Answer:
a) Acidified potassium dichromate solution is used to test for the presence of a primary or secondary alcohol.
b) The orange color of the potassium dichromate solution is reduced to green when it reacts with an alcohol.
c) The oxidation of a primary alcohol produces a carboxylic acid.
d) The oxidation of a secondary alcohol produces a ketone.
e) The dichromate test does not work for tertiary alcohols because they cannot be further oxidized. Methylpropan-2-ol is a tertiary alcohol with the chemical structure:
CH3
|
CH3—C—OH
|
CH3
Since there are no hydrogen atoms attached to the carbon atom bearing the hydroxyl group, it cannot be oxidized.
a) A simple test for the presence of a carboxylic acid group is the addition of sodium hydrogencarbonate solution to the compound. The reagent reacts with the carboxylic acid to produce carbon dioxide gas.
Reagent: Sodium hydrogencarbonate solution
Observation: Effervescence (bubbling) due to the release of carbon dioxide gas.
b) To confirm that the gas produced in the hydrogencarbonate test is carbon dioxide, it can be tested with limewater. Carbon dioxide turns limewater milky/cloudy due to the formation of calcium carbonate.
c) The hydrogencarbonate test is not conclusive proof that a carboxylic acid group is present in a completely unknown compound because some other functional groups such as phenols and alcohols can also react with the reagent and produce carbon dioxide. Therefore, additional tests such as the dichromate test or Tollens' test may be needed to confirm the presence of a carboxylic acid group.
(please could you kindly mark my answer as brainliest and a follow would be really nice)
a solution of was heated at for several hours. after some time the concentration of was determined. answer the following questions: a) what is the maximum amount of work ( ) from/for this reaction when ?
The maximum amount of work from/for this reaction a solution of was heated at for several hours is -8.69 KJ.
What is solution ?A solution is a type of homogeneous mixture composed of two or more substances in chemistry. A solute in such a mixture is a substance that has been dissolved in another substance known as a solvent. If the attractive forces between the solvent and solute particles are stronger than the attractive forces holding the solute particles together, the solvent particles separate and surround the solute particles. These encircled solute particles then move away from the solid solute and into solution. The mixing of a solution occurs at a scale where the effects of chemical polarity are involved, resulting in solvation-specific interactions. When the solvent is the greater fraction of the solution, the solution usually has the state of the solvent.
using the formula
ΔG = ΔG° + RT ln(Q)
Work done = -8.69 KJ
To know more about solutions, visit;
brainly.com/question/30665317
#SPJ1
Emma prepared two glasses of water at two different temperatures. She added a spoonful of table salt to the cold water in glass #1 and spoonful of rock salt to the hot water in glass #2. She observed that the spoonful of table salt in glass #1 dissolved faster than the spoonful of rock salt in glass #2. Based on this observation, Emma concluded that salt dissolves faster in cold water than in hot water.
What question was Emma trying to investigate in her experiment?
Are table salt and rock salt soluble or insoluble in cold and hot water without stirring?
Does surface area affect the rate of dissolving of a substance in water?
Does temperature affect the rate of dissolving of a substance in water?
What type of salt dissolves faster in water when stirred at different temperatures?
Answer: Does temperature affect the rate of dissolving a substance in water?
a 3-year-old child is drawing with a pen and calls it a pencil. when she tries to erase her drawing, she becomes confused about why it is not erasing. this new piece of information does not fit with her current understanding about what a pencil is and leads to . select one: a. equilibrium b. disequilibrium
A) Equilibrium
The 3-year-old child is experiencing disequilibrium when she tries to erase her drawing with a pen and it does not erase. This is because her current understanding of a pencil does not fit with the new piece of information that it does not erase. Equilibrium occurs when a person is able to process new information and integrate it into their current understanding.
According to Piaget's cognitive development theory, the process by which a child's existing ideas are disrupted is called disequilibrium, which is option B.
What is cognitive development theory?
Cognitive development theory is a comprehensive theory that explains how children learn and acquire knowledge. This theory was created by psychologist Jean Piaget, who believed that cognitive growth is a gradual and ongoing process. According to Piaget, cognitive development refers to the gradual progression of thought processes, including problem-solving, attention, perception, and memory, that arise from biological development and environmental interaction. The process by which a child's existing ideas are disrupted is called disequilibrium. According to Piaget, when new information is discovered that does not fit into a person's existing schema, he or she may become disoriented or confused. This is referred to as disequilibrium. As a result, the person is compelled to adjust or adapt their schema to accommodate the new information. When this is accomplished, the person returns to a state of equilibrium. In the situation mentioned above, the child has a mental picture of what a pencil is in her head, but the pen does not meet her expectations. The child is thrown into a state of disequilibrium as a result of this confusion. The child may need to revise her schema in order to include pens. She will then restore her equilibrium once she has completed the revision process.
