Answer:
The probability that a randomly selected infant has a birth weight between 100 ounces and 140 ounces is 68%.
The probability that a randomly selected infant has a birth weight between 110 and 130 is 38%.
Step-by-step explanation:
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Mean of 120 ounces and a standard deviation of 20 ounces.
This means that [tex]\mu = 120, \sigma = 20[/tex]
The probability that a randomly selected infant has a birth weight between 100 ounces and 140 ounces is
p-value of Z when X = 140 subtracted by the p-value of Z when X = 100.
X = 140
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{140 - 120}{20}[/tex]
[tex]Z = 1[/tex]
[tex]Z = 1[/tex] has a p-value of 0.84
X = 100
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{100 - 120}{20}[/tex]
[tex]Z = -1[/tex]
[tex]Z = -1[/tex] has a p-value of 0.16
0.84 - 0.16 = 0.68
The probability that a randomly selected infant has a birth weight between 100 ounces and 140 ounces is 68%.
The probability that a randomly selected infant has a birth weight between 110 and 130
This is the p-value of Z when X = 130 subtracted by the p-value of Z when X = 110.
X = 130
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{130 - 120}{20}[/tex]
[tex]Z = 0.5[/tex]
[tex]Z = 0.5[/tex] has a p-value of 0.69
X = 110
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{110 - 120}{20}[/tex]
[tex]Z = -0.5[/tex]
[tex]Z = -0.5[/tex] has a p-value of 0.31
0.69 - 0.31 = 0.38 = 38%.
The probability that a randomly selected infant has a birth weight between 110 and 130 is 38%.
I need help answering this ASAP
Answer:
x=13
Step-by-step explanation:
f(x) = sqrt(x-11)
The square root must be greater than or equal to zero
sqrt(x-11)≥0
Square each side
x-11≥0
x ≥11
The only answer that is greater than or equal to 11 is
x=13
A cricket bat is bought for $330. Later, it is sold with a loss of 15%.
How much is the oricket bat sold for?
After selling the cricket bat, how much money has been last?
Give your answer to two decimal places because it is a currency.
Answers:
Discount price = 280.50 dollarsAmount lost = 49.50 dollars================================================
Explanation:
If it's sold at a loss of 15%, then the store owner loses 0.15*330 = 49.50 dollars
So it was sold for 330- 49.50 = 280.50 dollars
----------------------------
An alternative method:
If the store owner loses 15%, then they keep the remaining 85% since 15%+85% = 100%.
85% of 330 = 280.50 dollars is the discount price
This means 330-280.50 = 49.50 dollars is the amount lost.
How many more barrels of gasoline than desiel were produced
Answer:
15
Step-by-step explanation:
Ivan drove 335 miles in 5 hours.
At the same rate, how long would it take him to drive 737 miles?
hours
Х
?
Answer: x= 11
Step-by-step explanation:
To answer the question, we first need to know how many miles he/she/it can drive in one hour (to make it simpler. Doing a bunch of calculations involving decimals and other stuff can be very confusing)
335 divided by 5 is 67
Therefore in one hour Ivan can drive 67 miles. We want to know the TIME it takes for Ivan to drive 737 miles and the formula for time is Distance / Speed.
The distance is 737 miles
The speed is 67 miles/hour
737 divided by 67 is 11
Therefore Ivan takes 11 hours to drive 737 hours
After simplification, how many terms will be there in 4x3 + 9y2 - 3x + 2 - 1?
3
6
5
4.
Answer:
Correct answer is 4 because the last 2 terms can be combined:
Step-by-step explanation:
4x3 + 9y2 – 3x + 2 – 1 = 4x3 – 3x + 9y2 + 1.
100 divided by 200-3+1000=
Answer:
997.5 is the answer to your question..
Does this appear to be a regular polygon? Explain using the definition of a regular polygon.
Answer:
yes it is. a polygon is any closed shape with at least 3 connected lines (eg. triangle, square, pentagon, hexagon, heptagon, octagon, etc)
Step-by-step explanation:
Find the measure of angle FGE
35 degrees
40 degrees
100 degrees
30 degrees
60 degrees
The measure of angle FGE is 52.5°.
