The standard enthalpy of formation of TiCl₄ (I) is -750kJ mol ⁻¹. The correct answer for the given reaction of Titanium tetrachloride is thus option C.
What is standard enthalpy of formation?The standard enthalpy of formation (ΔH°f) is the modification in enthalpy that happens when one mole of a substance is formed from its component elements in their standard states under standard conditions of temperature and pressure (298 K and 1 atm pressure).
To determine the standard enthalpy of formation for TiCl₄ (I), we need to use Hess's law and combine the given reactions in a way that cancels out all the other reactants and leaves only TiCl₄ (I) as the product. We can achieve this by reversing the first equation and adding it to the second and third equations:
Ti(s) + 2Cl₂(g) + 2CO₂(g) → TiCl₄ (l) + 2CO₂(g) + 2Cl₂(g) ∆H = +232 kJ mol⁻¹
Ti(s) + O₂(g) → TiO₂(s) = −912 kJ mol⁻¹
C(s) + O₂(g) → CO₂(g) = −394 kJ mol⁻¹
Now, we can cancel out the CO₂(g) and Cl₂(g) on both sides and simplify the equation to:
Ti(s) + 2Cl₂(g) + C(s) → TiCl₄ (I) ∆H = +232 kJ mol⁻¹ - 2(-394 kJ mol⁻¹) - 912 kJ mol⁻¹ = -750 kJ mol⁻¹
Therefore, the correct value for the standard enthalpy of formation for TiCl₄ (I) is -750 kJ mol⁻¹.
To find out more about standard enthalpy of formation, visit:
https://brainly.com/question/30264187
#SPJ1
How many atoms are in 0.75mol of H2O
There are approximately 4.5 x 10^23 atoms in 0.75 mol of H2O.
Or 4,500,000,000,000,000,000,000.
when flour is mixed with water, an elastic network forms as gliadin and glutenin combine, and this is known as _____. it is both elastic and plastic and can expand with the inner pressure of gases (air, steam, and co2), allowing the bread to expand with the action of yeast.
When flour is mixed with water, an elastic network forms as gliadin and glutenin combine, and this is known as gluten. It is both elastic and plastic and can expand with the inner pressure of gases (air, steam, and co2), allowing the bread to expand with the action of yeast.
Gluten is a mixture of two proteins, gliadin and glutenin, which gives wheat dough its elastic and viscoelastic properties. When flour is mixed with water, the gluten forms an elastic network that can expand with the inner pressure of gases (air, steam, and CO2). This allows bread to rise with the action of yeast, making it light and fluffy. Gluten is also responsible for the chewy texture of bread and other baked goods that use wheat flour.
Gluten is found in wheat, barley, and rye. People with celiac disease or gluten intolerance are unable to digest gluten, and consuming it can cause a range of symptoms, including diarrhea, bloating, and abdominal pain. As a result, they must follow a gluten-free diet. Gluten-free flours made from rice, corn, and other grains can be used as a substitute for wheat flour in many recipes.
Learn more about celiac disease here: https://brainly.com/question/16779711
#SPJ11
What 4 elements have many properties like iron?
Answer:
Cobalt, Nickel, Chromium, and Copper
Dinitrogen and dihydrogen react with each other to produce ammonia according to the following chemical equation:N2gdinitrogen+ 3H2gdihydrogen→2NH3gammonia(i) calculate the mass of ammonia produced if 2.00 × 103 g dinitrogen reacts with 1.00 × 103 g of dihydrogen.(ii) will any of the two reactants remain unreacted? if yes which one ?(iii) what would be its mass?
(i).The mass of ammonia produced is 2.43 x 10^3 g. (ii) The 71.4 moles of dinitrogen react with 214.2 moles of dihydrogen to produce 142.8 moles of ammonia. (iii) Mass of ammonia produced in given reaction with 1 gram of dinitrogen and 3 grams of dihydrogen is 1.22 g.