For more information follow the link: https://brainly.com/question/30638795
#SPJ11
If 110 grams of potassium chloride are mixed with 100 grams of water at 20°C, how much will not dissolve?
76 grams of potassium chloride will not dissolve in 100 grams of water at 20°C.
What is the solubility of the potassium chloride?
The solubility of potassium chloride in water at 20°C is approximately 34 grams per 100 grams of water.
So, if 100 grams of water can dissolve 34 grams of potassium chloride, then the maximum amount of potassium chloride that can be dissolved in 100 grams of water at 20°C is 34 grams.
Therefore, the amount of potassium chloride that will not dissolve in 100 grams of water at 20°C is:
110 grams - 34 grams = 76 grams
Learn more about solubility here: https://brainly.com/question/23946616
#SPJ1
combining 50 ml of vinegar with 500 ml of milk causes the vinegar, which is an acid, to react with the milk. the milk sours and thickens, creating cottage cheese. what kind of change is this?
answer choices
chemical
mechanical
physical
potential
A chemical alteration has occurred. A new material, cottage cheese, with distinct qualities from the original milk and vinegar is produced when the acid in the vinegar and the proteins in the milk react.
The change described is a chemical change. When vinegar, which is an acid, is combined with milk, a reaction occurs between the acid and the proteins in the milk. This reaction causes the milk to sour and thickens, resulting in the formation of cottage cheese. This change cannot be easily reversed, and the resulting cottage cheese is a new substance with different properties than the original milk and vinegar. This is a chemical change because the molecules in the milk and vinegar are rearranged to form a new substance, which has different chemical and physical properties than the original substances. This process is different from a physical change, such as melting ice, which does not result in the formation of a new substance.
learn more about chemical alteration here:
https://brainly.com/question/29037431
#SPJ4
Predict the molecular shape for each of these compounds. Remember to consider all of the outer electrons before you make your choice.A. Tetrahedral- MethaneB. Trigonal Pyramidal- AmmoniaC. Trigonal Planar- Sulfur TrioxideD. Bent- Water, OzoneE. Linear- Carbon Dioxide
(a) Methane -the molecular shape is tetrahedral shape.
(b) Ammonia - the molecular shape is trigonal pyramidal.
(c) Sulfur trioxide - the molecular shape is trigonal planar shape.
(d) Water - the molecular shape is bent shape.
(e) Carbon dioxide - the molecular shape is a linear shape.
What is a molecular shape?Molecular shape refers to the three-dimensional arrangement of atoms in a molecule. It describes the relative positions of the atoms and the angles between the chemical bonds that connect them.
The shape of a molecule is determined by the arrangement of its electrons and the way in which the atoms share these electrons to form chemical bonds. The shape of a molecule can have a significant impact on its physical and chemical properties, such as its polarity, reactivity, and solubility.
Learn more about molecular shapes here: https://brainly.com/question/11985101
#SPJ1
what is the mechanism of action for the citrate synthase 2-part reaction? a. hydrolysis followed by condesation b. condensation followed by hydrolysis c. decarboxylation followed by hydrolysis d. decarboxylation followed by condensation
The mechanism of action for the citrate synthase 2-part reaction is decarboxylation followed by condensation.
This reaction is the first and the most critical reaction of the Krebs cycle, which is also called the tricarboxylic acid cycle or the citric acid cycle. The Krebs cycle is a series of enzymatic reactions that occur in the mitochondria of eukaryotic cells.
The Krebs cycle is critical in the metabolic process because it oxidizes the pyruvate generated during glycolysis, produces ATP and reduces coenzymes, and ultimately prepares substrates for the electron transport chain. It is a cyclic reaction consisting of eight steps, with citrate synthase catalyzing the first reaction.
The reaction mechanism of citrate synthase is as follows:
Citrate synthase catalyzes the conversion of acetyl CoA and oxaloacetate to citrate by a decarboxylation reaction followed by a condensation reaction. The decarboxylation reaction is the first step, in which acetyl-CoA loses its acetyl group in the form of carbon dioxide (CO2), producing the four-carbon compound oxaloacetate. This reaction is irreversible and is the rate-limiting step of the cycle. Citrate synthase then catalyzes the condensation reaction, in which the acetyl group of acetyl-CoA is added to the oxaloacetate molecule to form citrate, a six-carbon compound.The mechanism of action for the citrate synthase 2-part reaction is, therefore, decarboxylation followed by condensation.
To know more about decarboxylation click here:
https://brainly.com/question/29573197
#SPJ11
an exothermic chemical reaction between a solid and a liquid results in gaseous products. spontaneous?
An exothermic chemical reaction between a solid and a liquid results in gaseous products. It is a spontaneous reaction.
What is an exothermic reaction?When a chemical reaction takes place with the release of heat, it is known as an exothermic chemical reaction. An exothermic chemical reaction is a chemical reaction that releases energy in the form of heat, light, or sound during the process. The burning of paper is an example of an exothermic chemical reaction. When paper burns, heat and light are produced, which we can feel or observe.
