The predominant consequence to an individual who is genetically deficient in liver fructose 1,6-bisphosphatase would be failure to resynthesize glucose from lactic acid.
WHAT IS FRUCTOSE 1,6-BISPHOSPHATASE:
fructose 1,6-bisphosphatase is an important enzyme produced in the liver to catalyze the conversion of fructose-1,6-bisphosphate to fructose-6-phosphate during gluconeogenesis. Gluconeogenesis is the process whereby glucose sugar is produced from noncarbohydrate substances such as lactate, pyruvate etc. Gluconeogenesis is the opposite of glycolysis (breakdown of glucose).CONSEQUENCES OF DEFICIENCY OF FRUCTOSE 1,6-BISPHOSPHATASE:
Since, gluconeogenesis results in the synthesis of glucose from substances like lactic acid, a deficiency in liver fructose 1,6-bisphosphatase enzyme will mean that GLUCOSE WILL NOT BE ABLE TO BE SYNTHESIZED.Therefore, the predominant consequence to an individual who is genetically deficient in liver fructose 1,6-bisphosphatase would be failure to resynthesize glucose from lactic acid.
Learn more at: https://brainly.com/question/13717824
g The rate constant for binding of P to L is 106 M-1s-1. What is the rate constant for dissociation of L from PL
Answer:
Eq 4 would predict a basal rate constant of 6 × 109 M−1s−1. ... ci(li) = Pli−1(cosδi)−Pli+1(cosδi) .
Complete and balance the following chemical equations. Identify the reaction type as: combination, decomposition, single replacement, double replacement, or combustion.
Products:
Magnesium Oxide + Carbon dioxide.
a) MgCO₃ (Heat is supplied to the reaction (triangle over a arrow) -> Reaction type:
Products:
Aluminum Oxide
b) Al + O₂ -> Reaction type:
Answer:
the first one is a decomposition reaction
the second one is also a synthesis reaction
Solution:-1
[tex]\boxed{\sf {MgCO_3\atop Magnesium\:Carbonate}\overset{\Delta H}{\longrightarrow}{MgO\atop Magnesium \:Oxide}+{CO_2\atop Carbon\:Dioxide}}[/tex]
It is a thermal decomposition reaction
Solution:-2:-
[tex]\boxed{\sf {4Al\atop Aluminium}+{3O_2\atop Oxygen}\longrightarrow{2Al_2O_3\atop Aluminium\:oxide}}[/tex]
It is a combination reaction.
How many atom in protons
Answer:
Its atomic number is 14 and its atomic mass is 28. The most common isotope of uranium has 92 protons and 146 neutrons. Its atomic number is 92 and its atomic mass is 238 (92 + 146).
An experimental drug, D, is known to decompose in the blood stream. Tripling the concentration of the drug increases the decomposition rate by a factor of nine. Write the rate law for decomposition of D.
Answer:
R=k[D]^2
Explanation:
Given that it is a decomposition reaction;
D--->product
Hence;
The rate law is;
R= k[D]^x ----(1)
When we triple the concentration of D we have;
[D]' = [3D]^x
Therefore;
R'= 3R
R'= k[D]'----(2)
Hence dividing (1) by (2);
R/R' = k[D]^x/k[D]'
R/9R = k[D]^x/k[3D]^x
1/9 = 1/3^x (take inverse of both sides)
9 = 3^x
3^2 = 3^x
x= 2
Hence the rate law;
R=k[D]^2
You have 10 pounds of egg whites. You need 6oz to make one serving of cosomme. How many servings can you make?
Answer:
I think you can make 26, hope this helped.
Explanation:
what are the products in a chemical equation located?
Answer:
they are the end results so they are after the yields symbol
Explanation:
Based on the electron configuration of the two atoms, predict the ratio of metal cationic (+) atom to nonmetal anionic (-) atom in the compound.