Using the given masses of dinitrogen and dihydrogen, we can calculate moles of each:
dinitrogen = mass/molar mass = 2.00 x 10^3 g/28 g/mol = 71.4 mol,
dihydrogen = mass/molar mass = 1.00 x 10^3 g/2 g/mol = 500 mol
The mass of ammonia produced can be calculated as:
[tex]Mass of ammonia = moles * molar mass = 142.8 mol * 17 g/mol = 2.43 * 10^{3 }g[/tex]
Therefore, the mass of ammonia produced is 2.43 x 10^3 g.
We can calculate the mass of ammonia produced using the equation:
[tex]mass = number of moles * molar mass = 2 * 0.0356 * 17.03 = 1.22 g[/tex]
To know more about dinitrogen, here
brainly.com/question/9909261
#SPJ4
2. For each of the reactions below, write a structural reaction equation (which need not be balanced) by
drawing the structures of the reactant & product and name the product formed.
a) ethanol + K,Cr₂O, / H / reflux
b) ethanol + K₂Cr₂O, / H / distil
c) propan-1-ol + K,Cr₂O,/H. / reflux
d) propan-2-ol + K,Cr,O,/ H / reflux
e) 3-methylbutan-1-ol + K,Cr₂O, / H / reflux
f) 4-chloropentan-1-ol + K₂Cr₂O,/ H / distil
Answer:
a) Ethanol + K2Cr2O7 / H+ / Reflux → Acetaldehyde
CH3CH2OH + [O] → CH3CHO
b) Ethanol + K2Cr2O7 / H+ / Distil → Ethene
CH3CH2OH + [O] → CH2=CH2 + H2O
c) Propan-1-ol + K2Cr2O7 / H+ / Reflux → Propanal
CH3CH2CH2OH + [O] → CH3CH2CHO
d) Propan-2-ol + K2Cr2O7 / H+ / Reflux → Propanone (acetone)
(CH3)2CHOH + [O] → (CH3)2CO
e) 3-Methylbutan-1-ol + K2Cr2O7 / H+ / Reflux → 3-Methylbutanal
CH3CH(CH3)CH2CH2OH + [O] → CH3CH(CH3)CH2CHO
f) 4-Chloropentan-1-ol + K2Cr2O7 / H+ / Distil → 4-Chloropentanal
Cl(CH2)3CH2CH(OH)CH3 + [O] → Cl(CH2)3CH2CH=O + H2O
(please could you kindly mark my answer as brainliest)
rank the relative rates of the alkyl halides in an sn1 reaction.H3C-1 CH3 CH3 CH₂ H₂C Fastest SN 1 reaction Slowest SN 1 reaction Answer Bank CH3 H3C. CH3 H3C. H₂C₂ CH3 CH3
The relative rates of alkyl halides from fastest sn 1 to slowest sn1 mechanism is CH3 H3C. CH3 H3C. H₂C₂ CH3 CH3.
Alkyl halides can go through one of two different sorts of significant reactions: substitution or elimination.
Nucleophilic Substitution reaction occurs when the halogen at the alpha-carbon is replaced by a nucleophile after the electrophilic alkyl halide forms a new bond with it.
The SN1 reaction mechanism proceeds step-by-step, starting with the formation of the carbocation through the elimination of the leaving group. The nucleophile then attacks the carbocation. Ultimately, the protonated nucleophile is deprotonated to produce the desired product.
Alkenes are formed by the E1 mechanism while substitution products are produced by the Sn1 process.
The rate law in an SN1 reaction is first order. In other words, the concentration of just one component—the alkyl halide—determines the reaction rate.
To know about mechanism
https://brainly.com/question/27921705
#SPJ4
The pH in the intermembrane space of the mitochondria should be_____ compared to the matrix due to the
A. higher; higher concentration of protons in the intermembrane space B. higher; lower concentration of protons in the intermembrane space C. lower; higher concentration of protons in the intermembrane space
D. lower; lower concentration of protons in the intermembrane space
The pH in the intermembrane space of the mitochondria should be lower compared to the matrix due to the C. higher concentration of protons in the intermembrane space.
What is a Mitochondria?Mitochondria are organelles found in eukaryotic cells that play a vital role in producing the energy required to sustain cellular activity. Mitochondria produce energy from food and oxygen, which they use to generate ATP, the primary source of cellular energy.