The reaction is spontaneous if the Gibbs free energy, delta G is negative. A reaction will be spontaneous if its delta G is negative. The reaction will proceed from left to right if delta G is negative, and it will proceed from right to left if delta G is positive. A reaction will be at equilibrium if delta G is zero.The reaction mentioned in the question is an exothermic chemical reaction because it results in the release of heat. As a result, the reaction is spontaneous. The production of gaseous products indicates that a gas is formed during the reaction. Therefore, this reaction is spontaneous.
Learn more about Exothermic reaction here:
https://brainly.com/question/10373907
#SPJ11
11. C2 JUN 06 Q3
Classify the type of reaction occurring below.
CH₂CH₂CHCH₂OH
CH,
→CH₂CH₂C=CH₂ + H₂O
CH,
12.a) Draw the displayed formula, and name the ester formed when ethanoic acid reacts with propan-1-ol
in the presence of a suitable catalyst.
Name:
b) State the name of a suitable catalyst for this reaction.
[1]
24
...[2]
..[1]
Answer:
11.The type of reaction occurring is an elimination reaction.
12. a) The displayed formula and name of the ester formed when ethanoic acid reacts with propan-1-ol in the presence of a suitable catalyst are:
Displayed formula:
H H
│ │
H-C-C-OH + H-C-C-H → H-C-C-OC-C-H + H₂O
│ │
H CH₃
Name: Propan-1-yl ethanoate or propyl acetate
b) A suitable catalyst for this reaction is concentrated sulfuric acid (H₂SO₄).
The density of a gas is the mass per unit volume of the gas in the units of, for example, grams per litre. By finding the mass of one litre (assume 1.00L) of gas you can calculate the density of the gas. knowledge of the densities of the gas compared to the density of air (1.2 g/l), can save your life.
A) what is the density of carbon monoxide gas at 20C and 98 kPa in your home.
The density of carbon monoxide gas at 20°C and 98 kPa is 1.145 g/L.
The ideal gas law is PV = nRT
where P is the pressure, V is the volume, n is the number of moles of gas, R is the gas constant, and T is the temperature in kelvin.
To find the density of carbon monoxide gas at 20°C and 98 kPa, we can use the ideal gas law to find the number of moles of gas in 1 L of gas at these conditions and then divide the mass of 1 mole of gas by the number of moles to get the density.
First, we need to convert the temperature to kelvin:
20°C + 273.15 = 293.15 K
Rearranging the ideal gas law, we get:
n = PV/RT
We can assume that the volume is 1 L, so:
n = (98 kPa)(1 L) / [(0.0821 L·atm/mol·K)(293.15 K)] = 0.0413 mol
The molar mass of carbon monoxide is 28.01 g/mol, so the mass of 0.0413 mol is:
0.0413 mol x 28.01 g/mol = 1.152 g
Therefore, the density of carbon monoxide gas at 20°C and 98 kPa is:
1.152 g / 1 L = 1.145 g/L
What is density?
Density is a physical property of matter that relates to the amount of mass per unit of volume of a substance. It is typically expressed in units such as grams per cubic centimeter (g/cm³) or kilograms per cubic meter (kg/m³).
To know more about density, visit:
https://brainly.com/question/29775886
#SPJ1
Classify each titration curve as representing a strong acid titrated with a strong base, a strong base titrated with a strong acid, a weak acid titrated with a strong base, a weak basetaed with a strong acid, or a polyprotic acid titrated with a strong base. Strong acid/Strong base/ strong base Weak acid strong base Weak base Polyprotic acid strong acid strong acid strong base mL of titrant mL of titrant mL of titrant mL of titrant mL of titrant
When it comes to titration, a titration curve is the representation of the change in pH with regards to the volume of titrant added.
The point of equivalence is where the stoichiometric amount of titrant reacts completely with the analyte being titrated.
There are several types of titration curves. Below are the classifications of each titration curve:
Strong acid titrated with a strong base. The titration curve for this scenario starts out with a pH of around 3.0, which is the pH of a strong acid. The pH rises until the equivalence point is reached. The pH then drops steeply after the equivalence point.
Strong base titrated with a strong acid. In this titration curve, the pH starts off around .11, which is the pH of a strong base. The pH drops rapidly until the equivalence point is reached. The pH then rises steeply after the equivalence point.
Weak acid titrated with a strong base. In this titration curve, the pH starts off slightly acidic due to the presence of the weak acid. The pH rises gradually until the equivalence point is reached. The pH then increases steeply after the equivalence point.
Weak base titrated with a strong acid. The pH starts off slightly basic in this titration curve due to the weak base. The pH decreases gradually until the equivalence point is reached. The pH then drops steeply after the equivalence point.
Polyprotic acid titrated with a strong base. In this titration curve, there are more than one equivalence point because the acid is capable of releasing more than one hydrogen ion.