Lithium 1s^22s^1
Chlorine 1s^22s^22p^6 3s^23p^5
Answer:
Option A. 1:1
Explanation:
From the question given above, the following data were obtained:
Li => 1s² 2s¹
Cl => 1s² 2s²2p⁶ 3s²2p⁵
Lithium (Li) will form compound with Cl by losing 1 electron as shown below:
Li —> Li⁺ + e¯ ..... (1)
Cl on the other hand will accept 1 electron from Li to form the chloride ion, Cl¯ as shown below:
Cl + e¯ —> Cl¯ ...... (2)
Combining equation 1 and 2, we have:
Li + Cl + e¯ —> Li⁺ + Cl¯ +
Cancel e¯ from both side
Li + Cl —> Li⁺Cl¯
Thus, the ratio of metallic cation (+) to non-metallic anion (-) in the compound is 1:1
The product of the following reaction is
``````````````````````````````````
what must occur for a change to be a chemical reaction?
Which type of element is almost always found as a single atom in nature?
O A. Alkaline earth metal
O B. Halogen
c. Noble gas
D. Oxygen family element
Noble gas elements are almost always found as a single atom in nature.
What is inert gas?An inert gas is a gas that does not undergo chemical reactions under a set of given conditions. The noble gases often do not react with many substances and were historically referred to as inert gases.
All noble gases have the maximum number of electrons in their outer shell; i.e. 2 electrons for helium and 8 for the other five.
Noble gases are monoatomic, which means they exist as single atoms. This is because of their electronic stability.
Thus, noble gas elements are almost always found as a single atom in nature. Hence, option C is correct.
Learn more about the inert gas here:
https://brainly.ph/question/4502738
#SPJ1
How did the work of Dmitri Mendeleev differ from that of John Newlands in the development of the periodic table?
Answer: Mendeleev predicted elements that would later be discovered.
5) When heated in a flame, the element Indium emits electromagnetic radiation with a distinctive indigo blue
color (the name indium is derived from the word indigo). The emitted photons that give rise to this
color
have energies of 4.405 x 10^-19J. Calculate the wavelength of this radiation in nanometers.
Answer:
[tex]\lambda=451nm[/tex]
Explanation:
Hello there!
In this case, according to the given information, it turns out possible for us to solve this problem by using the following equation, defined in terms of energy, Planck's constant, wavelength and speed of light:
[tex]E=\frac{hC}{\lambda }[/tex]
Thus, we solve for the wavelength as shown below:
[tex]\lambda=\frac{hC}{ E}[/tex]
And finally plug in the energy, Planck's constant and speed of light to obtain:
[tex]\lambda=\frac{6.6261 x 10^{-34} m^2 kg / s*3x10^8m/s}{4.405x10^{-19}m^2kg/s^2}\\\\\lambda=4.513x10^{-7}m*\frac{1nm}{10^{-9}m} \\\\\lambda=451nm[/tex]
Regards!
Can someone please help me!!!
sorry but I don't know so sorry
Write a complete, balanced equation for the following reactions:
e) The heating of sodium carbonate (teachers note: produces sodium oxide and carbon dioxide).
f) chromium (III) hydroxide plus sulfuric acid (teachers note: You figure out products).
g) aluminum metal plus chlorine gas (teachers note: produces aluminum chloride).
Please explain as well, thanks!
Answer:
Solution given:
e) The heating of sodium carbonate to produces sodium oxide and carbon dioxide
Solution given:
Balanced chemical equation:
[tex]\boxed{\bold{\green{Na_{2}CO_{2} +heat \rightarrow Na_{2}O +CO_{2}}}}[/tex]
when sodium carbonate is heated it decomposed and form sodium oxide and carbon dioxide
f) chromium (III) hydroxide plus sulfuric acid
Balanced chemical equation:
[tex]\boxed{\bold{\green{2Cr(OH)_{3}+ 3H_{2}SO_{4} → Cr_{2}(SO_{4})_{3} + 6H_{2}O}}}[/tex]
When chromium (III) hydroxide react with sulfuric acid double displacement takes place and forms produce chromium(III) sulfate and water.
