Answer:
16 + 8b ≥ 50
4500
Step-by-step explanation:
He needs at least 50 rooms and has already reserved 16
They are in groups of 8
16 + 8b ≥ 50
Subtract 16 from each side
16+8b-16 ≥ 50 -16
8b≥ 34
Divide by 6
8b/8 ≥ 34/8
b≥ 4.25
We need to round up since we need at least 50
b = 5 since we want the least amount of rooms
Each block is 900
5*900 = 4500 more that he will have to spend
are:
4. Suppose that the distance of fly balls hit to the outfield (in baseball) is normally
distributed. We randomly sample 27 fly balls. Their recorded distances in feet
234, 310, 285, 249, 210, 311, 265, 290, 308,
254, 295, 287, 231, 302, 325, 308, 221, 237,
312, 277, 259, 223, 340, 204, 214, 303, 309
Let X be the distance of a fly ball.
Use Excel to calculate the following:
a. (1 pt) mean of the sample, x =
b. (1 pt) standard deviation of the sample, s =
C. (2 pts) Calculate the t-score at a 96% confidence level:
d. (2 pts) Calculate the Error Bound (EBM), using the formula, EBM =
(t)(s//n)
e. (1 pt) At 96% confidence level, provide the confidence interval (CI) for the
mean distance in feet of a fly ball.
hantor 92
D
Step-by-step explanation:
a. The mean can be found using the AVERAGE() function.
x = 272.7
b. The standard deviation can be found with the STDEV() function.
s = 39.9
c. The t-score can be found with the T.INV.2T() function. The confidence level is 0.04, and the degrees of freedom is 26.
t = 2.162
d. Find the lower and upper ends of the confidence interval.
Lower = 272.7 − 2.162 × 39.9 = 186.5
Upper = 272.7 + 2.162 × 39.9 = 358.9
Determine if the matrix is symmetric.
(-1 -5 -9 8)
The transpose of the given matrix is nothing. Because this is_____to the given matrix, the given matrix_____symmetric.
Answer:
because this is equal to the given matrix, the given matrix is symmetric.
Step-by-step explanation:
A symmetric matrix is a square matrix which has same number of rows and columns. Square matrix is equal to transpose. Equal matrices have equal dimensions. The given matrix is symmetric because the rows and columns are equally distributed.
88 feet/second = 60 miles/hour. How many feet per second is 1 mile/hour? (Hint: divide both sides of the equation
by the same amount.)
Round to the nearest thousandth.
One mile per hour is equivalent to
ao feet/second
!2,19,26 what comes nxt
Answer:
12 , 19 , 26 , 33
Explaination:Here, n+7
12+7=19
19+7=26
So,
26+7=33
Hope you understand ❣
Step-by-step explanation:
12 , 19 , 26 , ?
Given
___________
a1= 12
a2= 19
a3 = 26
d= ?
a4 = ?
––——————
we can solve this by using formula from Ap .
But for this we have to find d
As we know that
common difference(d) = a2-a1 = 19 -12
= 7
so difference after every no is 7 so
a4 = a3 + d
= 26 +7
= 33
So 33 is ur answer mate
Hope it helps
1) Dada a função, em reais, definida por f(x)=3.x-5. calcule :
a) f(2)=
b) f(-1)=
Answer:
f(x)= 3x-5
f(2) = 3(2)-5 = 6-5= 1
f(-1)= 3(-1)-5= -3-5= -8
Hope this helps
if u have question let me know in comments ^°^
(16 points) Find the radius of convergence and the interval of convergence of the power series. g
Answer:
The equation to be solved is missing in the question.
I will explain power series and ways to find the radius and interval of convergence of a powers series in the attached image.
Step-by-step explanation:
Understand the power seriesFind radius of convergenceDetermine interval of convergenceCompute (3/4)*(8/9)*(15/16)*(24/25)*(35/36)*(48/49)*(63/64)*(80/81)*(99/100) Express your answer in the simplest way possible. (Suggestion: First, try computing 3/4*8/9 then 3/4*8/9*15/16 and so on. Look for patterns.