Each equivalence point represents the point at which one mole of H+ is neutralized.
For more information about titration curve refer here
https://brainly.com/question/29590776?
#SPJ11
How many moles of fe3o4 can be produced when 12. 00 mol fe react with 6. 00 mol o2?
When the 12. 00 mol Iron react with 6.00 mol O2 then 4.00 mol of Fe3O4 can be produced.
In order to know how many moles of Fe3O4 can be produced from the reaction of 12.00 mol Fe with 6.00 mol O2, we first need to get balance the chemical equation for the reaction:
4 Fe + 3 O2 -----> 2 Fe3O4
From the balanced equation, we can see that for every 4 moles of Fe that react, we need 3 moles of O2. Therefore, the limiting reactant in this case is O2, since we only have 6.00 mol available, while we need 8.00 mol to react with all 12.00 mol of Fe. This means that Fe will be in excess and we can calculate the amount of Fe3O4 produced based on the amount of O2 that reacts.
To do this, we can use the mole ratio from the balanced equation:
3 mol O2 --------> 2 mol Fe3O4
So, for every 3 moles of oxygen that react, we can produce 2 moles of Fe3O4. Since we have 6.00 mol of O2, we can obtain the moles of Fe3O4 produced as follows:
6.00 mol O2 x (2 mol Fe3O4 / 3 mol O2) = 4.00 mol Fe3O4
Therefore, it can be concluded that 4.00 mol of Fe3O4 can be produced when 12.00 mol Iron reacts with 6.00 mol O2.
Learn more Molarity :
https://brainly.com/question/15948514
#SPJ4
How many milliliters of 1.58 M HCl are needed to react completely with 23.2 g of NaHCO3 (= 84.02 g/mol)?
HCl(aq) + NaHCO3(s) ? NaCl(s) + H2O(l) + CO2(g)
a. 175 mL
b. 536 mL
c. 276 mL
d. 572 mL
e. 638 mL
c. 276 mL of 1.58 M HCl.
To answer this question, we need to use the mole ratio between the two reactants: 1 mole of HCl for every 1 mole of NaHCO3.
In this case, we need 23.2 g of NaHCO3, which is equal to 0.273 moles (23.2 g / 84.02 g/mol).
Since we need 1 mole of HCl for every 1 mole of NaHCO3, we can calculate the number of moles of HCl needed with the following equation: 0.273 moles of NaHCO3 x 1 mole HCl/1 mole NaHCO3 = 0.273 moles of HCl.
Now we can use the molarity of HCl (1.58 M) to calculate the volume of HCl needed. 1.58 M HCl x 0.273 moles HCl/1 L HCl = 0.433 L HCl, or 433 mL of HCl. Therefore, the correct answer is c. 276 mL of 1.58 M HCl.
To know more about mole ratio, refer here:
https://brainly.com/question/28997213#
#SPJ11
According to the following reaction, how many moles of hydrogen iodide will be formed upon the complete reaction of 0.283 moles of hydrogen gas with excess iodine?hydrogen (g) + iodine (s) → hydrogen iodide (g)
0.566 moles of hydrogen iodide will be formed upon the complete reaction of 0.283 moles of hydrogen gas with excess iodine.
To determine how many moles of hydrogen iodide will be formed, we need to use stoichiometry.
The balanced chemical equation for the given reaction is:-
H₂ (g) + I₂ (s) → 2HI (g)
From the balanced chemical equation, we know that 1 mole of hydrogen reacts with 1 mole of iodine to produce 2 moles of hydrogen iodide.
Since the number of moles of hydrogen is given as 0.283 moles, therefore, the number of moles of iodine required is also 0.283 moles.
Therefore, the number of moles of hydrogen iodide formed = 2 x 0.283 mol= 0.566 mol.
Learn more about moles:
https://brainly.com/question/15356425
#SPJ11
TRUE OR FALSE: THE LIMITING REAGENT CONTROLS A REACTION’S THEORETICAL YIELD, BUT A NUMBER OF SIDE REACTIONS MAY ALSO OCCUR, CAUSING THE ACTUAL YIELD TO VARY.
Answer:
True. The limiting reagent is the reactant that is completely consumed in a chemical reaction and limits the amount of product that can be formed. The theoretical yield is the maximum amount of product that can be obtained from the limiting reagent, assuming that the reaction goes to completion and no side reactions occur. However, in practice, it is common for side reactions to occur, which can reduce the actual yield of the product. Therefore, while the limiting reagent does control the theoretical yield of a reaction, the actual yield may vary due to the presence of side reactions or other factors that can affect the efficiency of the reaction.
Explanation:
Phosphorus reacts with oxygen to form diphosphorus 4P(s)+5O2(g)⟶2P2O5(s) How many grams of P2O5 are formed when 7.65 g of phosphorus reacts with excess oxygen? Show the unit analysis used for the calculation by placing the correct components into the unit-factor slots.
