Answer:
Step-by-step explanation:
xy-3x-5y+15
x(y-3)-5(y-3)
(y-3)(x-5)
What would it be tho 300 doesn’t show up in my options my options are
1/49 -1/49 -49 and 49
If f(x) = 2x ^ 2 + 3 and g(x) = x ^ 2 - 7 , find (f - g)(x) .
Answer:
x^2 + 10
Step-by-step explanation:
f(x) = 2x ^ 2 + 3
g(x) = x ^ 2 - 7
(f - g)(x) =2x ^ 2 + 3 - (x ^ 2 - 7 )
Distribute the minus sign
=2x ^ 2 + 3 - x ^ 2 + 7
Combine like terms
= x^2 + 10
find the missing side. Round it the nearest tenth.
Answer: x= 11√3= 19.0525 = 19.1
Step-by-step explanation:
Let the reference angle be 30
so
cos 30 = b/h
√3/2 = x/22
or, 22√3 = 2x
or. x = (22√3)/2
so, x = 11√3
Answer:
x = 19.1 cm
Step-by-step explanation:
→ Find the name of the side you are not given
Opposite
→ Find a formula without opposite in it
Cos = Adjacent ÷ Hypotenuse
→ Rearrange to make adjacent the subject
Adjacent = Cos × Hypotenuse
→ Substitute in the values
Adjacent = Cos ( 30 ) × 22
→ Simplify
Adjacent = 19.1
If a line has a midpoint at (2,5), and the endpoints are (0,0) and (4,y), what is the value of y? Please explain each step for a better understanding:)
Answer:
y = 10
Step-by-step explanation:
To find the y coordinate of the midpoint, take the y coordinates of the endpoints and average
(0+y)/2 = 5
Multiply each die by 2
0+y = 10
y = 10
Two observers are 300 ft apart on opposite sides of a flagpole. The angles of
elevation from the observers to the top of the pole are 20°
and 15°. Find the
height of the flagpole.
use the formula v=u+at to find the velocity when the initial velocity is 3m/s2 the time is 7 seconds
Answer:
Step-by-step explanation:
hello
add me on s
ghazalp2186
love xx
and i dont know the answer
Pls help
.
Z
Z
Z
Z
Z
Z
Z
Z
A
Answer:
20.2 feet
Step-by-step explanation:
Using Pythagoras theorem, we have
Height^2+13^2=24^2, height=sqrt(407)=20.2
What is x in the diagram below?
Answer:
3rd option, 2√10
Step-by-step explanation:
x²=4×10
or, x=√(4×10)
or, x=2√10
Answer: C, 2√10
Step-by-step explanation:
Helpppp pleaseeee !!!!!!
Answer:
149 inches squared
Step-by-step explanation:
top rectangle: 25 * 7 = 175
second rectangle: 8 * (25 - 17) = 8^2 = 64
triangle in bottom right: 1/2 * (13 - 8) * (15 - 11) = 10
175 + 64 + 10 = 149 sq in
hopefully got this right!
Lilian is building a swimming pool in the shape of a right rectangular prism. The area of the base of the swimming pool is 72 square meters. The depth of the swimming pool is 3 meters. What is the volume of the swimming pool?
Answer:
216
Step-by-step explanation:
Volume of a rectangular prism = area of base * depth
Area of base: 72
Depth: 3
Volume = 72 * 3 = 216
A factory inspector found flaws in 3 out of 18 wooden boxes. What is the experimental probability that the next wooden box will be flawed?
Write your answer as a fraction or whole number.
Hi there!
»»————- ★ ————-««
I believe your answer is:
[tex]\frac{1}{6}[/tex]
»»————- ★ ————-««
Here’s why:
⸻⸻⸻⸻
[tex]\boxed{\text{Box Probability}}\\\\\rightarrow \frac{\text{# of boxed flawed}}{\text{# of boxes checked}} \\\\\rightarrow \frac{3}{18}\\\\\rightarrow \frac{3/3}{18/3}\\\\\rightarrow\boxed{\frac{1}{6}}[/tex]
⸻⸻⸻⸻
»»————- ★ ————-««
Hope this helps you. I apologize if it’s incorrect.