The intermembrane space (IMS) is the region between the mitochondrial inner and outer membranes. The pH of the intermembrane space is significantly lower than that of the matrix due to the higher concentration of protons in the intermembrane space.
The pH gradient of the mitochondria enables the generation of ATP from ADP and Pi by ATP synthase, which pumps protons from the intermembrane space to the matrix, making the pH gradient a source of energy. The proton gradient generated by ATP synthase is used for ATP synthesis. Therefore, the pH in the intermembrane space of mitochondria should be lower compared to the matrix due to the higher concentration of protons in the intermembrane space.
To know more about mitochondria:
https://brainly.com/question/29763308
#SPJ11
4. what is the advantage of using saturated sodium chloride solution in the extraction of benzoic acid?
The advantage of using saturated sodium chloride solution in the extraction of benzoic acid is that it helps to separate benzoic acid from other components in a solution due to its high solubility.
Extraction refers to the process of separating a particular compound from a mixture using a solvent. It's used to purify compounds, remove impurities, or separate two different compounds.
Benzoic acid is a white crystalline solid that can be extracted from benzoin or benzene, and it has a range of applications.
Sodium chloride is a common reagent used in the extraction of benzoic acid.
The isotonic nature makes it useful as a reagent for the separation of organic and aqueous layers. It causes the organic phase to separate easily:
Thus, overall, the use of saturated sodium chloride solution can help to improve the efficiency of the extraction process, allowing for better separation of the organic compound from the aqueous layer.
Learn more about the extraction of benzoic acid here:
brainly.com/question/28692026
#SPJ11
Will the following reaction result in a precipitate? If so, identify the precipitate.K3PO4 + Cr(NO3)+ 3 KNO3 + CrPO4A. No, a precipitate will not formB. Yes, CrPO4 will precipitateC. Yes, KNO3 will precipitate
Answer: B. Yes, CrPO4 will precipitate. In the given reaction: K3PO4 + Cr(NO3)3 → 3 KNO3 + CrPO4A precipitate is formed when two aqueous solutions are mixed that resulting in the formation of an insoluble compound.
The insoluble compound is called a precipitate. In the given reaction, K3PO4 and Cr(NO3)3 are the reactants. On mixing the two reactants, we can see that there are no common ions present in the reactants that could result in the formation of an insoluble compound. So, no precipitate is formed.
Based on solubility rules, CrPO4 is an insoluble compound. When K3PO4 reacts with Cr(NO3)3, it forms CrPO4. So, the precipitate that is formed is CrPO4. Hence, the correct option is B. Yes, CrPO4 will precipitate.
Read more about the topic of precipitation:
https://brainly.com/question/13877944
#SPJ11
If the reaction quotient (Q) is smaller than the equilibrium constant (K) for a reaction then which way will the reaction proceed? a. The reaction is at equilibrium and the reaction will proceed at equal rates in the reverse and forward direction. b. The reaction will proceed to the right (products side) c. The reaction equation is required to answer this question d. The reaction will proceed to the left( reactants side)
If the reaction quotient (Q) is smaller than the equilibrium constant (K) for a reaction, then the reaction will proceed towards the right, i.e., in the direction of the products. The correct option is (b).
This is because the forward reaction is favored over the reverse reaction as there is less number of products present, and the system tends to minimize the stress caused by an increase in the number of reactants. Here, stress refers to the difference between Q and K.
In other words, if Q < K, then the system has less number of products than it should at equilibrium. Hence, the reaction proceeds in the forward direction to increase the number of products until Q = K. After this point, the reaction reaches equilibrium, and the rates of the forward and reverse reactions become equal.
In contrast, if Q > K, then the system has more products than it should be at equilibrium. Hence, the reaction proceeds in the reverse direction to decrease the number of products until Q = K. After this point, the reaction reaches equilibrium, and the rates of the forward and reverse reactions become equal.
Therefore, option (b) is the correct answer. The reaction will proceed to the right (product side) if Q is smaller than K.