17.51 g of P2O5 is formed when 7.65 g of phosphorus reacts with excess oxygen. Unit analysis used for the calculation:
What is unit analysis?Unit analysis or dimensional analysis is a mathematical method to convert one unit to another unit. It is based on the idea of multiplying by a conversion factor, which is a fraction in which the same quantity is expressed in two different units.
Balanced equation: 4P(s)+5O2(g)⟶2P2O5(s)
Molar mass of P = 30.97 g/mol
Molar mass of P2O5 = 141.94 g/mol
Number of moles of P = given mass / molar mass
Number of moles of P = 7.65 g / 30.97 g/mol
Number of moles of P = 0.24674 mol
Number of moles of P2O5 = (number of moles of P) / (4 mol of P produces 2 mol of P2O5)
Number of moles of P2O5 = 0.24674 mol / 2Number of moles of P2O5 = 0.12337 mol
Mass of P2O5 = number of moles of P2O5 × molar mass of P2O5
Mass of P2O5 = 0.12337 mol × 141.94 g/mol
Mass of P2O5 = 17.51
Thus, 17.51 g of P2O5 is formed when 7.65 g of phosphorus reacts with excess oxygen.
To know more about unit analysis:
https://brainly.com/question/30637489
#SPJ11
How would the Rf of eugenol increase or decrease if you ran your TLC plate in 40% ethyl acetate in hexanes? a.The Rf value would increase. b. The Rf value would decrease.c. The Rf would remain the same.
Answer: B (The Rf value would decrease)
Explanation:
The Rf (retention factor) value is a ratio of the distance traveled by the compound to the distance traveled by the solvent front in thin-layer chromatography (TLC). The polarity of the solvent affects the Rf value of a compound.
In general, if a more polar solvent is used in TLC, the Rf value of a compound will decrease, and if a less polar solvent is used, the Rf value will increase.
In this case, using 40% ethyl acetate in hexanes means using a more polar solvent compared to a pure hexanes solvent. As eugenol is a moderately polar compound, the increased polarity of the solvent will likely result in a decrease in the Rf value.
Therefore, the correct answer is b. The Rf value would decrease.
a regular tetrahedron is a pyramid with four faces, each of which is an equilateral triangle. let $v$ be the volume of a regular tetrahedron whose sides each have length $1$. what is the exact value of $v^2$ ?
For the regular tetrahedron, the exact value of $v^2$ is $\frac{1}{144}$.
The regular tetrahedron is a pyramid with four faces, each of which is an equilateral triangle. Let $v$ be the volume of a regular tetrahedron whose sides each have length 1. A regular tetrahedron is a three-dimensional object with four triangular faces that are congruent. It has four vertices, six edges, and four faces that are equilateral triangles. Let us find the length of height of the tetrahedron using Pythagoras theorem.
$$Height^2=1^2-\left(\frac{1}{2}\right)^2$$
$$\Rightarrow Height^2=1-\frac{1}{4}$$
$$\Rightarrow Height=\frac{\sqrt3}{2}$$
Now, the volume of a tetrahedron is given as,
$$v=\frac{1}{3} \times Area_{base} \times Height$$T
he base of the tetrahedron is an equilateral triangle. We know that the area of an equilateral triangle with side $a$ is,
$$Area=\frac{\sqrt3}{4}a^2$$
For the given tetrahedron, the area of the base is,
$$Area_{base}=\frac{\sqrt3}{4} \times 1^2$$
$$\Rightarrow Area_{base}=\frac{\sqrt3}{4}$$
Now, the volume of the given tetrahedron is,
$$v=\frac{1}{3} \times \frac{\sqrt3}{4} \times \frac{\sqrt3}{2}$$
$$\Rightarrow v=\frac{\sqrt3}{12}$$
Thus, the square of the volume of the given tetrahedron is,
$$v^2=\left(\frac{\sqrt3}{12}\right)^2$$
$$\Rightarrow v^2=\frac{1}{144}$$
Therefore, the exact value of $v^2$ is $\frac{1}{144}$.
Learn more about Tetrahedron:
https://brainly.com/question/14493233
#SPJ11
. describe how to prepare 15 ml of a 0.25 m cacl2 solution using deionized water and cacl2 salt. the molecular weight of cacl2 is 110.98 g/mol. show your work. (recall: m
To prepare 15 ml of a 0.25 M CaCl₂ solution using deionized water and CaCl₂ salt, the following steps must be followed.
1. Calculate the amount of CaCl₂ salt needed:
Moles = Molarity * Volume (L)
Moles = 0.25M x 0.015L = 0.003750 moles
Mass of CaCl₂ salt = 0.003750 x 110.98 g/mol = 0.41637 g
2. Measure out 0.41637 g of CaCl₂ salt and add it to a clean beaker.
3. Measure out 15 ml of deionized water and add it to the beaker with the CaCl₂ salt.
4. Stir the mixture until the CaCl₂ salt has fully dissolved.
5. The solution is now ready to use.
It is important to remember to use caution when handling and measuring the chemicals and to always wear safety goggles and gloves when working with chemicals.
