slope form.
y1 = 1, x1 = 4, and m = -2.
y - 1 = -2(x - 4).
Hope this helps!
The slope of the line passing parallel to the given line and passes through the point (4, 1) is y = -2x + 9
The equation of a straight line is given by:
y = mx + b
where y, x are variables, m is the slope of the line and b is the y intercept.
The slope of the line passing through the points (-3,3) and (-2,1) is:
[tex]m=\frac{y_2-y_1}{x_2-x_1} \\\\m=\frac{1-3}{-2-(-3)} \\\\m=-2[/tex]
Since both lines are parallel, hence they have the same slope (-2). The line passes through (4,1). The equation is:
[tex]y-y_1=m(x-x_1)\\\\y-1=-2(x-4)\\\\y=-2x+9[/tex]
Find out more at: https://brainly.com/question/18880408
Evaluate
1+5.3
2
please answer quickly
Answer:
1+5.3=6.3
Step-by-step explanation:
not sure what your asking for with the 2
explain what your looking for with the 2 and maybe we can help you further
(I have to do it the way I did it because the 2 in the question is confusing)
Answer:
For expression 1 + 5.32: 6.32
For expression 1 + 5.3 × 2: 11.6
Step-by-step explanation:
If the expression is 1 + 5.32:
Add 1 to 5.32: 1 + 5.32 = 6.32If the expression is 1 + 5.3 × 2:
5.3 × 2 = 10.6Plug in 10.6: 1 + 10.61 + 10.6 = 11.6
If Company X has 1600 employees and 80% of those employees have attended the warehouse training course how many employees have yet to attend?
Answer:
320
Step-by-step explanation:
Total no of employees = 1600
% of employees attended the training = 80%
no. of employee who attended the training = 80/100* 1600 = 1280
No. of employees who are yet to attend the training = Total no of employees - no. of employee who attended the training = 1600-1280 = 320
Thus, 320 employees have yet to attend the training
Which expression is equal to 7 times the sum of a number and 4
Answer:
7(n + 4)
Step-by-step explanation:
Represent the number by n. Then the verbal expression becomes
7(n + 4).
What is the quotient of 35,423 ÷ 15?
Answer: 2361.53
Step-by-step explanation:
Use long division and round.
(The 3 is repeated)
The base of a triangle is 4 cm greater than the
height. The area is 30 cm. Find the height and
the length of the base
h
The height of the triangle is
The base of the triangle is
Answer:
Step-by-step explanation:
Formula for area of a triangle:
Height x Base /2
Base (b) = h +4
Height = h
h + 4 x h /2 = 30cm
=> h +4 x h = 60
=> h+4h =60
=> 5h = 60
=> h = 12
Height = 12
Base = 12 +4 = 16
Tanθ - cosecθ secθ (1-2 cos²θ) = cotθ
Answer:
I thinksomething is wrong.
I'm getting another proving it's-tan thita.
I hope this is the one you are searching for..
Help us plazz this is mathematics IGCSE fast as you can
Answer:
Step-by-step explanation:
y varies direcrtly with √(x+5) wich can be expressed mathematically as:
● y = k*√(x+5)
Let's calculate k khowing that y=4 and x=-1
● 4 = k*√(-1+5)
● 4 = k*√(4)
● 4 = k * 2
● k = 4/2
● k = 2
■■■■■■■■■■■■■■■■■■■■■■■■■■
Let's calculate y khowing that x = 11
● y = k*√(x+5)
● y = 2×√(11+5)
● y = 2× √(16)
● y = 2× 4
● y = 8
Answer:
The value of y is 8.
Step-by-step explanation:
Given that y is directly proportional to √(x+5) so the equation is y = k√(x+5) where k is constant. First, you have to find the value of k with given values :
[tex]y = k \sqrt{x + 5} [/tex]
[tex]let \: x = - 1,y = 4[/tex]
[tex]4 = k \sqrt{ - 1 + 5} [/tex]
[tex]4 = k \sqrt{4} [/tex]
[tex]4 = k(2)[/tex]
[tex]4 \div 2 = k[/tex]
[tex]k = 2[/tex]
So the equation is y = 2√(x+5). In order to find the value of y, you have to substitute x = 11 into the equation :
[tex]y = 2 \sqrt{x + 5} [/tex]
[tex]let \: x = 11[/tex]
[tex]y = 2 \sqrt{11 + 5} [/tex]
[tex]y = 2 \sqrt{16} [/tex]
[tex]y = 2(4)[/tex]
[tex]y = 8[/tex]
Jesse bought 3 T-shirts for $6 each and 4 T-shirts for $5 each. What expression can you use to describe what Jesse bought?