100 POINTS AND BRAINLIEST FOR THIS WHOLE SEGMENT
a) Find zw, Write your answer in both polar form with ∈ [0, 2pi] and in complex form.
b) Find z^10. Write your answer in both polar form with ∈ [0, 2pi] and in complex form.
c) Find z/w. Write your answer in both polar form with ∈ [0, 2pi] and in complex form.
d) Find the three cube roots of z in complex form. Give answers correct to 4 decimal
places.
Answer:
See Below (Boxed Solutions).
Step-by-step explanation:
We are given the two complex numbers:
[tex]\displaystyle z = \sqrt{3} - i\text{ and } w = 6\left(\cos \frac{5\pi}{12} + i\sin \frac{5\pi}{12}\right)[/tex]
First, convert z to polar form. Recall that polar form of a complex number is:
[tex]z=r\left(\cos \theta + i\sin\theta\right)[/tex]
We will first find its modulus r, which is given by:
[tex]\displaystyle r = |z| = \sqrt{a^2+b^2}[/tex]
In this case, a = √3 and b = -1. Thus, the modulus is:
[tex]r = \sqrt{(\sqrt{3})^2 + (-1)^2} = 2[/tex]
Next, find the argument θ in [0, 2π). Recall that:
[tex]\displaystyle \tan \theta = \frac{b}{a}[/tex]
Therefore:
[tex]\displaystyle \theta = \arctan\frac{(-1)}{\sqrt{3}}[/tex]
Evaluate:
[tex]\displaystyle \theta = -\frac{\pi}{6}[/tex]
Since z must be in QIV, using reference angles, the argument will be:
[tex]\displaystyle \theta = \frac{11\pi}{6}[/tex]
Therefore, z in polar form is:
[tex]\displaystyle z=2\left(\cos \frac{11\pi}{6} + i \sin \frac{11\pi}{6}\right)[/tex]
Part A)
Recall that when multiplying two complex numbers z and w:
[tex]zw=r_1\cdot r_2 \left(\cos (\theta _1 + \theta _2) + i\sin(\theta_1 + \theta_2)\right)[/tex]
Therefore:
[tex]\displaystyle zw = (2)(6)\left(\cos\left(\frac{11\pi}{6} + \frac{5\pi}{12}\right) + i\sin\left(\frac{11\pi}{6} + \frac{5\pi}{12}\right)\right)[/tex]
Simplify. Hence, our polar form is:
[tex]\displaystyle\boxed{zw = 12\left(\cos\frac{9\pi}{4} + i\sin \frac{9\pi}{4}\right)}[/tex]
To find the complex form, evaluate:
[tex]\displaystyle zw = 12\cos \frac{9\pi}{4} + i\left(12\sin \frac{9\pi}{4}\right) =\boxed{ 6\sqrt{2} + 6i\sqrt{2}}[/tex]
Part B)
Recall that when raising a complex number to an exponent n:
[tex]\displaystyle z^n = r^n\left(\cos (n\cdot \theta) + i\sin (n\cdot \theta)\right)[/tex]
Therefore:
[tex]\displaystyle z^{10} = r^{10} \left(\cos (10\theta) + i\sin (10\theta)\right)[/tex]
Substitute:
[tex]\displaystyle z^{10} = (2)^{10} \left(\cos \left(10\left(\frac{11\pi}{6}\right)\right) + i\sin \left(10\left(\frac{11\pi}{6}\right)\right)\right)[/tex]
Simplify:
[tex]\displaystyle z^{10} = 1024\left(\cos\frac{55\pi}{3}+i\sin \frac{55\pi}{3}\right)[/tex]Simplify using coterminal angles. Thus, the polar form is:
[tex]\displaystyle \boxed{z^{10} = 1024\left(\cos \frac{\pi}{3} + i\sin \frac{\pi}{3}\right)}[/tex]