To know more about CaCl₂ solution, refer here:
https://brainly.com/question/28950352#
#SPJ11
please help and give an explanation i don’t get it
The mass (in grams) of water, H₂O produced from 6.00 moles of hydrogen gas, H₂, is 108 g (last option)
How do i determine the mass of water produced?We'll begin by obtaining the mole of water produced from the reaction. Details below:
2H₂(g) + O₂ -> 2H₂O
From the balanced equation above,
2 moles of H₂ reacted to produce 2 moles of H₂O
Therefore,
6 moles of H₂ will also react to produce 6 moles of H₂O
Finally, we shall determine the mass of water, H₂O produced. Details below:
Molar mass of water, H₂O = 18 g/mol Mole of water, H₂O = 6 molesMass of water, H₂O = ?Mole = mass / molar mass
6 = Mass of water, H₂O / 16
Cross multiply
Mass of water, H₂O = 6 × 18
Mass of water, H₂O = 108 g (last option)
Learn more about mass produced:
https://brainly.com/question/9526265
#SPJ1
students conducting research observe the rate of an enzyme-catalyzed reaction under various conditions with a fixed amount of enzyme in each sample. when will increasing the substrate concentration likely result in the greatest increase in the reaction rate?
Increasing the substrate concentration will likely result in the greatest increase in the reaction rate when the substrate concentration is lower than the concentration of the enzyme.
The concentration of the substrate affects the rate of reaction since there is a direct correlation between the number of enzyme-substrate complexes that are formed and the rate of reaction.
When there is more substrate, more enzyme-substrate complexes can form, resulting in an increase in the rate of reaction.
So, it is highly likely that when the substrate concentration is low, increasing the substrate concentration will result in the greatest increase in the reaction rate.
However, when the substrate concentration is already high, the reaction rate may not continue to increase as a result of increasing the substrate concentration.
Learn more about substrate concentration here:
https://brainly.com/question/22428921
#SPJ11
which scientist conducted the gold foil experiment and discovered that the atom has a positively charged nucleus?
Ernest Rutherford, a New Zealand physicist, conducted the gold foil experiment and discovered that the atom has a positively charged nucleus.
In 1911, he conducted an experiment in which he fired alpha particles at a thin sheet of gold foil. The majority of the particles went straight through the gold foil, but a small percentage of the particles bounced back. He discovered that the bouncing back was caused by a small, positively charged nucleus at the center of the atom. Rutherford's experiment was crucial to our understanding of the structure of the atom. Prior to his experiment, the prevailing model of the atom was that it was a solid, indivisible sphere.
However, Rutherford's experiment showed that the atom was mostly empty space, with a positively charged nucleus at its center. This discovery paved the way for future research into atomic structure and helped to lay the foundation for the development of nuclear physics.
For more questions on Ernest Rutherford
https://brainly.com/question/28809146
#SPJ11
what relative masses of dimethyl amine and dimethyl ammonium chloride do you need to prepare a buffer solution of ph = 10.54?
To prepare a buffer solution of pH = 10.54, the relative masses of dimethyl amine and dimethyl ammonium chloride needed are 0.079 g and 0.067 g respectively.
A buffer solution is a solution that has the ability to resist changes in pH upon the addition of small amounts of acid or base. A buffer solution contains a weak acid and its conjugate base or a weak base and its conjugate acid. It can be prepared by mixing equal volumes of a weak acid and its conjugate base or a weak base and its conjugate acid.
Dimethyl amine is an organic compound with the formula (CH3)2NH. It is a weak base and can act as a proton acceptor. Dimethyl ammonium chloride is an organic compound with the formula (CH3)2NH2Cl. It is a salt of a weak base and a strong acid and can act as a proton donor.
Calculation of relative masses:
The pKa of dimethyl amine is 10.73.
To prepare a buffer solution of pH = 10.54,
the ratio of [A-]/[HA] should be 1/9.
Using the Henderson-Hasselbalch equation;
pH = pKa + log([A-]/[HA])10.54 = 10.73 + log([A-]/[HA])
log([A-]/[HA]) = -0.19[A-]/[HA] = 0.67/1.00
The sum of the masses of dimethyl amine and dimethyl ammonium chloride is 0.146 g. The ratio of their masses is 0.67:1.00.
So, the relative masses of dimethyl amine and dimethyl ammonium chloride needed are 0.079 g and 0.067 g respectively.
To know more about Buffer solution refer here :
https://brainly.com/question/13076037
#SPJ11
which of these interactions might form between two polar molecules? [select all that apply.] group of answer choices hydrogen bonding dispersion forces dipole-dipole interactions
The following interactions might form between two polar molecules Hydrogen bonding Dipole-dipole interactions.