What is the Angles of Intersecting Secants Theorem?Angles of Intersecting Secants Theorem states that, If two lines intersect outside a circle, then the measure of an angle formed by the two lines is one half the positive difference of the measures of the intercepted arcs.
Thus, applying the angles of intersecting secants theorem
m∠FGE = 1/2[(100 + 35) - 30]
m∠FGE = 1/2[(105]
m∠FGE = 52.5°
Learn more about angles of intersecting secants theorem here :
https://brainly.com/question/15532257
#SPJ2
Suppose X has an exponential distribution with mean equal to 16. Determine the following:
(a) P(x >10) (Round your answer to 3 decimal places.)
(b) P( >20) (Round your answer to 3 decimal places.)
(c) P(x < 30) (Round your answer to 3 decimal places.)
(d) Find the value of x such that P(X 〈 x) = 0.95. (Round your answer to 2 decimal places.)
Use the discriminant to describe the roots of each equation. Then select the best description.
7x² + 1 = 5x
Answer:
Imaginary roots
Step-by-step explanation:
The discriminant of a quadratic in standard form [tex]ax^2+bx+c[/tex] is given by [tex]b^2-4ac[/tex].
Given [tex]7x^2+1=5x[/tex], subtract 5x from both sides so that the quadratic is in standard form:
[tex]7x^2-5x+1=0[/tex]
Now assign variables:
[tex]a\implies 7[/tex] [tex]b\implies -5[/tex] [tex]c\implies 1[/tex]The discriminant is therefore [tex](-5)^2-4(7)(1)=25-28=\textbf{-3}[/tex].
What does this tell us about the roots?
Recall that the discriminant is what is under the radical in the quadratic formula. The quadratic formula is used to find the solutions of a quadratic. Therefore, the solutions of this quadratic would be equal to [tex]\frac{-b\pm \sqrt{-3}}{2a}[/tex] for some [tex]b[/tex] and [tex]a[/tex]. Since the number under the radical is negative, there are no real roots to the quadratic (whenever the discriminant is negative, the are zero real solutions to the quadratic). Therefore, the quadratic has imaginary roots.
?????????????please help
Answer:
ok so you take m time h then like you count to h like a b c d e f g h and tgen with that you count 1 2 3 4 5 6 7 till h than you multiply that with 3
Match the property with its correct name
match the property to its correct name
A} additive inverse property
B} multiplicative inverse property
C} commutative property of multiplication
D} multiplicative identity
E} commutative property of complement
F} ascending property of multiplication
G} distributive property
H} associative property of multiplication
I} additive identification property
J} zero property
{1} x+(y-z)=(x+y)+z
2} (pq) * 1 = pq
3} (5x)y-5(xy)
4} a+5b = 5b + a
5} a+0=a
6} gh - hg
7} 8 + (-8)=0
8} x * 0 = 0
9} 5 * (1/5)=1
10} 2(a+h)=2a * 2b
Answer:
see below
Step-by-step explanation:
{1} x+(y-z)=(x+y)+z associative property of addition
2} (pq) * 1 = pq D multiplicative identity
3} (5x)y-5(xy) H associative property of multiplication
4} a+5b = 5b + a commutative property of addition
5} a+0=a I additive identification property
6} gh - hg C commutative property of multiplication
7} 8 + (-8)=0 A additive inverse property
8} x * 0 = 0 J zero property
9} 5 * (1/5)=1 B multiplicative inverse property
10} 2(a+b)=2a * 2b G distributive property
Let's see
#a
x+(y-z)=(x+y)+z
Associative property (Addition)#b
(pq) * 1 = pq
Identity property multiplication#c
(5x)y-5(xy)
Associative property of multiplication#d
a+5b = 5b + a
Commutative property of addition#e
a+0=a
identity property of addition#f
gh - hg
Commutative property of multiplication#g
8 + (-8)=0
additive inverse property#h
x * 0 = 0
Zero property#i
5 * (1/5)=1
Inverse property of multiplication#j
2(a+h)=2a * 2b
Distributive propertyPLEASEEEE PLEASEEEE HELPPPP
i need an equation for a vertical line going through f(x) = 2x^2 + 6x + 2
Answer:
dont understand clearly
Step-by-step explanation:
dont understand clearly
Family Video stocks 1003 drama movies, 518 science fiction movies and
253 children's movies. How many more drama titles than children's
titles does Family Video have in stock?