And the complex form is:
[tex]\displaystyle z^{10} = 1024\cos \frac{\pi}{3} + i\left(1024\sin \frac{\pi}{3}\right) = \boxed{512+512i\sqrt{3}}[/tex]
Part C)
Recall that:
[tex]\displaystyle \frac{z}{w} = \frac{r_1}{r_2} \left(\cos (\theta_1-\theta_2)+i\sin(\theta_1-\theta_2)\right)[/tex]
Therefore:
[tex]\displaystyle \frac{z}{w} = \frac{(2)}{(6)}\left(\cos \left(\frac{11\pi}{6} - \frac{5\pi}{12}\right) + i \sin \left(\frac{11\pi}{6} - \frac{5\pi}{12}\right)\right)[/tex]
Simplify. Hence, our polar form is:
[tex]\displaystyle\boxed{ \frac{z}{w} = \frac{1}{3} \left(\cos \frac{17\pi}{12} + i \sin \frac{17\pi}{12}\right)}[/tex]
And the complex form is:
[tex]\displaystyle \begin{aligned} \frac{z}{w} &= \frac{1}{3} \cos\frac{5\pi}{12} + i \left(\frac{1}{3} \sin \frac{5\pi}{12}\right)\right)\\ \\ &=\frac{1}{3}\left(\frac{\sqrt{2}-\sqrt{6}}{4}\right) + i\left(\frac{1}{3}\left(- \frac{\sqrt{6} + \sqrt{2}}{4}\right)\right) \\ \\ &= \boxed{\frac{\sqrt{2} - \sqrt{6}}{12} -\frac{\sqrt{6}+\sqrt{2}}{12}i}\end{aligned}[/tex]
Part D)
Let a be a cube root of z. Then by definition:
[tex]\displaystyle a^3 = z = 2\left(\cos \frac{11\pi}{6} + i\sin \frac{11\pi}{6}\right)[/tex]
From the property in Part B, we know that:
[tex]\displaystyle a^3 = r^3\left(\cos (3\theta) + i\sin(3\theta)\right)[/tex]
Therefore:
[tex]\displaystyle r^3\left(\cos (3\theta) + i\sin (3\theta)\right) = 2\left(\cos \frac{11\pi}{6} + i\sin \frac{11\pi}{6}\right)[/tex]
If two complex numbers are equal, their modulus and arguments must be equivalent. Thus:
[tex]\displaystyle r^3 = 2\text{ and } 3\theta = \frac{11\pi}{6}[/tex]
The first equation can be easily solved:
[tex]r=\sqrt[3]{2}[/tex]
For the second equation, 3θ must equal 11π/6 and any other rotation. In other words:
[tex]\displaystyle 3\theta = \frac{11\pi}{6} + 2\pi n\text{ where } n\in \mathbb{Z}[/tex]
Solve for the argument:
[tex]\displaystyle \theta = \frac{11\pi}{18} + \frac{2n\pi}{3} \text{ where } n \in \mathbb{Z}[/tex]
There are three distinct solutions within [0, 2π):
[tex]\displaystyle \theta = \frac{11\pi}{18} , \frac{23\pi}{18}\text{ and } \frac{35\pi}{18}[/tex]
Hence, the three roots are:
[tex]\displaystyle a_1 = \sqrt[3]{2} \left(\cos\frac{11\pi}{18}+ \sin \frac{11\pi}{18}\right) \\ \\ \\ a_2 = \sqrt[3]{2} \left(\cos \frac{23\pi}{18} + i\sin\frac{23\pi}{18}\right) \\ \\ \\ a_3 = \sqrt[3]{2} \left(\cos \frac{35\pi}{18} + i\sin \frac{35\pi}{18}\right)[/tex]
Or, approximately:
[tex]\displaystyle\boxed{ a _ 1\approx -0.4309 + 1.1839i,} \\ \\ \boxed{a_2 \approx -0.8099-0.9652i,} \\ \\ \boxed{a_3\approx 1.2408-0.2188i}[/tex]
[tex]3x + 9 = 12[/tex]
Solve for x
Answer:
x=1
Step-by-step explanation:
3x+9 = 12
Subtract 9 from each side
3x+9-9=12-9
3x = 3
Divide by 3
3x/3 = 3/3
x=1
Hi there!