To know more about equilibrium constant, refer here:
https://brainly.com/question/15118952#
#SPJ11
nonenzymatic e1 reactions can often result in a mixture of more than one alkene product. elimination of 'hx' from the following starting compound, for example, could yield three different possible alkene products, true or false?
The given statement is true that nonenzymatic E1 reactions can often result in a mixture of more than one alkene product. This is due to the presence of different possible elimination products.
Nonenzymatic E1 reactions: E1 is a chemical reaction mechanism that includes the elimination of a leaving group (such as HX) from an organic molecule to create a double bond or alkene. This is a two-step process in which the first step is the formation of a carbocation intermediate.The nonenzymatic E1 reactions can often result in a mixture of more than one alkene product because the carbocation intermediate that forms can be attacked by nucleophiles in various directions, leading to the formation of different elimination products. The regiochemistry of the reaction is determined by the most stable carbocation intermediate formed from the initial step of the reaction.In this case, elimination of HX from the given starting compound can yield three different possible alkene products due to the presence of three different hydrogen atoms that can eliminate. Hence, the given statement is true.Learn more about E1 reactions: https://brainly.com/question/30887510
#SPJ11
Whats the difference between zinc amino acid chelate with any other type of zincs?
Answer:
chelated zinc is more easily absorbed than zinc on it's own.
What is the type of mixture whose components are evenly distributed throughout?
The type of mixture whose components are evenly distributed throughout is a homogeneous mixture.
A homogeneous mixture is a mixture in which the components are uniformly distributed throughout. The mixture appears to be the same throughout, and it has the same physical and chemical properties throughout. The composition of the components of a homogeneous mixture is uniform. An example of a homogeneous mixture is a solution of sugar and water. Sugar dissolves in water to form a homogeneous mixture. Another example is salt and water. Salt dissolves in water to form a homogeneous mixture.
However, These are the kinds of combinations where the ingredients are evenly dispersed throughout. In other words, "they are consistent throughout. In a homogenous mixture, we can only see one phase of the substance and components are evenly distributed throughout .
To know more about Homogenous mixture please visit:
https://brainly.com/question/20956879
#SPJ11
In the pictured cell, the side containing zinc is the_________ and the side containing copper is the __________. The purpose of the Na2SO4 is to _________
In the pictured cell, the side containing zinc is the anode and the side containing copper is the cathode. The purpose of the Na2SO4 is to facilitate the transfer of electrons from the anode to the cathode.
A cell is a unit of life that is the smallest and most simple living organism, it can be classified as a complete organism, with all of the components that make up a living being, including DNA, membranes, and organelles. A voltaic cell is a device that converts chemical energy into electrical energy, it is also known as a galvanic cell or a Daniell cell. It is made up of two different metals that are submerged in an electrolyte solution that enables the transfer of electrons from one electrode to the other. The anode is the electrode that oxidizes and loses electrons during a redox reaction, this electrode is negatively charged, as it is the site of the oxidation reaction that releases electrons and generates an electrical current.
A cathode is an electrode that is reduced and gains electrons in a redox reaction, this electrode is positively charged and acts as a sink for electrons, absorbing them and using them to create a reduction reaction that generates an electrical current. The Na2SO4 in the pictured cell is an electrolyte solution that facilitates the transfer of electrons from the anode to the cathode. The salt dissociates into Na+ and SO42- ions, which then migrate toward the anode and cathode, respectively, where they can participate in redox reactions that generate an electrical current. This flow of ions helps to maintain a balance of charge in the cell and enables the transfer of electrons to occur more efficiently.
Learn more about anode at:
https://brainly.com/question/17109743
#SPJ11
describe the chemistry of biurets reagent, explaining how it works and, specifically, why you used absorbance of 550 nm to quantify protein concentration.
Biurets reagent is a solution of potassium hydroxide and copper sulfate used to measure the concentration of proteins. The reagent works by breaking down peptide bonds and creating a pink or purple solution when proteins are present. The absorbance of 550 nm is used to quantify the protein concentration because it is the wavelength that best corresponds to the color change of the solution.