Answer:
[tex](\frac{3}{4})*(\frac{8}{9})*(\frac{15}{16})*(\frac{24}{25})*(\frac{35}{36})*(\frac{48}{49})*(\frac{63}{64})*(\frac{80}{81})*(\frac{99}{100}) = \frac{11}{20}[/tex]
Step-by-step explanation:
Given
[tex](\frac{3}{4})*(\frac{8}{9})*(\frac{15}{16})*(\frac{24}{25})*(\frac{35}{36})*(\frac{48}{49})*(\frac{63}{64})*(\frac{80}{81})*(\frac{99}{100})[/tex]
Required
Simplify
For clarity, group the expression in threes
[tex]((\frac{3}{4})*(\frac{8}{9})*(\frac{15}{16}))*((\frac{24}{25})*(\frac{35}{36})*(\frac{48}{49}))*((\frac{63}{64})*(\frac{80}{81})*(\frac{99}{100}))[/tex]
Evaluate the first group [Divide 8 by 4]
[tex]((\frac{3}{1})*(\frac{2}{9})*(\frac{15}{16}))*((\frac{24}{25})*(\frac{35}{36})*(\frac{48}{49}))*((\frac{63}{64})*(\frac{80}{81})*(\frac{99}{100}))[/tex]
[Divide 9 by 3]
[tex]((\frac{1}{1})*(\frac{2}{3})*(\frac{15}{16}))*((\frac{24}{25})*(\frac{35}{36})*(\frac{48}{49}))*((\frac{63}{64})*(\frac{80}{81})*(\frac{99}{100}))[/tex]
[tex]((\frac{2}{3})*(\frac{15}{16}))*((\frac{24}{25})*(\frac{35}{36})*(\frac{48}{49}))*((\frac{63}{64})*(\frac{80}{81})*(\frac{99}{100}))[/tex]
[Divide 15 by 3]
[tex]((\frac{2}{1})*(\frac{5}{16}))*((\frac{24}{25})*(\frac{35}{36})*(\frac{48}{49}))*((\frac{63}{64})*(\frac{80}{81})*(\frac{99}{100}))[/tex]
[Divide 16 by 2]
[tex]((\frac{1}{1})*(\frac{5}{8}))*((\frac{24}{25})*(\frac{35}{36})*(\frac{48}{49}))*((\frac{63}{64})*(\frac{80}{81})*(\frac{99}{100}))[/tex]
[tex](\frac{5}{8})*((\frac{24}{25})*(\frac{35}{36})*(\frac{48}{49}))*((\frac{63}{64})*(\frac{80}{81})*(\frac{99}{100}))[/tex]
Evaluate the second group [Divide 35 and 25 by 5]
[tex](\frac{5}{8})*((\frac{24}{5})*(\frac{7}{36})*(\frac{48}{49}))*((\frac{63}{64})*(\frac{80}{81})*(\frac{99}{100}))[/tex]
[Divide 49 by 7]
[tex](\frac{5}{8})*((\frac{24}{5})*(\frac{1}{3})*(\frac{4}{7}))*((\frac{63}{64})*(\frac{80}{81})*(\frac{99}{100}))[/tex]
[Divide 24 by 3]
[tex](\frac{5}{8})*((\frac{8}{5})*(\frac{1}{1})*(\frac{4}{7}))*((\frac{63}{64})*(\frac{80}{81})*(\frac{99}{100}))[/tex]
[tex](\frac{5}{8})*((\frac{8}{5})*(\frac{4}{7}))*((\frac{63}{64})*(\frac{80}{81})*(\frac{99}{100}))[/tex]
Merge the first and second group
[tex]((\frac{5}{8})*(\frac{8}{5})*(\frac{4}{7}))*((\frac{63}{64})*(\frac{80}{81})*(\frac{99}{100}))[/tex]
[tex](1*(\frac{4}{7}))*((\frac{63}{64})*(\frac{80}{81})*(\frac{99}{100}))[/tex]
[tex](\frac{4}{7})*((\frac{63}{64})*(\frac{80}{81})*(\frac{99}{100}))[/tex]
Evaluate the last group [Divide 99 by 9]
[tex](\frac{4}{7})*((\frac{63}{64})*(\frac{80}{9})*(\frac{11}{100}))[/tex]
[Divide 63 by 9]