»»————- ★ ————-««
I believe your answer is:
[tex]x = 1[/tex]
»»————- ★ ————-««
Here’s why:
⸻⸻⸻⸻
[tex]\boxed{\text{Calculating the answer...}}\\\\3x + 9 = 12\\-------------\\\rightarrow 3x + 9 - 9 = 12 - 9\\\\\rightarrow 3x = 3\\\\\rightarrow \frac{3x=3}{3}\\\\\rightarrow \boxed{x=1}[/tex]
⸻⸻⸻⸻
»»————- ★ ————-««
Hope this helps you. I apologize if it’s incorrect.
What is the smallest 3-digit palindrome that is divisible by both 3 and 4?
Answer:
252
Step-by-step explanation:
To be divisible by 3, it's digits have to add to a number that is a multiple of 3.
To be divisible by 4 its last 2 digits have to be divisible by 3.
So let's start with 1x1 which won't work because 1x1 is odd. so let's go to 2x2 and see what happens.
212 that's divisible by 4 but not 3
222 divisible by 3 but not 4
232 divisible by 4 but not 3
242 not divisible by either one.
252 I think this might be your answer
The digits add up to 9 which is a multiple of 3 and the last 2 digits are divisible by 4
Select All the correct answers
Select all the statements that are true for the following systems of equations.
System A
2x-3y=4
4x.y = 18
System B
3x - 4y 5
y = 5x + 3
System C
2x-3y - 4
12x-3y 54
1. All three systems have different solutions.
2. Systems A and B have different solutions
3. Systems A and C have the same solution
4. Systems B and C have the same solution
5. System C simplifies to
2x - 3y = 4 and 4x - y = 18 by dividing the second equation by three
Answer:
a
Step-by-step explanation:
kjddhllkfewtuikkbccjg
Between which two numbers does 46 lie?
A.
between 8 and 9
B.
between 6 and 7
C.
between 5 and 6
D.
between 7 and 8
Answer:
So the sqrt(46) is between 6 and 7
Step-by-step explanation:
sqrt(46)
5*5 = 25
6*6=36
7*7=49
So the sqrt(46) is between 6 and 7
The point slope formula (if possible) to write an equation of the line given the following information…we
The equation in point slope form is y - 6 = 2(x + 3)
This is from the general point slope template of [tex]y - y_1 = m(x - x_1)[/tex]
The m is the slope, which in this case is m = 2. The [tex](x_1,y_1)[/tex] is the point the line goes through. In this case, [tex]x_1 = -3 \text{ and } y_1 = 6[/tex]
If you were to solve that equation in bold for y, then you should get y = 2x+12 which is now in y = mx+b form, aka slope intercept form.
Help me! thank you so much
Answer:
Step-by-step explanation:
[tex]\frac{sinxcos^3x-cos xsin^3x}{cos^42x-sin^42x} \\=\frac{sin x cos x(cos^2x-sin ^2 x)}{(cis^2 2x+sin^2 2x)(cos^2 2x-sin ^22x)} \\=\frac{2sin x cos x cos 2x}{2(1)(cos 4x)} \\=\frac{sin 2x cos 2x}{2 cos 4x} \\=\frac{2 sin 2x cos 2x}{4 cos 4x} \\=\frac{sin 4x}{4 cos 4x} \\=\frac{1}{4} tan 4x[/tex]
What
is the value of In e^4
Answer:
[tex]\displaystyle lne^4 = 4[/tex]
General Formulas and Concepts:
Algebra II
Natural Logarithms ln and Euler's number e
Logarithmic Property [Exponential]: [tex]\displaystyle log(a^b) = b \cdot log(a)[/tex]Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle lne^4[/tex]
Step 2: Evaluate
Rewrite [Logarithmic Property - Exponential]: [tex]\displaystyle 4lne[/tex]Simplify: [tex]\displaystyle 4(1)[/tex]F is on the bisector of angle BCD. Find the length of FD (with lines over FD)
Answer:
8n-2 = 6n+9
2n-2 = 9
2n = 11
n = 5.5
So C is correct
Let me know if this helps!