Biurets reagent is a solution containing copper sulfate, sodium hydroxide, and potassium sodium tartrate. The copper ions in the biuret reagent combine with the peptide bonds present in proteins, forming a violet-colored complex. The intensity of the violet coloration is proportional to the concentration of proteins in the sample being analyzed. Absorbance at 550 nm is used to quantify protein concentration because this is the wavelength at which the violet color produced by the copper ion-peptide bond complex has maximum absorbance. By measuring the absorbance at this wavelength, the concentration of the protein in the sample can be determined through a standard curve that relates the absorbance values to known protein concentrations. The biuret test is commonly used to determine protein concentration in a variety of biological and chemical samples. The test is widely used because it is relatively simple and can be performed quickly. The biuret test is often used in combination with other analytical techniques to obtain more detailed information about protein samples.
For more information follow the link: https://brainly.com/question/4596250
#SPJ11
which area on the illustration represents the largest reservoir of nitrogen on earth? 7 3 1 4
The atmosphere, which is represented by Area 1, is the main source of nitrogen on Earth. About 78% of the Earth's atmosphere is made up of nitrogen gas (N2), which is essential to numerous industrial and biological processes.
Sadly, I am unable to give a precise response without access to the question's referenced illustration. I can, however, give some general knowledge about the nitrogen cycle and the various nitrogen reserves on Earth.
The environment contains nitrogen, an element that is necessary for life, in a variety of forms, including nitrogen gas (N2), ammonia (NH3), nitrite (NO2), nitrate (NO3-), and organic nitrogen. A number of biological and chemical mechanisms are used in the nitrogen cycle to change nitrogen's form and transfer it through various reservoirs.
The atmosphere, which contains around 78% nitrogen gas, is the planet's biggest source of nitrogen. Unfortunately, most organisms cannot access atmospheric nitrogen directly; instead, it must be transformed into a useful form through nitrogen fixation. Nitrogen fixation is the process of converting atmospheric nitrogen into ammonia or other organic nitrogen compounds, which can be taken up by plants and other organisms.
learn more about nitrogen gas here:
https://brainly.com/question/11426882
#SPJ4
what is the molarity of a calcium carbonate solution if 2.00 moles of calcium carbonate are dissolved in 125 ml of water?
Answer:
To calculate the molarity of a calcium carbonate (CaCO3) solution, we first need to convert the volume of water from milliliters (mL) to liters (L).
Volume of water = 125 mL = 0.125 L
Next, we need to use the number of moles of CaCO3 and the volume of water to calculate the molarity:
Molarity = number of moles / volume of solution
Molarity = 2.00 mol / 0.125 L
Molarity = 16.0 M
Therefore, the molarity of the calcium carbonate solution is 16.0 M. However, it's important to note that this concentration is not physically possible as the solubility of calcium carbonate in water is relatively low. Therefore, it's likely that the amount of calcium carbonate that actually dissolves in 125 mL of water is much less than 2.00 moles, making the actual molarity much lower.
(Please could you kindly mark my answer as brainliest)
Iron nail wrapped with copper wire Determine the standard reduction potential of the cathode half-reaction, the standard reduction potential of the anode half-reaction, and the standard potential of the cell. E°cathode ____
(V) E° anode ___ (V) E° cell ___ (V)
The standard reduction potential of the cathode half-reaction is -0.36V,
The standard reduction potential of the anode half-reaction is +0.34V,
and the standard potential of the cell is -0.02V.
The cathode half-reaction is the reduction of iron (Fe²⁺) to iron (Fe):
Fe²⁺ + 2e⁻ -> Fe; E°cathode = -0.36V.
The anode half-reaction is the oxidation of copper (Cu) to copper (Cu²⁺):
Cu -> Cu²⁺ + 2e⁻; E°anode = +0.34V.
The standard potential of the cell is determined by subtracting the standard reduction potential of the anode from the standard reduction potential of the cathode:
E°cell = E°cathode - E°anode
= -0.36V - (+0.34V)
= -0.02V.