[tex](\frac{4}{7})*((\frac{7}{64})*(\frac{80}{1})*(\frac{11}{100}))[/tex]
[Divide 64 and 80 by 8]
[tex](\frac{4}{7})*((\frac{7}{8})*(\frac{10}{1})*(\frac{11}{100}))[/tex]
[Divide 10 and 4 by 2]
[tex](\frac{4}{7})*((\frac{7}{4})*(\frac{5}{1})*(\frac{11}{100}))[/tex]
[Divide 100 by 5]
[tex](\frac{4}{7})*((\frac{7}{4})*(\frac{1}{1})*(\frac{11}{20}))[/tex]
[tex](\frac{4}{7})*((\frac{7}{4})*(\frac{11}{20}))[/tex]
[tex](\frac{4}{7})*(\frac{7}{4})*(\frac{11}{20})[/tex]
[tex]1*(\frac{11}{20})[/tex]
[tex]\frac{11}{20}[/tex]
Hence;
[tex](\frac{3}{4})*(\frac{8}{9})*(\frac{15}{16})*(\frac{24}{25})*(\frac{35}{36})*(\frac{48}{49})*(\frac{63}{64})*(\frac{80}{81})*(\frac{99}{100}) = \frac{11}{20}[/tex]
Max believes that the sales of coffee at his coffee shop depend upon the weather. He has taken a sample of 5 days. Below you are given the results of the sample.
Cups of Coffee Sold Temperature
350 50
200 60
210 70
100 80
60 90
40 100
A. Which variable is the dependent variable?
B. Compute the least squares estimated line.
C. Compute the correlation coefficient between temperature and the sales of coffee.
D. Predict sales of a 90 degree day.
Answer:
1. cups of coffee sold
2.Y = 605.7 - 5.943x
3. -0.952
4. 70.84
Step-by-step explanation:
1. the dependent variable in this question is the cups of coffee sold
2. least square estimation line
Y = a+bx
we have y as the cups of coffee sold
x as temperature.
first we will have to solve for a and then b
∑X = 450
∑Y = 960
∑XY = 61600
∑X² = 35500
∑Y² = 221800
a = ∑y∑x²-∑x∑xy/n∑x²-(∑x)²
a = 960 * 35500-450*61600/6*35500-450²
a = 6360000/10500
= 605.7
b = n∑xy - ∑x∑y/n∑x²-(∑x)²
= 6*61600 - 450*960/6*35500 - 450²
= -5.943
the regression line
Y = a + bx
Y = 605.7 - 5.943x
3. we are to find correlation coefficient
r = n∑xy - ∑x∑y multiplied by√(n∑x²-(∑x)² * (n∑y² - (∑y)²)
= 6*61600 -960*450/√(6*35500 - 450²)*(6*221800 - 960²)
=-62400/√4296600000
= -62400/65548.5
= -0.952
4. we have to predict sales of a 90 degree day fro the regression line
Y = 605.7 - 5.943x
y = 605.7 - 5.943(90)
y = 605.7 - 534.87
= 70.84
Twice the difference of a number and 9 is 3. Use the variable b for the unknown number.
Answer:
b = 10.5
Step-by-step explanation:
2(b-9) = 3
then:
2*b + 2*-9 = 3
2b - 18 = 3
2b = 3 + 18
2b = 21
b = 21/2
b = 10.5
check:
2(10.5 - 9) = 3
2*1.5 = 3
if given the diameter how can you find the radius
Answer:
Divide the diameter by 2.
Step-by-step explanation:
The radius of any circle is always the end to the center.
The diameter is a point of the circle to the opposite side.