Answer:
There are 750 more drama movies that children's movies.
Step-by-step explanation:
There are 1003 drama movies, and 253 children's movies.
1003 - 253 = 750
A line passes through (2, −1) and (4, 5).
Which answer is the equation of the line?
A. −3x + 5y = 13
B. −3x + y = −7
C. −3x + y = 17
D. −3x + 5y = −13
Which answer is an equation in point-slope form for the given point and slope?
Point: (1, 9); Slope: 5
A. y − 1 = 5 (x + 9)
B. y − 9 = 5 (x − 1)
C. y + 9 = 5 (x−1)
D. y − 9 = 5 (x+1)
Answer:
−3x + y = −7 y - 9 = 5 (x - 1)
Step-by-step explanation:
y2 - y1 / x2 - x1
5 - (-1) / 4 - 2
6/2
= 3
slope intercept: −3x + y = −7
y - 9 = 5 (x - 1)
A 90% confidence interval is (35 45). What is the margin of error?
A.5
B.4.5
C.9
D.10
Answer:
option a 5......
...
I hope it's correct
Can someone help please
Answer: it should be A
Step-by-step explanation:
through: (3,-1) and (-5, 5)
Answer:
Bro what to do in this question I am not able to understand Hope you understand me
helpppp asap pleaseee
Answer:
29/3 is your answer
Step-by-step explanation:
pls mark as brainliest
Which of the following is a solution to 6x - 5y=4?
(2,7)
(-1, -2)
(-2, -1)
(2, -7)
Answer:
2,7
Step-by-step explanation:
Answer:
(-1,-2)
Step-by-step explanation:
(6 x -1) -(-2 x 5) = 4
-6 + 10 = 4
Write expression for the sum x and 6
Answer:
X+6
Step-by-step explanation:
Sum means Addition.
a. 1.5
b. 2.3
c. 2.4
d. 1.9
Answer:
2.3
Step-by-step explanation:
.5 - .3 = .2
.8 - .5 = .3
1.2 - .8 = .4
1.7 - 1.2 = .5
We should add .6 next
1.7+.6 = 2.3
8 rational numbers between 3 and 4
Answer:
31/10,32/10,33/10,34/10,35/10
Step-by-step explanation:
a rational number is formed when any two integers p and q are expressed in the form of p/q
to find two two sets of rational numbers BETWEEN any two numbers
a and b we need to express a and b and rational numbers....let us express 3and4 as rational numbers 3=30/10 4=40/10
the list of rational numbers between 3and4,that is, 30/10,31/10,32/10,33/10,34/10,35/10,36/10,37/10,38/10,39/10,40/10.
therefore the five rational numbers between 3 and 4 are (31/10,32/10,33/10,34/10,35/10...
I hope that helps
A population is equally divided into three class of drivers. The number of accidents per individual driver is Poisson for all drivers. For a driver of Class I, the expected number of accidents is uniformly distributed over [0.2, 1.0]. For a driver of Class II, the expected number of accidents is uniformly distributed over [0.4, 2.0]. For a driver of Class III, the expected number of accidents is uniformly distributed over [0.6, 3.0]. For driver randomly selected from this population, determine the probability of zero accidents.
Answer:
Following are the solution to the given points:
Step-by-step explanation:
As a result, Poisson for each driver seems to be the number of accidents.
Let X be the random vector indicating accident frequency.