Learn more about the standard potential of the cell here:
https://brainly.com/question/19036092
#SPJ11
please answer that,
Each of the functions in column A will be performed by their respective hormones. Each of the hormones in the human body has a different function.
What is a hormone?A hormone is a chemical substance that is produced by a gland or a group of cells and is transported by the bloodstream to target cells or organs in the body. They are produced by endocrine glands.
To answer your question:
1. Needed by the body tor water reabsorption - Parathormone2. Needed by the body to increase blood calcium level - Calcitonin3 . Needed by the body to increase one's height - Somatotropin4. Needed by the body to combat insomnia - Endorphin5 . Needed by the body to shield the body from UV rays - Melanocyte SH6 . Needed by the body for proper metabolism - Thyroxine7 . Needed by the body to reduce physical pain or injury - Endorphin8 . Needed by the body to reduce symptoms of stress - Melatonin9 . Needed by the body to develop boy's sex characteristics - Androgen1 0 . Needed by the body to lower blood sugar level - Glucagon
To know more about hormones, visit:
https://brainly.com/question/24383458
#SPJ1
Which organelle breaks down chemicals in the cell?
The organelle that breaks down chemicals in the cell is the lysosome.
Lysosomes are membrane-bound organelles that contain digestive enzymes that are responsible for breaking down various biomolecules, such as proteins, nucleic acids, carbohydrates, and lipids, into their constituent building blocks. These enzymes are able to break down these molecules through hydrolysis, where water is used to break the chemical bonds. Lysosomes play a crucial role in maintaining cellular homeostasis by removing unwanted or damaged cellular components, recycling macromolecules, and its defending against invading microorganisms. Dysfunction of lysosomes can lead to a variety of diseases known as lysosomal storage disorders.
To know more about Lysosomes, here
brainly.com/question/28202356
#SPJ4
write a list of rules for recognizing and naming binary molecular compounds from their chemical formulas
The following are the rules for recognizing and naming binary molecular compounds from their chemical formulas:
1. The first element in the chemical formula will be the name of the first element in the compound.
2. The second element in the chemical formula will be the name of the second element in the compound.
3. If the first element is a metal, the second element will end in “-ide”.
4. If the first element is a nonmetal, the second element will end in “-ate” or “-ite”.
5. The prefixes “mono-, di-, tri-, tetra-, penta-, and hexa-” are used to indicate the number of atoms of each element in the compound.
6. When the prefixes are not used, the number of atoms of each element is implied by the subscript.
7. If the subscript is written as a fraction, the fraction is changed to a whole number when forming the compound name.
Learn more about molecular compounds at brainly.com/question/30328923
#SPJ4
The rules for recognizing and naming binary molecular compounds are written focusing on the lower groups and the higher groups.
The rules for recognizing and naming binary molecular compounds from their chemical formulas are as follows:
1. The element with the lower group number is written first in the formula, and its full name is used.
2. The element with the higher group number is written second in the formula, and its stem name is used along with the suffix -ide.
3. The prefixes mono-, di-, tri-, tetra-, penta-, and so on are used to indicate the number of atoms present for each element in the molecule.
4. The prefix mono- is omitted for the first element in the formula.
5. The ending -a or -o in the prefix is omitted if the element name begins with a vowel, and only the vowel of the prefix is used in the compound name.
To learn more about compounds, click here:
https://brainly.com/question/26487468
#SPJ11
If some solid sodium solid hydroxide is added to a solution that is 0.010–molar in (CH3)3CCl and 0.10–molar in NaOH, which of the following is true? (Assume the temperature and volume remain constant.)answer choicesa. Both the reaction rate and k increase.b. Both the reaction rate and k decrease.c. Both the reaction rate and k remain the same.d. The reaction rate increases but k remains the same.e. The reaction rate decreases but k remains the same.
If some solid sodium hydroxide is added to a solution that is 0.010–molar in (CH₃)₃CCl and 0.10–molar in NaOH, the reaction rate increases but k remains the same. Therefore, option D is correct.