Hydrogen bonding is a type of attractive interaction that forms between a hydrogen atom and a highly electronegative atom (such as nitrogen, oxygen, or fluorine) on another molecule. As a result, two polar molecules can form hydrogen bonds. Dipole-dipole interactions occur between polar molecules when the positive end of one molecule is attracted to the negative end of another molecule. Hence, dipole-dipole interactions can also form between two polar molecules. Dispersion forces occur in all types of molecules, but they are not unique to polar molecules. Therefore, dispersion forces cannot form between two polar molecules. Conclusively, hydrogen bonding and dipole-dipole interactions are the interactions that might form between two polar molecules.
Know more about polar molecules
https://brainly.com/question/1433127
#SPJ11
during the synthesis of salicylic acid, methanol and sodium sulfate are given off as byproducts of the reactions. during which steps of the synthesis are these compounds separated from the final product? explain.
During the synthesis of salicylic acid, methanol and sodium sulfate are given off as byproducts of the reactions. To separate these compounds from the final product, distillation is typically used.
During the distillation process, the boiling point of the desired product (salicylic acid) is different from the boiling points of the unwanted compounds (methanol and sodium sulfate). The distillation process vaporizes and separates the components, allowing the desired compound (salicylic acid) to be collected. Methanol and sodium sulfate are two byproducts of salicylic acid synthesis. Methanol is used as a solvent for salicylic acid, and sodium sulfate is used as a drying agent to extract the water from the product after the acid has been synthesized.
Salicylic acid is less soluble in methanol than in water, so it can be separated from the solution by filtration. The solution is then washed with water to remove any remaining traces of methanol. The filtrate containing the methanol and sodium sulfate is collected in a separate container.
Therefore , Methanol can be recovered by distillation .Hence these compounds separate from the final product by distillation .
To know more about Distillation refer here:
https://brainly.com/question/29416097
#SPJ11
what is the difference in the various bohr radii rn for the hydrogen atom, where n is the principle quantum number, a. between r1 and r2? b. between r5 and r2? c. between r5 and r6? d. between r10 and r11?
The principle quantum number (n) of an electron in an atom determines the size of its associated Bohr radius. Specifically, the Bohr radius is inversely proportional to n, meaning the higher the n, the smaller the Bohr radius. Therefore, the difference between Bohr radii will increase with increasing n.
a. Between r1 and r2: The difference between r1 and r2 is that r2 is half the size of r1, as n has increased from 1 to 2.
b. Between r5 and r2: The difference between r5 and r2 is that r5 is a fifth of the size of r2, as n has increased from 2 to 5.
c. Between r5 and r6: The difference between r5 and r6 is that r6 is a sixth of the size of r5, as n has increased from 5 to 6.
d. Between r10 and r11: The difference between r10 and r11 is that r11 is an eleventh of the size of r10, as n has increased from 10 to 11.
a. The difference between r1 and r2 is calculated by substituting n = 1 and n = 2 respectively into the expression for the Bohr radius.
b. The difference between r5 and r2 is calculated by substituting n = 2 and n = 5 respectively into the expression for the Bohr radius.
c. The difference between r5 and r6 is calculated by substituting n = 5 and n = 6 respectively into the expression for the Bohr radius.
d. The difference between r10 and r11 is calculated by substituting n = 10 and n = 11 respectively into the expression for the Bohr radius.
The Bohr radius is given by the expression r = n2ℏ2me4πϵ0 where n is the principal quantum number, ℏ is the reduced Planck constant, me is the mass of the electron, π is the mathematical constant pi, and ϵ0 is the vacuum permittivity.
We can use this expression to calculate the Bohr radius for different values of n, and then calculate the differences between the Bohr radii for different values of n.
For example, the difference between r1 and r2 is given byr2 - r1 = 22ℏ2me4πϵ0 - 12ℏ2me4πϵ0= 4ℏ2me4πϵ0
Similarly, the difference between r5 and r2 is given byr5 - r2 = 52ℏ2me4πϵ0 - 22ℏ2me4πϵ0= 21ℏ2me4πϵ0
The differences between r5 and r6, and between r10 and r11 can be calculated in the same way.
For more information follow the link: https://brainly.com/question/14333424
#SPJ11
a sample of helium gas has a volume of 620. ml at a temperature of 500. k. if we decrease the temperature to 100. k while keeping the pressure constant, what will the new volume be?
The new volume of the helium gas sample will be 124 ml. This is due to the fact that when the temperature decreases while the pressure remains constant, the volume of a gas will increase.
According to Charles’s law, the volume of a given gas at a constant pressure is directly proportional to its absolute temperature. Therefore, a decrease in temperature, while holding constant the pressure of the helium gas, would result in a decrease in volume.