Find the measure of the indicated angle to the nearest degree.
Answer:
? ≈ 37°
Step-by-step explanation:
Using the cosine ratio in the right triangle
cos? = [tex]\frac{adjacent}{hypotenuse}[/tex] = [tex]\frac{4}{5}[/tex] , then
? = [tex]cos^{-1}[/tex] ([tex]\frac{4}{5}[/tex] ) ≈ 37° ( to the nearest degree )
What is the quotient?
(-3)
(-3)²
O-9
1
o
1
9
100
O 9
Answer:
(-3)
Step-by-step explanation:
follow me if you want
Determine the sum of the first 33 terms of the following series:
−52+(−46)+(−40)+...
Answer:
1320
Step-by-step explanation:
Use the formula for sum of series, s(a) = n/2(2a + (n-1)d)
The terms increase by 6, so d is 6
a is the first term, -56
n is the terms you want to find, 33
Plug in the numbers, 33/2 (2(-56)+(32)6)
Simplify into 33(80)/2 and you get 1320
I NEEDDD HELPPP ITSSSSSS URGENTTTTT!!!
Basically count/add up the total amount of degrees that are include in the angle <FHD.
-- (central angles)
So, 35 + 65 = 100 degrees
PLS HELP ME ON THIS QUESTION I WILL MRK YOU AS BRAINLIEST IF YOU KNOW THE ANSWER!!
Which of the following measures is a measure of spread?
A. median
B. range
C. mode
D. mean
Answer:
range
Step-by-step explanation:
Answer:
B. range.
Step-by-step explanation:
others are:
» Standard variation.
» Interquatile range.
» Quatiles, deciles and percentiles.
» variance.
[tex]{ \underline{ \blue{ \sf{christ \: † \: alone}}}}[/tex]
Rationalize the denominator and simplify:
a) (√3 - √2)/( √3+√2)
b) (5+2√3)/(7+4√3)
c) (1+√2)/(3 - 2√2)
Answer:
A) (√3-√2)/(√3+√2)
Step-by-step explanation:
i think so
Mrs. Helton is making gift bags as prizes for her math classes. She has 30 little bags of Hershey Kisses and 15 Blow Pops. What is the greatest number of gift bags she can make if all gift bags are the same, and she does not want any left over?
Answer:
3
Step-by-step explanation:
I LOVE CANDY hope it helps 45/3 is hte gretaets factor the answer is 3.. i think
Answer:
45 gift bags.
Step-by-step explanation:
take 30 and divide it by 15. your answer is 2. 2 hk bags and 1 blow pop is equal to 3. so you would multiply 3 by 15 to get your conclusion
Factorize:
6 + 13mn + 7m² n²
explanation
Answer:
1(6+13mn+7m^2n^2)
Step-by-step explanation:
The coefficients and variables in this equation have a common factor of 1, therefore the equation will go back to it's original state if you use 1 as the common factor.
I hope this helps and sorry if am wrong
Write the name of the definition, postulate, property or theorem that justifies the statement about the diagram.