g) aluminum metal plus chlorine gas
[tex]\boxed{\bold{\green{2Al(s) + 3Cl_2(g) \rightarrow 2AlCl_2 }}}[/tex]
When aluminum metal is added to chlorine gas Combination reaction takes place and forms aluminum chloride.
e) The heating of sodium carbonate to produces sodium oxide and carbon dioxide
Solution given:
Balanced chemical equation:
[tex]\boxed{\bold{\green{Na_{2}CO_{2} +heat \rightarrow Na_{2}O +CO_{2}}}}[/tex]
when sodium carbonate is heated it decomposed and form sodium oxide and carbon dioxide
f) chromium (III) hydroxide plus sulfuric acid
Balanced chemical equation:
[tex]\boxed{\bold{\green{2Cr(OH)_{3}+ 3H_{2}SO_{4} → Cr_{2}(SO_{4})_{3} + 6H_{2}O}}}[/tex]
When chromium (III) hydroxide react with sulfuric acid double displacement takes place and forms produce chromium(III) sulfate and water.
g) aluminum metal plus chlorine gas
[tex]\boxed{\bold{\green{2Al(s) + 3Cl_2(g) \rightarrow 2AlCl_2 }}}[/tex]
When aluminum metal is added to chlorine gas Combination reaction takes place and forms aluminum chloride.
Fill in the left side of this equilibrium constant equation for the reaction of acetic acid HCH3CO2 with water.
______ = Ka
Answer:
The left side equation is:
[tex]Ka = \frac{[CH_{3}COO^{-}] [H_{3}O^{+}]}{[HCH_{3}COO] [H_{2}O]}[/tex]
Explanation:
For the reaction of acetic acid HCH3CO2 with the water, The equilibrium constant equation is
[tex]HCH_{3}COO + H_{2}O \rightleftharpoons CH_{3}COO^{-} + H_{3}O[/tex]
The left side of this equilibrium constant equation will be written as shown below:
[tex]Ka = \frac{[CH_{3}COO^{-}] [H_{3}O^{+}]}{[HCH_{3}COO] [H_{2}O]}[/tex]
Oleic acid and elaidic acid are isomeric alkenes.
a. True
b. False
Answer:
False
Explanation:
Because Elaidic acid is an isomer of oleic acid. I really hope this helps you.
Consider the reaction of 2-chloro-2-methylpentane with sodium iodide.
Assuming no other changes, how would it affect the rate if one simultaneously doubled the concentration of 2-chloro-2-methylpentane and sodium iodide?
A) No effect.
B) It would double the rate.
C) It would triple the rate.
D) It would quadruple the rate.
E) It would increase the rate five times.
Answer:
Explanation:
The reaction between 2 chloro- 2 methyl pentane and sodium iodide takes place through SN2 mechanism . iodide ion is the nucleophile which attacks the substrate . The rate of such reaction depends upon concentration of both the nucleophile and the substrate .
Hence rate of reaction will be increased by 2 x 2 = 4 times.
option D ) is correct.
Explanation:
The given reaction represents the reaction between a tertiary alkyl halide that is 2-chloro-2-methylpentane and a nucleophile that is NaI.
This reaction favors SN1 mechanism which has order one.
So, the given reaction follows first-order kinetics.
For a first-order reaction, the rate law is:
rate =k [A]
That means the rate of the reaction is dependent on the concentration of reactants.
So, when the concentration of the reactant is doubled then, the rate of the reaction is also doubled.
Among the given options the correct answer is option B) It would double the rate.
Which of the following is TRUE?
A.The equivalence point is where the amount of acid equals the amount of base during any acid-base titration.
B. At the equivalence point, the pH is always 7
C. An indicator is not pH sensitive
D.A titration curve is a plot of pH vs. the [base]/[acid] ratio
E. none of these is true
Answer:
D. a titration curve is a plot of pH vs. the [base]/[acid] ratio
A student pours a few drops of vinegar onto limestone and it starts bubbling. What kind of reaction is this? How does it relate to chemical weathering, monuments and statues?