This means that the diameter is twice the size of the radius, so to find the radius from the diameter, divide the diameter by 2.
Hope this helped!
Answer:
Divide the diameter by 2. d/2=r
Step-by-step explanation:
If a diameter has been given instead of a radius, you can find the radius by dividing the diameter by 2, for example.
If the diameter was 10, the radius would 10/2=5.
If f(x)=x/2-3and g(x)=4x^2+x-4, find (f+g)(x)
Step-by-step explanation:
(f+g)(x) = f(x) + g(x)
= x/2-3 + 4x²+x+4
= ..........
An investigator claims, with 95 percent confidence, that the interval between 10 and 16 miles includes the mean commute distance for all California commuters. To have 95 percent confidence signifies that
Answer:
Hello the options to your question is missing below are the options
A) if sample means were obtained for a long series of samples, approximately 95 percent of all sample means would be between 10 and 16 miles
B.the unknown population mean is definitely between 10 and 16 miles
C.if these intervals were constructed for a long series of samples, approximately 95 percent would include the unknown mean commute distance for all Californians
D.the unknown population mean is between 10 and 16 miles with probability .95
Answer : if these intervals were constructed for a long series of samples, approximately 95 percent would include the unknown mean commute distance for all Californians ( c )
Step-by-step explanation:
95% confidence
interval = 10 to 16 miles
To have 95% confidence signifies that if these intervals were constructed for a long series of samples, approximately 95 percent would include the unknown mean commute distance for all Californians
confidence interval covers a range of samples/values in the interval and the higher the % of the confidence interval the more precise the interval is,
The quotient of 8 and the difference of three and a number.
Answer: 8÷(3-x)
Answer:
Below
Step-by-step explanation:
● 8 ÷ (3-x)
Dividing by 3-x is like multiplying by 1/(3-x)
● 8 × (1/3-x)
● 8 /(3-x)
please help !! Solve –2.5x ≤ 25
Answer:
x ≥-10
Step-by-step explanation:
–2.5x ≤ 25
Divide each side by -2.5, remembering to flip the inequality
–2.5x/-2.5 ≥ 25 /-2.5
x ≥-10
Answer:
[tex]x\leq -10[/tex]
Step-by-step explanation:
[tex]-2.5x\leq 25[/tex]-----> Multiply by -1:
[tex]2.5x\geq -25[/tex]-----> Divide by 2.5:
[tex]x\geq -10[/tex]
Hope this helps!
I need help please help meee I don’t understand
Answer:
204
Step-by-step explanation:
To simplify the shape, you can do multiple things. I've opted to shave down both prongs to take it from a 'T' shape to a rectangular prism.
For height of the prongs, take 4 from 6.
6 - 4 = 2
Divide by 2 as there are 2 prongs.
2 / 2 = 1
Remember L * W * H
6 * 3 * 1 = 18
Remember that there are two prongs!
3 + 4 = 7
6 * 7 * 4 = 168
168 + 2(18) = 204
Match the base to the corresponding height.
Base (b)
Height (h)
b
h
h
b
The base 1 is matched with height 2, base 2 is matched with height 3 and base 3 is matched with height 1. The base to the corresponding height is matched in the attached figure.
What is a triangle?Triangle is the closed shaped polygon which has 3 sides and 3 interior angles. The height of the triangle is the dimension of the elevation from the opposite peak to the length of the base.
Thus, the base 1 is matched with height 2, base 2 is matched with height 3 and base 3 is matched with height 1. The base to the corresponding height is matched in the attached figure.
In the given figure, three triangles is shown with base and height. Here,
The base 1 is matched with height 2, as the height shown in figure 2 is the dimension of the elevation from the opposite peak to the length of the base 1.Similarly, base 2 is matched with height 3.Base 3 is matched with height 1.
Thus, the base 1 is matched with height 2, base 2 is matched with height 3 and base 3 is matched with height 1. The base to the corresponding height is matched in the attached figure.