In this scenario, when solid sodium hydroxide (NaOH) is added to a solution containing (CH₃)₃CCl and NaOH, a reaction between (CH₃)₃CCl and NaOH takes place. The balanced chemical equation for this reaction is:
(CH₃)₃CCl + NaOH ⇒ (CH₃)₃COH + NaCl
The reaction rate is determined by the concentration of the reactants. In this case, the concentration of (CH₃)₃CCl remains constant because only solid NaOH is added.
The rate constant depends on the specific reaction and the conditions under which it occurs. Since the temperature and volume remain constant, the rate constant (k) will also remain constant.
To learn more about NaOH, follow the link:
https://brainly.com/question/20573731
#SPJ12
at the concentration equilibrium constant for a certain reaction. here are some facts about the reaction: if the reaction is run at constant pressure, of heat are absorbed. some of the reactants are liquids and solids. the net change in moles of gases is .
To calculate the equilibrium constant for a reaction with heat absorbed, determine equilibrium concentrations and use the law of mass action.
At the concentration equilibrium constant for a certain reaction, heat is absorbed if the reaction is run at constant pressure. Some of the reactants are liquids and solids, and the net change in moles of gases is .
To calculate the equilibrium constant, we need to first determine the equilibrium concentrations of each species. We can do this by using the mass and moles of the reactants and products, the stoichiometric coefficients, and the net change in moles of gases.
Once we have the equilibrium concentrations, we can calculate the equilibrium constant using the law of mass action:
K = [products]/[reactants].Learn more about equilibrium: https://brainly.com/question/517289
#SPJ11
Which best completes the following analogy?
Right brain music = Left brain :
A shapes
B. speech
C colors
D. art
b) which compound, a or b, was the limiting reagent in this reaction? compound b c) consider the lane that shows the reaction mixture. are the starting materials more or less polar than the reaction product? more polar
As per the information provided in the question, the compound that is the limiting reagent is "B". And the starting materials were "more polar" than the reaction product.
The limiting reagent is the one that gets consumed completely in the reaction. The other reactant is left behind in excess. The reaction's speed is determined by the amount of the limiting reagent present. In the given reaction, compound B is the limiting reagent. We can prove this by comparing the number of moles of compounds A and B. We can see that compound B has fewer moles. Therefore, it is the limiting reagent. 2 moles of compound A react with 1 mole of compound B. We have 2 moles of A and 1 mole of B in this reaction mixture. Hence, compound B is the limiting reagent. Starting materials are more polar than the reaction product. When a chemical reaction occurs, the reactants combine to form a new compound or product. The product's properties are often different from those of the starting materials. In this reaction, the starting materials are more polar than the reaction product. This can be seen by observing the reaction mixture's lane. We can see that the reaction product has moved ahead of the starting materials on the chromatogram. The starting materials are more polar than the reaction product.
For more information regarding this topic, you can click the below link
https://brainly.com/question/26905271
#SPJ11
Which subatomic particles have a positive and negative electrical charge?
Electrons have a negative electrical charge, whereas protons have a positive charge.
Subatomic particles like electrons and protons are essential in defining how atoms and molecules behave. Electrons are negatively charged particles that move in shells or energy levels around an atom's nucleus. The positive charge of protons and the negative charge of electrons are identical in magnitude but diametrically opposed in sign. Together with neutral neutrons, protons are positively charged particles that make up an atom's nucleus. An atom's proton count establishes the element it belongs to. Atoms' chemical activity, particularly their capacity to form chemical bonds and reactions, is greatly influenced by the charges of their protons and electrons.
learn more about Subatomic particles here:
https://brainly.com/question/29765133
#SPJ4
What would the potential of a standard hydrogen (S.H.E.) electrode be if it was under the following conditions?
[H+] = 0.77 M
PH2 = 1.4 atm
T = 298 K
The potential of a standard hydrogen (S.H.E.) electrode under the given conditions is -0.126V.
A standard hydrogen electrode (SHE) is a reference electrode used to estimate the standard electrode potentials (E°) of half-reactions. It is made up of a platinum electrode coated in platinum black (Pt) and a hydrogen (H2) electrode dipping into an acidic solution of HCl. The pressure of H2 is measured at 1.0 atm, and the concentration of H+ is maintained at 1.0 mol/L. The potential of the SHE is set to 0.000 V at all temperatures, and other electrode potentials are compared to it to determine their standard reduction potentials.