Answer:
The correct answer is - acid-base reaction or chemical weathering.
Explanation:
Vinegar is an acid that dissolves a material that is commonly found and known as calcium carbonate present in the limestone. When these two, vinegar mix with calcium carbonate of the limestone, the atoms in the acetic acid and the calcium carbonate come apart and rearrange in different ways to make new chemicals.
This rearrangement results in the release of carbon dioxide as a stream of bubbles. It is a form of weathering called chemical weathering and many monuments are based on rocks that have limestones in their composition and acid rain work similar to vinegar.
2. For each of the ionic compounds in the table below, name the compound and explain the rule that you
used in formulating your name for the compound.
Name:
Rule for naming compound:
-PbF4
-NH4NO3
-Li2S
Answer:
2
Explanation:
Lead(|V) fluoride
Ammonium Nitrate
Lithium sulfide
For the rules, I don't know what you were taught. I just do it intuitively since I have done so much chemistry.
The first one the roman numerals represents the charge of the lead which much match the 4- charge from the 4 fluorides.
The second one is just two polyatomic ions which you just have to remember.
The last one is the typical ionic compound naming technique i guess.
How many protons are in iron (Fe)?
A. 30
B. 82
C. 26
D. 56
Answer:
26 protons
make sure its write answer
A reaction is thermodynamically unstable (spontaneous) but no change is observed. The reaction is probably Select the correct answer below: kinetically unstable. kinetically stable. thermodynamically stable but kinetically unstable. None of the above
Answer:
kinetically stable.
Explanation:
When we say that a system is thermodynamically unstable, it means that there is still a state in which the system is expected to have lower energy than it currently has. A thermodynamically unstable system is yet to attain equilibrium hence it can still undergo further chemical processes in order to attain thermodynamic stability.
When we say that a system is kinetically stable, it means that the activation energy or energy barrier for the reaction system is high. Thus reactants are not easily converted into products. The reaction system remains the same for a long while without change.
Finally, when a reaction is thermodynamically unstable (spontaneous) but no change is observed, the reaction is kinetically stable.
High-pressure liquid chromatography (HPLC) is a method used in chemistry and biochemistry to purify chemical substances. The pressures used in this procedure range from around 500 kilopascals (500,000 Pa) to about 60,000 kPa (60,000,000 Pa). It is often convenient to know the pressure in torr. If an HPLC procedure is running at a pressure of 6.50×106 Pa , what is its running pressure in torr?
Answer:
1 kpa = 7.5 torr
1.75*10^7 pa = 1.75*10^4 Kpa = (1.75/7.5)*10^4 torr = 2333 torr
Explanation:
must undergo addition because they have easily broken π bonds. ____________ rule states in the addition of HX to an unsymmetrical alkene, the H atom bonds to the less substituted carbon atom. ____________ are unsaturated hydrocarbons because they have fewer than the maximum number of hydrogen atoms per carbon. ____________ have good leaving groups and therefore readily undergo substitution and elimination reactions. In hydroboration, the boron atom bonds to the ____________ substituted carbon.
Answer:
Alkenes, Markovnikov's, Alkenes, Alkyl halides, and less.
Explanation:
Alkenes must undergo addition because they have easily broken π bonds.
Markovnikov's rule states in the addition of HX to an unsymmetrical alkene, the H atom bonds to the less substituted carbon atom.
Alkenes are unsaturated hydrocarbons because they have fewer than the maximum number of hydrogen atoms per carbon.
Alkyl halides have good leaving groups and therefore readily undergo substitution and elimination reactions.
In hydroboration, the boron atom bonds to the less substituted carbon.