Learn more about the base and height of the triangle here;
https://brainly.com/question/26043588
#SPJ2
Fill in the following blanks to prove that n 2^1 n < 2^n n+1 < 2^(n+1) is Box 3 Options: True | False Next, assume that Box 4 Options: 1 < 2^1 k + 1 < 2^(k+1) k < 2^k as we attempt to prove Box 5 Options: k < 2^k k + 1 < 2^(k+1) 2 < 2^1 Therefore, we can conclude that Box 6 Options: k < 2^k k + 1 < 2^(k+1) 2^1 < 2^k k + 2 < 2^(k+2)
Answer:
see below
Step-by-step explanation:
n < 2^n
First let n=1
1 < 2^1
1 <2 This is true
Next, assume that
(k) < 2^(k)
as we attempt to prove that
(k+1) < 2^(k+1)
.
.
.
Therefore we can conclude that
k+1 < 2^(k+1)
Answer:
Step-by-step explanation:
Hello, please consider the following.
First, assume that n equals [tex]\boxed{1}[/tex]. Therefore, [tex]\boxed{1<2^1}[/tex] is [tex]\boxed{\text{True}}[/tex]
Next, assume that [tex]\boxed{k<2^k}[/tex], as we attempt to prove [tex]\boxed{k+1<2^{k+1}}[/tex]
Since .... Therefore, we can conclude that [tex]\boxed{k+1<2^{k+1}}[/tex]
The choice for the last box is confusing. Based on your feedback, we can assume that we are still in the step 2 though.
And the last step which is not included in your question is the conclusion where we can say that we prove that for any integer [tex]n\geq 1[/tex], we have [tex]n<2^n[/tex].
Hope this helps.
Do not hesitate if you need further explanation.
Thank you
A line passes through (-5, -3) and is parallel to -3x - 7y = 10. The equation of the line in slope-intercept form is _____
Answer:
-3x - 7y = 36
Step-by-step explanation:
The given line -3x - 7y = 10 has an infinite number of parallel lines, all of the form -3x - 7y = C.
If we want the equation of a line parallel to -3x - 7y = 10 that passes through (-5, -3), we substitute -5 for x in -3x - 7y = 10 and substitute -3 for y in -3x - 7y = 10:
-3(-5) - 7(-3) = C, or
15 + 21 = C, or C = 36
Then the desired equation is -3x - 7y = 36.
Find (fºg)(2) and (f+g)(2) when f(x)= 1/x and g(x) = 4x +9
[tex](f\circ g)(2)=\dfrac{1}{4\cdot2+9}=\dfrac{1}{17}\\\\(f+g)(2)=\dfrac{1}{2}+4\cdot2+9=\dfrac{1}{2}+17=\dfrac{1}{2}+\dfrac{34}{2}=\dfrac{35}{2}[/tex]
Two sides of a triangle are equal length. The length of the third side exceeds the length of one of the other sides by 3 centimeters. The perimeter of the triangle is 93 centimeters. Find the length of each of the shorter sides of the triangle
Answer:
30 cm
Step-by-step explanation:
let x be the lenght of the two sides of equal lenghts, so the other is x+3
and the perimeter is x+x +x +3
P=3x+3
P=3(x+1)
93=3(x+1)
31=x+1
x=30
so the shorter sides are of 30 centimeters and the longest is 33
Please help . I’ll mark you as brainliest if correct!
Answer:
Stocks = $15,500
Bonds = $107,250
CD's = $47,250
Step-by-step explanation:
S + B + C = 170000
.0325S + .038B .067C = 7745
60,000 + C = b
S = $15,500
B = $107,250
C = $47,250
Identify the sample space of the probability experiment and determine the number of outcomes in the sample space. Playing the game of roulette, where the wheel consists of slots numbered 00, 0, 1, 2, ..., To play the game, a metal ball is spun around the wheel and is allowed to fall into one of the numbered slots.a. The sample space is (00, 0}. b. The sample space is (00, 0, 1,2,., 33). c. The sample space is (00). d. The sample space is (1, 2,..., 33).
Answer:
The correct option is (B).