A constant pressure is the one under which the pressure of a substance remains unchanged as the temperature and/or volume of the substance change. Charles's law may be used to explain the properties of gases, particularly with constant pressure since it states that the volume of a given mass of a gas is directly proportional to its absolute temperature, provided that its pressure remains constant. It's written as:V1/T1 = V2/T2; whereV1 = 620 ml; T1 = 500K; T2 = 100KLet's put the values in the formula given above. The [tex][tex]620/T1 = V2/100V2 = 62,000/500V2 = 124 ml[/tex].[/tex]Therefore, the new volume of helium gas at a temperature of 100K would be 124 ml.
Read more about the volume :
https://brainly.com/question/463363
#SPJ11
2Na + 2H2O → 2NaOH + H2
What is the total number of moles of hydrogen produced when 4 moles of sodium react completely?
A. 1 B. 2 C. 3 D. 4
When 4 moles of sodium fully react, 2 moles of hydrogen are produced as a whole. The right answer is B.
The balanced equation for the reaction between sodium and water is 2Na + 2H2O → 2NaOH + H2. This equation shows that 2 moles of sodium react with 2 moles of water to produce 1 mole of hydrogen gas.
If 4 moles of sodium react completely, we can calculate the amount of hydrogen produced by using stoichiometry. Since 2 moles of sodium produce 1 mole of hydrogen, 4 moles of sodium will produce 2 moles of hydrogen (4 moles Na x 1 mole H2 / 2 moles Na = 2 moles H2).
Therefore, the total number of moles of hydrogen produced when 4 moles of sodium react completely is 2 moles. The correct answer is B.
To learn more about sodium refer to:
brainly.com/question/29327783
#SPJ4
PLEASE HELP ASAP!!!!!
The option that has the correct electron configuration for vanadium is:
A. 1[tex]s^{2}[/tex] 2[tex]s^{2}[/tex] 2[tex]p^{4}[/tex] 3[tex]s^{2}[/tex] 3[tex]p^{6}[/tex] 4[tex]s^{2}[/tex] 3[tex]d^{5}[/tex]
The electron configuration for vanadium (V) is:
1[tex]s^{2}[/tex] 2[tex]s^{2}[/tex] 2[tex]p^{6}[/tex] 3[tex]s^{2}[/tex] 3[tex]p^{6}[/tex] 4[tex]s^{2}[/tex] 3[tex]d^{3}[/tex]
For only the 3d sublevel, the configuration would be 3d3.
So, the option that has the correct electron configuration for vanadium is:
A. 1[tex]s^{2}[/tex] 2[tex]s^{2}[/tex] 2[tex]p^{4}[/tex] 3[tex]s^{2}[/tex] 3[tex]p^{6}[/tex] 4[tex]s^{2}[/tex] 3[tex]d^{5}[/tex]
What is an electron?
An electron is a subatomic particle that carries a negative electric charge. It is one of the fundamental particles that make up atoms, along with protons and neutrons. Electrons are found outside the nucleus of an atom in regions called shells or energy levels, and they are responsible for chemical bonding and the conduction of electricity.
What is vanadium?
Vanadium is a chemical element with the symbol V and atomic number 23. It is a hard, silvery-grey, ductile, and malleable transition metal that is found in various minerals and mineral ores. Vanadium has several important industrial uses, including as an alloying agent in steel and as a catalyst in the production of sulfuric acid. It is also used in the production of titanium alloys for aerospace and other high-performance applications, as well as in the manufacture of rechargeable batteries. Vanadium has biological functions in some organisms and is considered an essential trace element in the human diet.
To know more about vanadium, visit:
https://brainly.com/question/14247240
#SPJ1
oxalic acid, which is present in rhubarb, was found to consist of 26.68% c, 2.24% h, and 71.08% o by mass. find the empirical formula for oxalic acid.
The empirical formula for oxalic acid is C2H2O2.
Oxalic acid, which is present in rhubarb, was found to consist of 26.68% C, 2.24% H, and 71.08% O by mass.
What is the empirical formula for oxalic acid?Empirical formula is the simplest formula that represents the composition of a compound in terms of atoms, and it can be obtained by calculating the ratio of atoms of each element in the compound.
The empirical formula of oxalic acid can be found by assuming 100 g of the compound so that the mass percent can be expressed as grams of each element. In the next step, these grams will be converted into moles for each element using their molar mass. The empirical formula will then be the ratio of atoms for each element in the compound.
Let's find out the number of moles of each element in oxalic acid.
C = 26.68 g = 26.68 / 12.01 = 2.22 molH = 2.24 g = 2.24 / 1.01 = 2.22 molO = 71.08 g = 71.08 / 16.00 = 4.44 mol
As the atomic ratios are the same for all three elements, the empirical formula is C2H2O2, and this formula is also called the simplest formula for oxalic acid. The empirical formula for oxalic acid is C2H2O2.
Learn more about acids: https://brainly.com/question/25148363
#SPJ11