1.0 g of a compound A is prepared in 100 mL of water, and then extracted with 50 mL of ether. After the extraction, 0.25 g of the compound was recovered from the ether layer. What is the partitioning coefficient([A]ether/[A]water) for this compound in the system used?a. 4.0b. 3.0c. 1.5d. 0.75e. 0.25f. 0.67
Answer:
uh 2
Explanation:
Its 2 cause uh 2 sounds about right
To solve this we must know the concept behind partition coefficient. The partitioning coefficient for this compound in the system used is 0.67. Therefore, the correct option is option F.
What is partition coefficient?The ratio of a solute's concentrations in two solids, immiscible liquids, or barely miscible liquids when they are in equilibrium throughout the interface connecting them is called partition coefficient.
In fundamental chemistry, partitioning is utilized to separate components in procedures like chromatography. Partitioning is a crucial factor in the distribution of chemicals and medications between the blood and bodily tissues in the field of pharmacology.
Mathematically,
partition coefficient= concentration of the solute in stationary phase/concentration of the solute in mobile phase
partition coefficient={(0.25 /M)÷50}÷{(1.0/M)÷100 }
=0.005÷0.01
=0.67
Therefore, the correct option is option F.
To learn more about partition coefficient, here:
https://brainly.com/question/29845640
#SPJ5
Which does not result in deviations from linearity in a Beer's law plot of absorbance versus concentration?a. light losses at the cell interface b. all are sources of nonlinearity c. stray radiation d. equilibrium between different forms of the analyte e. a wide bandwidth relative to the width of the absorption band
Answer:
a
Explanation:
Beer-Lambert Law shows the relationship between the factors affecting the absorbance of a sample in relation to the concentration. These factors are:
the concentration c, path length (l), and the molar absorptivity (ε).
As a result, more radiation is assimilated as the concentration rises, and the absorbance rises as well. However, the longer the path length, the increase in the number of molecules and the higher the absorbance.
Thus, the straight-line equation for Beer-Lambert's law is:
A = εcl
From the above explanation, the option that doesn't relate to the deviations from linearity of Beer's law plot is in Option (a).
X = atomic number - number of core electrons
Which of the following explains the identity of X and its trends down a group?
A. X is the effective nuclear charge, and it remains constant down a group.
B. X is the screening constant, and it remains constant down a group.
C. X is the effective nuclear charge, and it increases down a group.
D. X is the screening constant, and it increases down a group.
Based on the expression given in the question, X is the effective nuclear charge, and it increases down a group.
What is an effective nuclear charge?Effective nuclear charge is the net nuclear charge that an electron in an atom experiences, after subtracting the nuclear charge shielded by other electrons.
The effective nuclear charge is denoted by Zeff and can be calculated by subtracting the number of shielding electrons from the atomic number.
Therefore, based on the expression given in the question, X is the effective nuclear charge, and it increases down a group.
Learn more about effective nuclear charge at: https://brainly.com/question/13664060
#SPJ1
QUICK I JUST NEED THE ANSWER!!!
What's the hybridization of the central atom in OF2?
Answer:
sp3 hybridization
Explanation:
Hydrogen gas and fluorine gas will react to form hydrogen fluoride gas. What is the standard free energy change for this reaction
Answer:
[tex]\Delta G=-541.4kJ/mol[/tex]
Explanation:
Hello there!
In this case, according to the given information, it turns out firstly necessary to write out the described chemical reaction as shown below:
[tex]H_2+F_2\rightarrow 2HF[/tex]
Now, we set up the expression for the calculation of the standard free energy change, considering the free energy of formation of each species, specially those of H2 and F2 which are both 0 because they are pure elements:
[tex]\Delta G=2\Delta G_f^{HF}-(\Delta G_f^{H_2}+\Delta G_f^{F_2})\\\\\Delta G=2*-270.70kJ/mol-(0kJ/mol+0kJ/mol)\\\\\Delta G=-541.4kJ/mol[/tex]
Regards!
Using the law of conservation of energy what is the kinetic energy at D
Answer:
The law of conservation of energy states that energy can neither be created nor destroyed - only converted from one form of energy to another.
Explanation:
This means that a system always has the same amount of energy, unless it's added from the outside.