Answer:
[tex]\huge\boxed{\sf \frac{a^2+b^2}{2(a^2-b^2)}}[/tex]
Step-by-step explanation:
=> [tex]\sf \frac{a}{2(a+b)} + \frac{b}{2(a-b)}[/tex]
LCM = 2(a+b)(a-b)
=> [tex]\sf \frac{a(a-b)+b(a+b)}{2(a+b)(a-b)}[/tex]
Simplifying further
=> [tex]\sf \frac{a^2-ab+ab+b^2}{2(a^2-b^2)}[/tex]
=> [tex]\sf \frac{a^2+b^2}{2(a^2-b^2)}[/tex]
[tex]\dfrac{a}{2(a+b)}+\dfrac{b}{2(a-b)}=\\\\\dfrac{a(a-b)}{2(a+b)(a-b)}+\dfrac{b(a+b)}{2(a+b)(a-b)}=\\\\\dfrac{a^2-ab}{2(a^2-b^2)}+\dfrac{ab+b^2}{2(a^2-b^2)}=\\\\\dfrac{a^2+b^2}{2(a^2-b^2)}[/tex]
answer answer it it it
Answer:
May-June
Step-by-step explanation:
Notice that:
● during April-May period the Badminton memberships rate of increase is greather then Swimming's since the graph of Badminton is showing a faster increase.
● During June-July period, both functions are decreasing so this period does not satisfy our condition.
● During May-June The Swimming memberships growed faster than Badminton's so its rate of increase is greather than Badminton's.
● during August-September period, The swimming memeberships are increasing slower than Badminton's
So the answer is May-June
Answer:
May-June
Step-by-step explanation:
Find the range of f(x) = –x + 4 for the domain {–3, –2, –1, 1}.
Answer:
{3, 5, 6, 7}
Step-by-step explanation:
Plug in each number form the domain and solve for f(x). The set of f(x) values is the range.
f(x) = -x + 4
f(-3) = -(-3) + 4 = 7
f(-2) = -(-2) + 4 = 6
f(-1) = -(-1) + 4 = 5
f(1) = -1 + 4 = 3
Range: {3, 5, 6, 7}
Use the grouping method to factor x3 + x2 + 2x + 2.
[tex] x^3+x^2+2x+2[/tex]
$x^2(x+1)+2(x+1)=(x^2+2)(x+1)$
Answer:
Step-by-step explanation:
x³ + x² + 2x + 2 = x²(x + 1) + 2(x+1)
= (x + 1) (x² + 2)
Evaluate the expression. r = , v = , w = v ⋅ w
Answer:
v . w= -13
Step-by-step explanation:
Evaluate the expression: v ⋅ w Given the vectors: r = <8, 1, -6>; v = <6, 7, -3>; w = <-7, 5, 2>
Solution
Given the vectors:
r = <8, 1, -6>
v = <6, 7, -3>
w = <-7, 5, 2>
If you're asking about the dot product.
The dot product is a scalar. It is the sum of the product of the corresponding components.
v.w = (6*-7) + (7*5) + (-3*2)
= -42+35-6
= -13.
Question. 7 Let abc be a three-digit number. Then, abc + bca + cab is not divisible by (a) a + b + c (b) 3 (c) 37 (d) 9
Answer:
D. 9
Step-by-step explanation:
Let
abc=100a+10b+c
bca=100b+10c+a
cab=100c+10a+b
abc + bca + cab=(100a+10b+c) + (100b+10c+a) + (100c+10a+b)
=100a + 10b + c + 100b + 10c + a + 100c + 10a + b
Collect like terms
=100a + a + 10a + 10b + 100b + b + c + 10c + 100c
=111a + 111b + 111 c
Factorise
=111(a+b+c)
abc + bca + cab = 111(a+b+c)
Factors of 111(a+b+c)= 1, 3, 37, 111, and (a+b+c)
abc + bca + cab is divisible by a+b+c because it is a factor of 111(a+b+c)
abc + bca + cab is divisible by 3 because 3 is a factor of 111(a+b+c)
abc + bca + cab is divisible by 37 because 37 is a factor of 111(a+b+c)
abc + bca + cab is not divisible by 9 because 9 is not a factor of 111(a+b+c)
the width of a rectangle is 3 less than twice length. the perimeter is 51 cm . what is the length and width of the rectangle.