The following are the statement justifications and explanatory reasons ;
(a) AD + DB = AB; Is justified by segment addition postulate
Reason
Segment addition postulate states that let A and B represent two points,
Then a third D can be on the line joining A and B, if and only if the
relationship between the points is according to the equation, AD + DB = AB
only
(b) m∠1 + m∠2 = m∠CDB; Is justified by angle addition postulate
Reason
Angle addition postulate states that given that a point B lies between an angle m∠AOC, then we have;
m∠AOC = m∠AOB + m∠BOC
(c) ∠2 ≅ ∠6; Is justified by vertically opposite angles theorem
Reason
Vertical angles formed by the crossing of two lines are always equal
(d) If D is the midpoint of [tex]\overline{AB}[/tex], then AD = [tex]\dfrac{1}{2}[/tex]×AB; Definition of midpoint
Reason
The midpoint of a line is the point that is of equal distance from both ends of the of the line. It is the point halfway between the endpoints
(e) If [tex]\underset{DF}{\rightarrow}[/tex] bisects ∠CDB then ∠1 ≅ ∠2; Definition of angle bisector
Reason
An angle bisector is a ray or line that divides an angle into two angles that are congruent
(f) m∠ADF + m∠FDB = 180°; Linear pair postulate
Reason
The linear pair postulate states that where we have two angles that form a linear pear (their addition forms a straight line), then the two angles are supplementary (their sum is 180°)
(g) ∠ADF and ∠4 are supplements, then m∠ADF + m∠4 = 180°; Definition of supplementary angle
Reason
Supplementary angle are defined as angles that when added together, have a sum of 180°
(h) If ∠4 is complementary to ∠5, and ∠6 is complementary to ∠5, then ∠4 ≅ ∠6; Transitive property
Reason
Transitive property states that given three real numbers, a, b, and c, if a = b and c = b, then a = c
Learn more about angle properties postulates, and theorems here;
https://brainly.com/question/14437065
find x
2 ^30 divided by 8^9= 2x
Answer:
see below
Step-by-step explanation:
2^30
-------
8^9
Rewriting
8^9
2^3 ^ 9
We know a^b^c = a^(b*c)
2^(3*9) = 2^27
2^30
-------
2^27
We know a^b / a^c = a^(b-c)
2^(30-27) = 2^3
Assuming you mean 2^x
2^3 = 2^x
x=3
If you mean 2x
2^3 = 8
8 = 2x
Divide by 2
4 =x
[tex]\huge\text{Hey there!}[/tex]
[tex]\mathsf{\dfrac{2^{30}}{8^9}=2x}[/tex]
[tex]\mathsf{2^{30}}\\\mathsf{= \bf 1,073,741,824}\\\\\mathsf{8^9}\\\mathsf{= \bf 134,217,728}[/tex]
[tex]\mathsf{\rightarrow \dfrac{1,073,741,824}{134,217,728}= 2x}\\\\\\\mathsf{\dfrac{1,073,741,824}{134,217,728}= \bf 8}\\\\\\\mathsf{\rightarrow \ 8 = 2x}\\\\\\\\\large\textsf{TURN\ the\ EQUATION\ around}\\\\\\\mathsf{\rightarrow\ 2x = 8}\\\\\\\large\textsf{DIVIDE 2 to BOTH SIDES}\\\\\\\mathsf{\dfrac{2x}{2}=\dfrac{8}{2}}\\\\\\\large\textsf{CANCEL out: }\mathsf{\dfrac{2}{2}}\large\textsf{ because it gives you 1}\\\\\\\large\textsf{KEEP: }\mathsf{\dfrac{8}{2}}\large\textsf{ because it gives you the answer of x}[/tex]
[tex]\mathsf{x = \dfrac{8}{2}}\\\\\\\mathsf{x = 8\div 2}\\\\\\\mathsf{x = \bf 4}\\\\\\\\\\\boxed{\boxed{\huge\text{Therefore, your answer is: \textsf{x = 4}}}}\huge\checkmark[/tex]
[tex]\huge\text{Good luck on your assignment \& enjoy your day!}[/tex]
~[tex]\frak{Amphitrite1040:)}[/tex]