Let, [tex]\lambda=[/tex]Expected accident frequency
[tex]P(X=0) = e^{-\lambda}[/tex]
For class 1:
[tex]P(X=0) = \frac{1}{(1-0.2)} \int_{0.2}^{1} e^{-\lambda} d\lambda \\\\P(X=0) = \frac{1}{0.8} \times [-e^{-1}-(-e^{-0.2})] = 0.56356[/tex]
For class 2:
[tex]P(X=0) = \frac{1}{(2-0.4)} \int_{0.4}^{2} e^{-\lambda} d\lambda\\\\P(X=0) = \frac{1}{1.6} \times [-e^{-2}-(-e^{-0.4})] = 0.33437[/tex]
For class 3:
[tex]P(X=0) = \frac{1}{(3-0.6)} \int_{0.6}^{3} e^{-\lambda} d\lambda\\\\P(X=0) = \frac{1}{2.4} \times [-e^{-3}-(-e^{-0.6})] = 0.20793[/tex]
The population is equally divided into three classes of drivers.
Hence, the Probability
[tex]\to P(X=0) = \frac{1}{3} \times 0.56356+\frac{1}{3} \times 0.33437+\frac{1}{3} \times 0.20793=0.36862[/tex]
What is the value of x in the geometric sequence x,3,−1/3
Answer:
x=27
Step-by-step explanation:
the answer is proved in the diagram above
The value of x is 27
What is Geometric progression?A geometric progression is a special type of progression where the successive terms bear a constant ratio known as a common ratio. It is also known as GP. The GP is generally represented in form a, ar, ar2.... where a is the first term and r is the common ratio of the progression. The common ratio can have both negative as well as positive values. To find the terms of a geometric series, we only need the first term and the constant ratio.
The geometric progression is of two types. They are
finite geometric progression andinfinite geometric progression.Given:
x,3,−1/3
First term, a
second term
ar= 3
a= 3/r
third term
ar² = -1/3
a= -1/3r²
So,
3/r= - 1/3r²
9r= 1
r= 1/9
So,
ar= 3
a= 27.
Learn more about Geometric progression here:
https://brainly.com/question/4853032
#SPJ2
Wayne has a rectangular painting. The width of the painting is
5/6
of a foot, and the length is
3/4
of a foot. What is the area of the painting?
Answer:
5/8 ft^2
Step-by-step explanation:
The area of a rectangle is given by
A = l*w where l is the length and w is the width
A = 5/6 * 3/4
A = 3/6 * 5/4
A = 1/2 * 5/4
A = 5/8 ft^2
find the value of trigonometric ratio
Step-by-step explanation:
tan Z=p/b
=48/14
=24/7
Keep smiling and hope u are satisfied with my answer.Have a good day :)
Can someone please help me
Answer:
Step-by-step explanation:
Não sei a resposta blz
A product is introduced into the market. Suppose a product's sales quantity per month q ( t ) is a function of time t in months is given by q ( t ) = 1000 t − 150 t 2 And suppose the price in dollars of that product, p ( t ) , is also a function of time t in months and is given by p ( t ) = 150 − t 2 A. Find, R ' ( t ) , the rate of change of revenue as a function of time t
Answer:
[tex]r'(t) = 298t -850[/tex]
Step-by-step explanation:
Given
[tex]q(t) = 1000t - 150t^2[/tex]
[tex]p(t) = 150t - t^2[/tex]
Required
[tex]r'(t)[/tex]
First, we calculate the revenue
[tex]r(t) = p(t) - q(t)[/tex]
So, we have:
[tex]r(t) = 150t - t^2 - (1000t - 150t^2)[/tex]
Open bracket
[tex]r(t) = 150t - t^2 - 1000t + 150t^2[/tex]
Collect like terms
[tex]r(t) = 150t^2 - t^2 + 150t - 1000t[/tex]
[tex]r(t) = 149t^2 -850t[/tex]
Differentiate to get the revenue change with time
[tex]r'(t) = 2 * 149t -850[/tex]
[tex]r'(t) = 298t -850[/tex]
Find the measure of x. X=8, x=7, x=9, x=11
Answer:
[tex]\frac{135}{15} =\frac{15(x+2)}{15}[/tex]
[tex]9=x+2[/tex]
[tex]x=7[/tex]
OAmalOHopeO