Answer:
[tex]length = x[/tex]
[tex]width = 2x - 3[/tex]
[tex]perimeter = 2(x + (2x - 3))[/tex]
[tex]51 = 2(3x - 3)[/tex]
[tex]51 = 6(x - 1)[/tex]
[tex]x - 1 = 8.5[/tex]
[tex]x = 9.5cm[/tex]
[tex]length = 9.5[/tex]
[tex]width = 2x - 3 = 2(9.5) - 3 = 16cm[/tex]
How to do this question plz answer my question plz
Answer:
£22.40
Step-by-step explanation:
60% of 12 is 7.2 (you can also write it as 7.20) so you times that by 2 to get 14.4 (you can also write it as 14.40) and [tex]\frac{1}{3}[/tex] of 24 is 8, so you add that to the 14.4 and you get 22.4 (also writen as 22.4) hope this helps!
Two fractions equivalent to 1/3
Answer:
2/6 or 3/9
Step-by-step explanation:
1/3 x 2 = 2/6
1/3 x 3 = 3/9
Answer:
2/6 3/9
Step-by-step explanation:
to find equivalent fractions you can just multiply, or count by the denominator for example, 3 , 6 , 9 and so on and then with the numerator you count how much you went like, if you went to sixths than it was 2 because you skip counted.
Estimate the solution to the system of equations.
Hey there! I'm happy to help!
Since we are using graphs, we will do not need to algebraically solve this system of equations.
When you graph a system of equations, the solution is always the point at which the two lines intersect.
Here is our system of equations graphed. We see that the lines intersect at about (1 1/3, 2 1/3). Therefore, the correct answer is C. x=1 1/3, y=2 1/3
Have a wonderful day! :D
What is the distance between the points (5,1) and (-3,-5)?
Answer
[tex] \boxed{10 \: \: units}[/tex]
Step by step explanation
Let the points be A and B
A ( 5 , 1 ) ⇒ ( x₁ , y₁ )
B ( -3 , -5 )⇒ ( x₂ , y₂ )
Now, let's find the distance between theses two points:
Distance = [tex] \mathsf{ \sqrt{ {(x2 - x1)}^{2} + {(y2 - y1)}^{2} } }[/tex]
Plug the values
[tex] \mathsf{ \sqrt{ {( - 3 - 5)}^{2} + {( - 5 - 1)}^{2} } }[/tex]
Calculate
[tex] \mathsf{ \sqrt{ { ( - 8)}^{2} + {( - 6)}^{2} } }[/tex]
Evaluate the power
[tex] \mathsf{ \sqrt{64 + 36} }[/tex]
Add the numbers
[tex] \mathsf{ \sqrt{100} }[/tex]
Write the number in exponential form with a base of 10
[tex] \mathsf {\sqrt{ {10}^{2} } }[/tex]
Reduce the index of the radical and exponent with 2
[tex] \mathsf{10 \: units}[/tex]
-------------------------------------------------------------------------------
The distance formula is used to determine the distance ( d ) between two points. If the co-ordinates of the two points are ( x₁ , y₁) and ( x₂ , y₂ ) , the distance equals the square root of x₂ - x₁ squared + y₂ - y₁ squared.
Hope I helped!
Best regards!
How many three-letter permutations
can you make using the letters in
BEACH?
Can someone please help me?
Answer:
60
Step-by-step explanation:
nPr=n!/(n-r)!
5!/(5-3)!
(5*4*3*2*1)/(2*1)
120/2
60
Answer:
60
Step-by-step explanation:
A permutation is a rearrangement of its elements in any sequence or linear order.
We are asked to rearrange the word BEACH into three letter permutations.
We find that each letter represents the first letter 5 x 3 = 15
Then distributes 5 places, so that 15 x 5 = 60
Evaluate the following expression for x = 1 and y = -3.
3yºx+x-y
Answer:
8
Step-by-step explanation:
yº (in words, 'y to the power zero') is simply 1. We then have
3yºx+x-y = 3(1) + 2x - y = 3 + 2x - y.
Substituting 1 for x and -3 for y, we get the expression value:
3 + 2 - (-3) = 8
please help, not so good with this subject
Answer:
I believe the answer is d
Step-by-step explanation:
A rational number is a number that can be written as a ratio. That means it can be written as a fraction, in which both the numerator (the number on top) and the denominator (the number on the bottom) are whole numbers.
In this case, since [tex]\sqrt{81}[/tex] can be simplified to 9 and 9 can be written as a fraction (9/1) it is a rational number.
Colin found 22 more mushrooms than Sophie did while they were out picking them in the forest. On the way home, Sophie asked Colin to give her some mushrooms so that they would have equal amounts. How many mushrooms should Colin give to Sophie?
Answer:
11 mushrooms
Step-by-step explanation:
If Colin has 22 more mushrooms than Sophie, then Sofie has 22 less. Half of 22 is 11, so Colin should have 11 less, and Sophie should have 11 more. If you plug a random value into Sophie's mushrooms, this should still work. For example, if Sophie has 2 mushrooms and Colin has 24, they'll both have 13.
Juan works as a tutor for $12 an hour and as a waiter for $7 an hour. This month, he worked a combined total of 110 hours at his two jobs.