Using the Nernst equation, we can compute the potential of the SHE : E = E° - (RT/nF)lnQ, where E is the cell potential, E° is the standard cell potential, R is the gas constant, T is the temperature, n is the number of moles of electrons transferred in the redox reaction, F is the Faraday constant, and Q is the reaction quotient.
The given conditions[H+] = 0.77 MPH2 = 1.4 atm T = 298 K
We can use the Nernst equation to calculate the potential of the SHE under these conditions as follows:
E = E° - (RT/nF)lnQ,
where E° = 0.000 VR = 8.314 J/(mol*K)n = 2 F = 96,485 J/V*KpH2 = 1.4 atm
Q = [H+]2/[H2]E = E° - (RT/nF)lnQ= 0.000 - (8.314*298/2*96,485)*ln (0.77/1.4^2)= 0.000 - 0.000688= -0.126 V
Therefore, the potential of the standard hydrogen electrode (SHE) under the given conditions would be -0.126 V.
To know more about standard hydrogen (S.H.E.) electrode please visit :
https://brainly.com/question/12588341
#SPJ11
What mass of hydrogen will react with 84g of N2
A photon of light has a wavelength of 0. 050 cm. Calculate its energy
A photon of light has an energy of 3.977 x [tex]10^{-19}[/tex] joules and a wavelength of 0.050 centimetres.
The energy of a photon is related to its wavelength by the formula E = hc/λ, where E is the energy, h is Planck's constant (6.626 x [tex]10^{-34}[/tex] joule seconds), c is the speed of light (2.998 x [tex]10^{8}[/tex] meters per second), and λ is the wavelength of the photon.
To use this formula, we need to convert the wavelength of the photon from centimeters to meters, since c is given in meters per second. We can do this by dividing 0.050 cm by 100, which gives us 5.0 x [tex]10^{-4}[/tex]meters.
Now we can plug in the values we have into the formula: E = (6.626 x [tex]10^{-34}[/tex] joule seconds) x (2.998 x [tex]10^{8}[/tex] meters per second) / (5.0 x [tex]10^{-4}[/tex]meters)
Simplifying the equation, we get:
E = 3.977 x [tex]10^{-19}[/tex] joules
Therefore, a photon of light with a wavelength of 0.050 cm has an energy of 3.977 x [tex]10^{-19}[/tex] joules. It is important to note that photons are the smallest quantifiable packets of electromagnetic energy, and their energy is directly proportional to their frequency and inversely proportional to their wavelength.
To learn more about wavelength refer to:
brainly.com/question/27353508
#SPJ4
the extrinsic pathway of coagulation is initiated by the
The extrinsic pathway of coagulation is initiated by the exposed endothelial collagen. Endothelial cells are cells that line the interior surface of blood vessels, forming a barrier between the blood and the underlying tissues. Collagen is a protein that is an important component of the extracellular matrix that supports and strengthens tissues throughout the body.
The interaction of tissue factor with factor VIIa (the activated form of factor VII) triggers a series of reactions that ultimately lead to the activation of factor X and the formation of a blood clot. This process involves the formation of a complex known as the extrinsic tenase complex, which includes tissue factor, factor VIIa, calcium ions, and phospholipids. The extrinsic tenase complex activates factor X, which then leads to the activation of thrombin and the subsequent formation of fibrin, the protein that forms the basis of a blood clot.
The extrinsic pathway is called the "extrinsic" pathway because it is initiated by factors that are external to the blood itself, namely tissue factor. In contrast, the intrinsic pathway of coagulation is initiated by factors that are present within the blood itself, such as platelets and activated factor XII.
Overall, the extrinsic pathway of coagulation is an important component of the body's response to tissue injury, and it plays a critical role in preventing excessive bleeding and promoting wound healing.
Learn more about coagulation here brainly.com/question/8888375
#SPJ4