Step-by-step explanation:
It is provided that, in a game of roulette the wheel consists of slots numbered 00, 0, 1, 2, ..., 33.
The sample space of an experiment, is the set of all the possible outcomes of the random trials.
There are a total of 35 slots on the roulette wheel where the ball can land.
So, there are a total of 35 outcomes for one rotation of the wheel.
Then the sample space consists of all the 35 outcomes, i.e.
S = {00, 0, 1, 2, 3, ..., 33}
Thus, the correct option is (B).
Find an equation of the tangent to the curve at the given point by both eliminating the parameter and without eliminating the parameter. x = 5 + ln(t), y = t2 + 2, (5, 3)
Answer:
Step-by-step explanation:
Given that:
[tex]x = 5 + In (t)[/tex]
[tex]y = t^2+2[/tex]
At point (5,3)
To find an equation of the tangent to the curve at the given point,
By without eliminating the parameter
[tex]\dfrac{dx}{dt}= \dfrac{1}{t}[/tex]
[tex]\dfrac{dy}{dt}= 2t[/tex]
[tex]\dfrac{dy}{dx}= \dfrac{ \dfrac{dy}{dt} }{\dfrac{dx}{dt} }[/tex]
[tex]\dfrac{dy}{dx}= \dfrac{ 2t }{\dfrac{1}{t} }[/tex]
[tex]\dfrac{dy}{dx}= 2t^2[/tex]
[tex]\dfrac{dy}{dx}_{ (5,3)}= 2t^2_{ (5,3)}[/tex]
t² + 5 = 4
t² = 4 - 5
t² = - 1
Then;
[tex]\dfrac{dy}{dx}_{ (5,3)}= -2[/tex]
The equation of the tangent is:
[tex]y -y_1 = m(x-x_1)[/tex]
[tex](y-3 )= -2(x - 5)[/tex]
y - 3 = -2x +10
y = -2x + 7
y = 2x - 7
By eliminating the parameter
x = 5 + In(t)
In(t) = 5 - x
[tex]t =e^{x-5}[/tex]
[tex]y = (e^{x-5})^2+5[/tex][tex]y = (e^{2x-10})+5[/tex]
[tex]\dfrac{dy}{dx} = 2e^{2x-10}[/tex]
[tex]\dfrac{dy}{dx}_{(5,3)} = 2e^{10-10}[/tex]
[tex]\dfrac{dy}{dx}_{(5,3)} = 2[/tex]
The equation of the tangent is:
[tex]y -y_1 = m(x-x_1)[/tex]
[tex](y-3 )= -2(x - 5)[/tex]
y - 3 = -2x +10
y = -2x + 7
y = 2x - 7
It takes amy 8 minutes to mow 1/6 of her backyard. At that rate how many more minutes will it take her to finish mowing her backyard
Answer:
40 minutes
Step-by-step explanation:
If it takes her 8 minutes to mow 1/6 of it, we can find the total amount of time it will take by multiplying 8 by 6, since 1/6 times 6 is 1 (1 represents the whole lawn mowed)
8(6) = 48
The question asks for how many more minutes it will take, so subtract 48 by 8.
48 - 8 = 40
= 40 minutes
Answer:
40 minutes
Step-by-step explanation:
We can use ratios to solve
8 minutes x minutes
------------------- = ----------------
1/6 yard 1 yard
Using cross products
8 * 1 = 1/6 x
Multiply each side by 6
8*6 = 1/6 * x * 6
48 = x
48 minutes total
She has already done 8 minutes
48-8 = 40 minutes
given that f(x)=x^2-4x -3 and g(x)=x+3/4 solve for f(g(x)) when x=9
Answer:
f(g(9)) = 945/16
Step-by-step explanation:
To find f(g(x)), you have to substitute g(x) wherever there is an x in f(x).