Let t be the number of hours Juan worked as a tutor this month. Write an expression for the combined total dollar amount he earned this month.
Answer:
12t+7w=D
t+w=110
Step-by-step explanation:
12t= $12 made every tutor hour
7w= $7 made every waiter hour
D= total dollars made
t+w=110 is the tutor hour and the waiter hour adding together
Answer:
12t + 7y = x
or
5t + 770 = x
Step-by-step explanation:
12t + 7y = x
t = number of hours he worked as a tutor
y = number of hours he worked as a waiter
x = the total amount of money he earned
t + y = 110
=> y = 110 - t
=> 12t + 7(110 - t) = x
=> 12t + 770 - 7t = x
=> 5t + 770 = x
Help please!!! Thank you
Answer:
2y+6x=180
Step-by-step explanation:
Because we know that side lengths BD, DC, and AD are all congruent, we can conclude that triangles BDA and CDA are congruent because they have at least two congruent sides. Since these triangles are both 45-45-90 triangles, angle C is equal to 45 degrees, or 3x. 45/3 is 15, so x=15. Angle B is equal to 45 degrees, or y, so y=45.
From there, we plug these numbers into the equation with 2(45) + 6(15), or 90+90 = 180.
If two angles are complements of each other then each angle is
Answer:
each angle is less than 90 degrees. angle 1+angle2=90 degrees
Step-by-step explanation:
Given the following angles, what ray is the common side of ZCFD and ZDFE?
D
E
0
Ray FD
Ray FE
Ray FC
Answer:
ray df or ray fd because both of these letters are consecutive in both of the angles.
Step-by-step explanation:
Answer:
Answer is Ray FD
Step-by-step explanation:
Given the following angles, what ray is the common side of ∠CFD and ∠DFE?
A. Ray FC
B. Ray FE
C. Ray FD
I need help on answering this question
Answer:
The answer is 72°Step-by-step explanation:
Since < RQS = < QLK and < RQS = x
< QLK is also x
< QLK and < KLM lie on a straight line
Angles on a straight line add up to 180°
To find x add < QLK and < KLM and equate them to 180°
That's
< QLK + < KLM = 180°
x + x - 36 = 180
2x = 180 - 36
2x = 144
Divide both sides by 2
We have the final answer as
x = 72°Hope this helps you
the length of a rectangle is three times its width .if the perimeter is 72cm,calculate the width of the rectangle.
Answer:
Width = 9
Step-by-step explanation:
According to the problem...
3x = length
x = width
2(3x + x) = 72
3x+x = 36
4x = 36
x = 9 = width
Hope that helped!!! k
Use the diagram to complete the statement. Triangle J K L is shown. Angle K J L is a right angle. Angle J K L is 52 degrees and angle K L J is 38 degrees. Given △JKL, sin(38°) equals cos(38°). cos(52°). tan(38°). tan(52°).
Answer:
[tex]\bold{sin(38^\circ)=cos(52^\circ)}[/tex]
Step-by-step explanation:
Given that [tex]\triangle KJL[/tex] is a right angled triangle.
[tex]\angle JKL = 52^\circ\\\angle KLJ = 38^\circ[/tex]
and
[tex]\angle KJL = 90^\circ[/tex]
Kindly refer to the attached image of [tex]\triangle KJL[/tex] in which all the given angles are shown.
To find:
sin(38°) = ?
a) cos(38°)
b) cos(52°)
c) tan(38°)
d) tan(52°)
Solution:
Let us use the trigonometric identities in the given [tex]\triangle KJL[/tex].
We have to find the value of sin(38°).
We know that sine trigonometric identity is given as:
[tex]sin\theta =\dfrac{Perpendicular}{Hypotenuse}[/tex]
[tex]sin(\angle JLK) = \dfrac{JK}{KL}\\OR\\sin(38^\circ) = \dfrac{JK}{KL}[/tex]....... (1)
Now, let us find out the values of trigonometric functions given in options one by one:
[tex]cos\theta =\dfrac{Base}{Hypotenuse}[/tex]
[tex]cos(\angle JLK) = \dfrac{JL}{KL}\\OR\\cos(38^\circ) = \dfrac{JL}{KL}[/tex]....... (2)
By (1) and (2):
sin(38°) [tex]\neq[/tex] cos(38°).
[tex]cos(\angle JKL) = \dfrac{JK}{KL}\\OR\\cos(52^\circ) = \dfrac{JK}{KL}[/tex] ...... (3)
Comparing equations (1) and (3):
we get the both are same.