Find the area of the shape shown below.
2
2
4
Hurry and answer plz!!!!
1
Answer:
7 square units
Step-by-step explanation:
We can break down this complex shape into smaller shapes.
I've broken it down into a rectangle, a square, and a triangle (See attached picture)
Let's first find the area of the triangle. To do this we use the formula [tex]\frac{bh}{2}[/tex]. The base is 1 (because the top is 2, and 1 is already used on the triangle - 2-1 = 1.) and the height is 2 (because 4 is already used on the left, and 2 was used on the right so 4-2=2).
[tex]\frac{2\cdot1}{2} = \frac{2}{2} = 1[/tex].
Now let's find the area of the top square - we can just square 2 which is 4.
To find the area of the bottom rectangle, we can multiply it's two side lengths of 2 and 1 = 2.
Adding these all together gets us 4+2+1 = 7.
Hope this helped!
Cesium-137 has a half-life of about 30 years. A) Find the annual decay rate and round final result to 4 decimal places. B) Find the continuous decay rate and round final result to 4 decimal places. C) How long will it take for a 10 gram sample to decay to 1 gram? Round to nearest year and interpret your result with a complete sentence. D) Complete this statement: as x goes to infinity, y goes to ___.
Answer:
0.02280.0231100 years0Step-by-step explanation:
The exponential equation for the fraction remaining after x years can be written as ...
y = (1/2)^(x/30)
A) For x=1, the fraction remaining is ...
y = (1/2)^(1/30) ≈ 0.97716 = 1 - 0.0228
Of the original amount, 0.0228 decays each year.
__
B) The continuous decay rate is the natural log of the growth factor, so is ...
ln(0.97716) = -0.0231
The continuous decay rate is 0.0231 of the present amount (per year).
__
C) For y=.10 (1/10 of the original amount) we find x to be ...
.1 = .5^(x/30)
ln(.1) = (x/30)ln(.5) . . . . . take the natural log
30ln(0.1)/ln(0.5) = x ≈ 100 . . . years
It will take 100 years for a 10-gram sample to decay to 1 gram.
__
D) As x goes to infinity, y goes to zero.
_____
The relationship between growth rate and growth factor is ...
growth factor = 1 + growth rate
When the growth rate is negative, it is called a decay rate.
Use the Pythagorean theorem to find the length of the hypotenuse in the triangle shown below.4,3
Answer:
5
Step-by-step explanation:
a^2 + b^2 = c^2
4^2 + 3^2 = c^2
16 + 9 = c^2
25 = c^2
c = 5
Answer:
5Step-by-step explanation:
[tex]Hypotenuse = ?\\Opposite = 4\\Adjacent = 3\\\\Pythagoras \: Theorem ;\\\\Hypotenuse^2 =Opposite^2+Adjacent ^2\\\\Hypotenuse^2 = 4^2 +3^2\\\\Hypotenuse^2 = 16+9\\\\Hypotenuse^2 = 25\\\\\sqrt{Hypotenuse^2}=\sqrt{25} \\Hypotenuse = 5[/tex]
Which is greater 9/20 or 60%
Answer:
60%
Step-by-step explanation:
9/20 is 45%
Answer:
60 %
Step-by-step explanation: If you divide 9/20, it equals to 0.45, makes it 45% and the number 45 in general is smaller than 60. Thus, 60% is greater than 9/20. I hope this helps.
) A random sample of size 36 is selected from a normally distributed population with a mean of 16 and a standard deviation of 3. What is the probability that the sample mean is somewhere between 15.8 and 16.2
Answer:
The probability is 0.31084
Step-by-step explanation:
We can calculate this probability using the z-score route.
Mathematically;
z = (x-mean)/SD/√n
Where the mean = 16, SD = 3 and n = 36
For 15.8, we have;
z = (15.8-16)/3/√36 = -0.2/3/6 = -0.2/0.5 = -0.4
For 16.2, we have
z = (16.2-16)/3/√36 = 0.2/3/6 = 0.2/0.5 = 0.4
So the probability we want to calculate is;
P(-0.4<z<0.4)
We can get this using the standard normal distribution table;
So we have;
P(-0.4 <z<0.4) = P(z<-0.4) - P(z<0.4)
= 0.31084
Help please!!! Tyyyyy
Answer:
D) 60 degree
Step-by-step explanation:
Let's connect the remaining diagonal, which forms a triangle containing angle x.
As a property of regular hexagon, all diagonals are equal.
=> The formed triangle is a regular triangle and it has three equal angles, which are 60 degrees.