g(x) = x + 3/4
f(x) = x² - 4x - 3
f(g(x)) = (x + 3/4)² - 4(x + 3/4) - 3
f(g(x)) = x² + 3/2x + 9/16 - 4x + 3 - 3
f(g(x)) = x² - 5/2x + 9/16 + 3 - 3
f(g(x)) = x² - 5/2x + 9/16
Now, put a 9 wherever there is an x in f(g(x)).
f(g(9)) = (9)² - 5/2(9) + 9/16
f(g(9)) = 81 - 5/2(9) + 9/16
f(g(9)) = 81 - 45/2 + 9/16
f(g(9)) = 117/2 + 9/16
f(g(9)) = 945/16
If the normality requirement is not satisfied (that is, np(1p) is not at least 10), then a 95% confidence interval about the population proportion will include the population proportion in ________ 95% of the intervals. (This is a reading assessment question. Be certain of your answer because you only get one attempt on this question.)
Answer:
less than
Step-by-step explanation:
If the normality requirement is not satisfied (that is, np(1 - p) is not at least 10), then a 95% confidence interval about the population proportion will include the population proportion in _less than__ 95% of the intervals.
The confidence interval consist of all reasonable values of a population mean. These are value for which the null hypothesis will not be rejected.
So, let assume that If the 95% confidence interval contains the value for the hypothesized mean, then the sample mean is reasonably close to the hypothesized mean. The effect of this is that the p- value is going to be greater than 0.05, so we fail to reject the null hypothesis.
On the other hand,
If the 95% confidence interval do not contains the value for the hypothesized mean, then the sample mean is far away from the hypothesized mean. The effect of this is that the p- value is going to be lesser than 0.05, so we reject the null hypothesis.
Karim has two investments, one in Company A, and another in Company B. Karim purchased 3,000 shares in company A at $2.65 per share. Since purchasing the shares, the price per share increased to $2.95 per share, after which point Karim decided to sell, realizing a profit. At the same time, Karim purchased 2,000 shares in Company B at $1.55 per share. Since purchasing the shares, the share price fell to $1.30 per share, after which Karim decided to sell the shares, suffering a loss. Karim is required to pay tax at a rate of 28% on the combined profit from both investments. Calculate how much tax Karim must pay.
Answer:
A:$2478
B:$728
Total:$3206
Step-by-step explanation:
2.95x3000=8850
1.30x2000=2600
8850x0.28=2478
2600x0.28=728
2478+728=3206
find the area of square whose side is 2.5 cm
Answer:
6.25
Step-by-step explanation:
2.5 *2.5=6.25
Answer:
6.25cm^2.
Step-by-step explanation:
To find the area of a square, you multiply the two sides, 2.5✖️2.5.
This gives the area of 6.25cm^2.
Hope this helped!
Have a nice day:)
A box contains 40 identical discs which are either red or white if probably picking a red disc is 1/4. Calculate the number of;
1. White disc.
2. red disc that should be added such that the probability of picking a red disc will be 1/4
I’m struggling to understand this problem somebody please explain it to me thanks!!
ax-5d=3cx-2+7
Answer:
x = (5 +5d)/(a -3c)
Step-by-step explanation:
Maybe you're to solve for x.
__
This is a typical "3-step" linear equation.
First, you collect terms with the variable x on one side of the equation. You do that by subtracting from both sides the x-term you don't want where it is.
We choose to remove the 3cx term from the right side, so we subtract it from both sides.
ax -3cx -5d = 3cx -3cx +5 . . . . . . we have combined the constants, too
x(a -3c) -5d = 5 . . . . . . simplify and factor out x
Second, you remove any terms not containing x from the side of the equation with the x-terms. You do that by adding their opposite to both sides of the equation.
We need to remove the -5d term, so we add 5d to both sides.
x(a -3c) -5d +5d = 5 +5d
x(a -3c) = 5 +5d . . . . . . . . . . simplify
Third, we divide by the coefficient of x. We do that to both sides of the equation. We had to put parentheses around the terms on the right, because we're dividing the whole right side of the equation by (a-3c).
x(a -3c)/(a -3c) = (5 +5d)/(a -3c)
x = (5 +5d)/(a -3c)