[tex]\therefore \bold{sin(38^\circ)=cos(52^\circ)}[/tex]
Answer:
B in EDG
Step-by-step explanation:
Consider the following data set with a mean of 12: 9, 11, 12, 16 Using the equation below or the standard deviation formula in Excel, calculate the standard deviation for this data set. Answer choices are rounded to the hundredths place. s equals square root of fraction numerator 1 over denominator n minus 1 end fraction sum from i equals 1 to n of open parentheses X subscript i minus X with bar on top close parentheses squared end root
Answer:
1.83
Step-by-step explanation:
The standard deviation of given data set rounded to the hundredth place is 2.55
Given data set is: 9, 11, 12, 16
The mean of the data set is 12.
The formula for standard deviation is written as:
[tex]\sigma = \sqrt{{\sum^\:n}_{i=1}{\dfrac{(x_i-\overline{x})^2}{n}}\\[/tex]
here n = 4 and x assumes 9, 11, 12 and 16 and mean is 12, thus putting values in the given formula,
[tex]\sigma = \sqrt{\dfrac{[(9-12)^2 + (11-12)^2 + (12-12)^2 + (16-12)^2]}{4}}\\\sigma = \sqrt{\dfrac{[3^2 + 1^2 + 4^2]}{4}}\\\sigma = \sqrt{\dfrac{26}{4}}\\\sigma = \sqrt{6.5}\\\sigma = 2.549..\\\sigma \approx 2.55[/tex]
Thus, standard deviation of given data set rounded to the hundredth place is 2.55
Learn more here:
https://brainly.com/question/12402189
Find the length of AC
А
12°
C
B
44
Answer:
9.35
Step-by-step explanation:
Using basic trigonometric ratios,
tan X° = opposite/adjacent
but,X° = 12°
opposite = AC.
adjacent = 44
tan X° = AC/44
AC = tan(12°) × 44
AC = 9.35
Expansion of (x + 3y)(x - y) gives
Answer:
x^2 +2xy +3y^2
Step-by-step explanation:
(x + 3y)(x - y)
Foil
first x*x = x^2
outer x*-y = -xy
inner 3y^x = 3xy
last 3y*y = 3y^2
Add them together
x^2 -xy +3xy +3y^2
Combine like terms
x^2 +2xy +3y^2
Solve.
-7(2z + 4) = 21
Answer:
-7/2
Step-by-step explanation:
cuz thats right
A transformation T : (x, y) (x + 3, y + 1). The preimage of the point (4, 3) is (-1, -2) (7, 4) (1, 2)
Answer:
(1, 2)
Step-by-step explanation:
'Undo' the rule on the image to get the pre-image.
[tex](4,3)\rightarrow(4-3,3-1)\rightarrow\boxed{(1,2)}[/tex]
(1,2) would be the pre-image to (4,3).
To see if it's correct:
[tex](1,2)\rightarrow(1+3,2+1)\rightarrow(4,3)[/tex]
(1,2) should be correct.
Answer:
the correct answer is (1,2)
Step-by-step explanation:
Choose all of the expressions that are equal to −9. |−9| −(−9) −|−9| −|9| the distance from zero to nine the opposite of nine
Answer:
|−9|, −|−9| and −|9|Step-by-step explanation:
Before we choose all the expression that is equal to -9, we must understand that the modulus of a value can return both its positive and negative value. For example, Modulus of b can either be +b or -b i.e |b| = +b or -b
Hence the following expression are all equal ro -9
a) |−9| is equivalent to -9 because the absolute value of -9 i.e |−9| can return both -9 and 9
b) −|−9| is also equivalent to -9. The modulus of -9 is also equal to 9, hence negating 9 will give us -9. This shows that −|−9| = −|9| = −9
c) −|9| is also equivalent to -9. This has been established in b above.
Answer: -|-9|, -|9|, and the opposite of nine
Step-by-step explanation: The absolute value symbol is | |. |-9| is 9 but add that - to it and it's -9. The absolute value of 9 is 9, add the - to it to get -9.
the opposite of 9 is -9.
67.77759 rounded to nearest meter
Answer:
68
Step-by-step explanation:
0.7 rounds to 1 so add 1 to 67 to get 68
Point B lies between points A and C, and all three points lie on point AC, which of the following is not true? A. Point B lies on segment AC B. Point C lies on ray AB C. Point A lies on ray BC D. Point C lies on line AB
Answer:
C. Point A lies on ray BC
Step-by-step explanation:
Points A and C can be connected by a segment which would be a measure of the distance between the points. Locating point B between AC, makes the three points lying on segment AC.
A ray extends from a point to infinity, a line extend to infinity on both sides, while a segment is known to have two endpoints. Therefore, points AC are the end points of the segment AC, and point B between this segment confirms that point B lies on the segment AC. Therefore, Point A lies on ray BC is not correct.
What the answer question
Answer:
117.79
Step-by-step explanation: