Answer:
The answer is D
Step-by-step explanation:
the first one is equal to the equation 4 < 3 because of absolute value, second 4 < 3, third 3 < -4, fourth -3 < 4
Kitty buys hot chocolate sachets. There are 14 hot chocolate sachets in a small box. A small box costs £3.49. Kitty uses 3 hot chocolate sachets each day. Work out the how much Kitty spends on hot chocolate sachets in a four-week period.
Answer:
24.43
Step-by-step explanation:
first find the price of One sachets
next Find the no. of sachets consumed for four weeks..
and at last the product of the price of one sachet and no. of sachets consumed will give the answer...
Mathematical operation are above...
please help me.... The question no.b and would like to request you all just give me correct answer.
Answer: see proof below
Step-by-step explanation:
You will need the following identities to prove this:
[tex]\tan\ (\alpha-\beta)=\dfrac{\tan \alpha-\tan \beta}{1+\tan \alpha\cdot \tan \beta}[/tex]
[tex]\cos\ 2\alpha=\cos^2 \alpha-\sin^2\alpha[/tex]
LHS → RHS
[tex]\dfrac{2\tan\ (45^o-A)}{1+\tan^2\ (45^o-A)}\\\\\\=\dfrac{2\bigg(\dfrac{\tan\ 45^o-\tan\ A}{1+\tan\ 45^o\cdot \tan\ A}\bigg)}{1+\bigg(\dfrac{\tan\ 45^o-\tan\ A}{1+\tan\ 45^o\cdot \tan\ A}\bigg)^2}\\\\\\=\dfrac{2\bigg(\dfrac{1-\tan\ A}{1+\tan\ A}\bigg)}{1+\bigg(\dfrac{1-\tan\ A}{1+\tan\ A}\bigg)^2}\\\\\\=\dfrac{2\bigg(\dfrac{1-\tan A}{1+\tan A}\bigg)}{1+\bigg(\dfrac{1-2\tan\A+\tan^2 A}{1+2\tan A+\tan^2A}\bigg)}\\[/tex]
[tex]=\dfrac{2\bigg(\dfrac{1-\tan A}{1+\tan A}\bigg)}{\dfrac{(1+2\tan A+\tan^2A)+(1-2\tan A+\tan^2 A)}{1+2\tan A+\tan^2A}}\\\\\\=\dfrac{2\bigg(\dfrac{1-\tan A}{1+\tan A}\bigg)}{\dfrac{2+2\tan^2A}{1+2\tan A+\tan^2A}}\\\\\\=\dfrac{2\bigg(\dfrac{1-\tan A}{1+\tan A}\bigg)}{2\bigg(\dfrac{1+\tan^2A}{(1+\tan A)^2}\bigg)}\\\\\\=\dfrac{\bigg(\dfrac{1-\tan A}{1+\tan A}\bigg)}{\bigg(\dfrac{1+\tan^2A}{(1+\tan A)^2}\bigg)}[/tex]
[tex]=\dfrac{1-\tan A}{1+\tan A}}\times \dfrac{(1+\tan A)^2}{1+\tan^2A}\\\\\\=\dfrac{1-\tan^2 A}{1+\tan^2 A}\\\\\\=\dfrac{1-\dfrac{\sin^2 A}{\cos^2 A}}{1+\dfrac{\sin^2 A}{\cos^2 A}}\\\\\\=\dfrac{\bigg(\dfrac{\cos^2 A-\sin^2 A}{\cos^2 A}\bigg)}{\bigg(\dfrac{\cos^2 A+\sin^2 A}{\cos^2 A}\bigg)}\\\\\\=\dfrac{\cos^2 A-\sin^2 A}{\cos^2 A+\sin^2 A}\\\\\\=\dfrac{\cos^2 A-\sin^2 A}{1}\\\\\\=\cos^2 A-\sin^2 A\\\\\\=\cos 2A[/tex]
cos 2A = cos 2A [tex]\checkmark[/tex]
Can you solve this???
BAE + HEG = 180°
124 + 2x+6 = 180°
2x+6 = 56
x = 50/2
x = 25°
Reason:
Given
HEG = EAD since they are corresponding angles
EAD + EAB = 180° since they are supplementary angles.
xx
what is (8*8*8) * (8*8*8*8) in exponential form?
The exponent 7 tells us how many copies of "8" are being multiplied together.
The expression 8*8*8 is equal to 8^3, while 8*8*8*8 = 8^4
Multiplying 8^3 and 8^4 will have us add the exponents to get 8^7. The base stays at 8 the entire time.
The rule is a^b*a^c = a^(b+c) where the base is 'a' the entire time.
Answer:
8^ 7
Step-by-step explanation:
(8*8*8) * (8*8*8*8)
There are 3 8's times 4 8's
8^3 * 8^4
We know that a^b * a^c = a^ (b+c)
8 ^ ( 3+4)
8^ 7
Calculate the area of the circle to the nearest hundredth of a square unit. Approximate as 3.14. a. 124.63 cm 2 b. 124.6 cm 2 c. 39.56 cm 2 d.19.78 cm 2
Answer:
[tex]124.63[/tex]
Step-by-step explanation:
[tex]a = \pi \times r {}^{2} = \pi \times (6.3) {}^{2} = \pi \times 39.69[/tex]
[tex]\pi \times 39.6 = 3.14 \times 39.69 = 124.63[/tex]
Hope this helps ;) ❤️❤️❤️
The area of circle will be;
⇒ 124.63 cm²
What is Circle?
The circle is a closed two dimensional figure , in which the set of all points is equidistance from the center.
Given that;
The radius of circle = 6.3 cm
Now,
Since, The radius of circle = 6.3 cm
We know that;
Area of circle = π r²
Hence, We get;
⇒ Area of circle = 3.14 × 6.3²
= 3.14 × 39.69
= 124.63 cm²
Thus, The area of circle will be;
⇒ 124.63 cm²
Learn more about the circle visit:
https://brainly.com/question/24810873
#SPJ2
write the fraction for each of the following do number 3 and 4 thanks
Answer:
7
Step-by-step explanation:
*PLEASE ANSWER* Compare the volume of these two shapes,given their radii and heights are the same .
Answer:
The correct option is;
Left object volume = right object volume
Step-by-step explanation:
The shapes given in the question are two circular cones that have equal base radius and equal height
The formula for the volume, V of a circular cone = 1/3 × Base area × Height
The base area of the two shapes are for the left A = π·r², for the right A = π·r²
The heights are the same, therefore, the volume are;
For the left
[tex]V_{left}[/tex] = 1/3×π·r²×h
For the right
[tex]V_{right}[/tex] = 1/3×π·r²×h
Which shows that
1/3×π·r²×h = 1/3×π·r²×h and [tex]V_{left}[/tex] = [tex]V_{right}[/tex], therefore, the volumes are equal and the correct option is left object volume = right object volume.
Find the area of the ACTUAL gym
Step-by-step explanation:
The three main types of exercise are cardiovascular exercise, strength training and stretching. All three types of exercise are important for physical fitness. Cardiovascular aerobic exercise is repetitive, rhythmic exercise that increases your heart rate and requires you to use more oxygen.
Answer:
6.67
Step-by-step explanation:
PLS PLEASE HELP!!!!!!
Evaluate 18 + 4 ÷ 2 − 8. (5 points) 2 8 12 3
18 + 4 ÷ 2 − 8
Following PEDMAS, divide first:
18 + 2 -8
Now add and subtract to get the final answer:
18+2 = 20
20-8 = 12
The answer is 12
Answer:
12
Step-by-step explanation:
Which scatterplot shows the strongest negative linear association? On a graph, points are grouped closely together and increase. On a graph, points are grouped closely together to form a line and increase. On a graph, points are grouped closely together and decrease. On a graph, points are grouped closely together to form a line and decrease.
On a graph, points are grouped closely together to form a line and decrease.
====================================
Explanation:
Negative association is where the points decrease as you move from left to right. In other words, you move downhill as you move from left to right. There could be random upward bumps here and there, but overall the general trend is down.
Linear association is when the points are close to the same straight line, known as the regression line.
When points have strong negative linear association, we combine the two ideas mentioned above. The points are close to the same straight line and this line has a negative slope. The correlation coefficient r is close to r = -1.
Choice C is a close answer, but choice D is the better answer due to the "to form a line". If all points are on the same straight line, then r = -1 exactly and we have the strongest possible negative correlation.
The strongest negative linear association is depicted by the graph where points are grouped closely together to form a line and decrease.
Linear associations are deduced from a graph when the points are grouped closely together to form a line. Then we have a strong linear association. Negative association are deduced from a graph when the slope of the line decreasesTherefore, a graph with closely grouped points which forms a line and decreases infers a strong negative linear association.
Learn more :https://brainly.com/question/18405415
f(x) = [tex]\sqrt{x+7} -\sqrt{x^2+2x-15}[/tex] find the domain
Answer:
x >= -7 ................(1a)
x >= 3 ...............(2a1)
Step-by-step explanation:
f(x) = [tex]\sqrt{x+7}-\sqrt{x^2+2x-15}[/tex] .............(0)
find the domain.
To find the (real) domain, we need to ensure that each term remains a real number.
which means the following conditions must be met
x+7 >= 0 .....................(1)
AND
x^2+2x-15 >= 0 ..........(2)
To satisfy (1), x >= -7 .....................(1a) by transposition of (1)
To satisfy (2), we need first to find the roots of (2)
factor (2)
(x+5)(x-3) >= 0
This implis
(x+5) >= 0 AND (x-3) >= 0.....................(2a)
OR
(x+5) <= 0 AND (x-3) <= 0 ...................(2b)
(2a) is satisfied with x >= 3 ...............(2a1)
(2b) is satisfied with x <= -5 ................(2b1)
Combine the conditions (1a), (2a1), and (2b1),
x >= -7 ................(1a)
AND
(
x >= 3 ...............(2a1)
OR
x <= -5 ................(2b1)
)
which expands to
(1a) and (2a1) OR (1a) and (2b1)
( x >= -7 and x >= 3 ) OR ( x >= -7 and x <= -5 )
Simplifying, we have
x >= 3 OR ( -7 <= x <= -5 )
Referring to attached figure, the domain is indicated in dark (purple), the red-brown and white regions satisfiy only one of the two conditions.
Please help need help asap please
Answer: The two choices with the square root of 2 will have irrational answers
Step-by-step explanation: By definition:
As long As you have normal fractions, you have rational numbers.
Square roots of "perfect squares" 4, 9, 16, 25, etc. can be rational numbers. The square roots of anything else and pi will be irrational.
Change 06:00 to 12 hour clock time using a.m. and p.m.
I will mark you as brainlist
Answer:
06:00 a.m.
Step-by-step explanation:
That very simble, from 0:00 to 11:59 you use am, from 12:00 to 23:59 you use p.m :)
A fortnight is 1/26 of a year. What part of a year is 8 fortnights?
Answer:
Isn’t it just 8/26
Step-by-step explanation:
Since 1 is 1/26 so 8 is just 8/26?
The part of a year is 8 fortnights is ( 8 / 26 ).
What is multiplication?Multiplication is the process of determining the product of two or more numbers in mathematics.
It is given that a fortnight is 1/26 of a year. The part of the year for 8 fortnights is calculated as:-
⇒ 8 x ( 1 / 26 )
⇒( 8 / 26 )
Therefore, the part of a year is 8 fortnights is ( 8 / 26 ).
To know more about multiplication follow
https://brainly.com/question/10873737
#SPJ2
Find the number set which satisfies each of the problems. If 7 is subtracted from the absolute value of the sum of a number and 6, the result is 3.
Answer:
x=4 or x= - 16
Step-by-step explanation:
|x+6|
Now subtract 7 which equals to 3.
|x+6|-7=3
|x+6|=10
Now remove the mode by adding plus minus sign in the front of 10.
x+6=±10
x+6=10 or x+6=-10
x=4 or x=-16
In trapezoid ABCD, AB ∥ CD , m∠A=90°, AD=8 in, DC=9 in, CB=10 in, and ∠B is acute. Find DB.
Answer:
the length of DB is 17 in
Step-by-step explanation:
Consider the sketch attached.
We will draw an imaginary line from point C to met line AB at point E.
A right-angled triangle will now be formed between points CBE.
The dimensions of the right-angled triangle will be:
CB = 10 in
CE= 8 in
EB = unknown
We will now proceed to find out the length of side EB using the Pythagoras' theorem.
[tex]EB =\sqrt{CB^2 -CE^2} \\EB =\sqrt{10^2 -8^2} \\EB = 6 in[/tex]
From the shape, we can find out that another right-angled triangle is made between points DAB.
The dimensions of the triangle are:
DA= 8in
AB = 9 in + 6 in = 15 in
DB = unknown.
We will now proceed to find out the length of side DB using the Pythagoras' theorem.
[tex]DB =\sqrt{AD^2 +AB^2} \\DB =\sqrt{8^2 +15^2} \\DB = 17 in[/tex]
Therefore, the length of DB is 17 in
Find x: 50*5x=5000
A) 25
B) 20
C) 50
D) 75
Answer:
[tex]\huge\boxed{B) x = 20}[/tex]
Step-by-step explanation:
50 * 5x = 5000
Dividing both sides by 50
=> 5x = 5000/50
=> 5x = 100
Dividing both sides by 5
=> x = 20
Answer:
the answer is B
Step-by-step explanation:
X: (x)50=20
Find the distance between (-5,-6) and (-3,-8 WILL GIVEBRANLIEST TO FIRST PERSON WHO AWNSES WITH EXPLANATION
Answer:
d = √8
d ≈ 2.82843
Step-by-step explanation:
Distance Formula: [tex]d = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
Simply plug in our coordinates into the distance formula:
[tex]d = \sqrt{(-3 + 5)^2+(-8 + 6)^2}[/tex]
[tex]d = \sqrt{(2)^2+(-2)^2}[/tex]
[tex]d = \sqrt{4+4}[/tex]
[tex]d = \sqrt{8}[/tex]
To find the decimal, simply evaluate the square root:
√8 = 2.82843
Answer:
[tex] \boxed{2 \sqrt{2} \: \: units}[/tex]Step-by-step explanation:
Let the points be A and B
A ( - 5 , - 6 ) ⇒ ( x₁ , y₁ )
B ( -3 , - 8 )⇒( x₂ , y₂ )
Now, let's find the distance between these two points:
AB = [tex] \mathsf{ \sqrt{ {(x2 - x1)}^{2} + {(y2 - y1)}^{2} } }[/tex]
Plug the values
⇒[tex] \mathsf{ \sqrt{( - 3 - ( - 5) )^{2} + {( - 8 - ( - 6))}^{2} } }[/tex]
When there is a ( - ) in front of an expression in parentheses, change the sign of each term in the expression
⇒[tex] \mathsf{ \sqrt{ {( - 3 + 5)}^{2} + {( - 8 + 6)}^{2} } }[/tex]
Calculate
⇒[tex] \mathsf{ \sqrt{ {(2)}^{2} + {( - 2)}^{2} } }[/tex]
Evaluate the power
⇒[tex] \mathsf{ \sqrt{4 + 4} }[/tex]
Add the numbers
⇒[tex] \mathsf{\sqrt{8} }[/tex]
Simplify the radical expression
⇒[tex] \mathsf{ \sqrt{2 \times 2 \times 2}} [/tex]
⇒[tex] \mathsf{2 \sqrt{2} }[/tex] units
Hope I helped!
Best regards!
Find the area and perimeter of the shaded region.
Answer:
Area: [tex]50\pi -100[/tex]
Perimeter: 20[tex]\pi[/tex]
Step-by-step explanation:
If we take half of one of these "pedals" we can see that it is simply 1/4 of a circle with radius 5, subtracted by a triangle. Let's calculate this half-pedal.
[tex]1/4(25 \pi) - 1/2(5* 5)[/tex]
That means 4 pedals is equal to:
[tex]8(1/4(25\pi) - 1/2 (25))[/tex]
[tex]50\pi - 100[/tex]
So.. The area of the shaded region is [tex]50\pi -100[/tex]
Perimeter is even simpler. the half-pedal is just 1/4 of the circumference of the circle. The circumference is just [tex]10\pi[/tex], which means our half pedal is:
[tex]1/4(10\pi )[/tex]
Multiplying by 8, our perimeter is just 20[tex]\pi[/tex].
A building casts a 33-m shadow when the sun is at an angle of 27° the vertical. How tall is the building to the
nearest meter? How far is it from the top of the building to the tip of the shadow?
Answer:
1. EF = 65m
2. DF = 73m
Step-by-step explanation:
1. EF = height of the building = h = 33 / tan 27 = 65m
2. DF = sqrt (65² + 33²) = 73m
The building is 64.76 meters long and 73 meters far from the top of the building to the tip of the shadow.
From the triangle DEF, we find the value of EF by using tan function.
tan function is a ratio of opposite side and adjacent side.
tan(27)= 33/FE
0.5095 = 33/FE
Apply cross multiplication:
FE=33/0.5095
FE=64.76
Now DF is the hypotenuse, we find it by using pythagoras theorem.
DF²=DE²+EF²
DF²=33²+64.76²
DF²=1089+4193.85
DF²=5282.85
Take square root on both sides:
DF=72.68
In a triangle the the sum of three angles is 180 degrees.
∠D + 27 +90 =180
∠D + 117 =180
Subtract 117 from both sides:
∠D =63 degrees.
Hence, the building is 64.76 meters long and 73 meters far from the top of the building to the tip of the shadow.
To learn more on trigonometry click:
https://brainly.com/question/25122835
#SPJ4
Plssss answer this guys fastt Pleaseeee
Pleaseeeeeeeeeeeeeeeeeee
And when u make pls do it all and not half thanks u so much if u dooo
Answer:
You cant get someone to do all of this try doing a few or getting help from someone older that's what I did
Explanation:
I asked help for one problem and the explanation and now I understand how they did it so the other problems I can do now
It's better to make an effort and try doing some of them instead of asking someone to do all of it
Because when the test comes it won't be that easy so next time just try putting a few so that way you can try understanding it and you can apply it to similar problems.
I hope you can find this some what help to you in the future. Also this is a suggestion from my experience so you don't have to do it I'm just trying to help out.
Using the function f(x)=-x^2+8x-13 find f(4)
Answer:
f(4) = 3
Step-by-step explanation:
f(x) = -[tex]x^{2}[/tex] + 8x - 13
To find f(4), substitute 4 for all instances of x:
f(4) = -(4[tex])^{2}[/tex] + 8(4) - 13
Simplify the exponent:
f(4) = -16 + 8(4) - 13
Multiply:
f(4) = -16 + 32 - 13
Combine terms:
f(4) = 3
Answer:
3
Step-by-step explanation:
You plug in 4.
f(4)= -(4)^2+8(4)-13
f(4)= -16+32-13
f(4)= 16-13
f(4)=3
Translate the following into an algebraic expression: a The number that is 40% more than five more than a number a.
Answer:
x = a + 8
Step-by-step explanation:
x = The number that is 40% more than five more than a number a.
x = 40% more than 5 (plus a)
5 * 0.6 = 3
5+3 = 8
x = a + 8
PLS HELP ME WITH THIS QUESTION, ANYTHING REALLY HELPSS!!!!
Answer:
x = 75
Step-by-step explanation:
FGE is a straight line so it equals 180 degrees
FGA + AGC + CGE = FGE
x + 90 + 15 = 180
Combine like terms
x+ 105 = 180
Subtract 105 from each side
x = 180-105
x = 75
Answer:
x = 75º
Step-by-step explanation:
The Vertical Angle Theorem shows that:
∠CGE ≅ ∠DGF
So:
∠DGF = 15º
∠AGD = 90º
90º - 15º = 75º
x = 75º
If you transform x2 + y2 = 25 into 4x2 + 4y2 = 25, which option below describes the effect of this transformation on the radius? A. It multiplies the radius by 2. B.It multiplies the radius by 4. C.It divides the radius by 4. D.It divides the radius by 2.
Answer:
C. It divides the radius by 4.
Step-by-step explanation:
We have x2 + y2 = 25.
If all terms were multiplied by 4, we would have 4x2 + 4y2 = 100. But, the radius is 25 units. 100 / 25 = 4. So, the radius was divided by 4.
Hope this helps!
(will give brainliest) find the value of x
Answer:
x = 180 - [(180 - 3x) + (180 - 2x)]
Step-by-step explanation:
Start off by finding the angles of the triangle
Angle F = 180 - 3x
The angle across from I (which I will call I) = 180 - 2x
Angle G = 180 - (F + I)
Now that we know what G is, we know what x is because the Alternate Exterior Angles Theorem states that if a pair of parallel lines are cut by a transversal, then the alternate exterior angles are congruent. So pretty much X = G
Therefore x = 180 - (F + I) or otherwise said as:
x = 180 - [(180 - 3x) + (180 - 2x)]
I hope this is helpful :)
What is the range of possible sizes for side x?
8.0
2.5
Please helpp!!
Triangle inequality theorem:
In any triangle, the length of any side must be:
less than the sum of the lengths of the other two sides.greater than the difference of the lengths of the other two sides.For the problem you have:
x must be greater than 8.0 - 2.5 and less than 8.0 + 2.5
5.5 < x < 10.5
Answer:
5.5<x<10.5
Step-by-step explanation:
Explanation/Answer would be appreciated please
Answer: The solution for the system is (2, -7)
Step-by-step explanation:
Ok, here we have linear relationships.
A linear relationship can be written as:
y = a*x + b
where a is the slope and b is the y-axis intercept.
For a line that passes through the points (x1, y1) and (x2, y2), the slope can be written as:
a = (y2 - y1)/(x2 - x1).
In this case, we have two lines:
ya, that passes through:
(-8, -5) and (-3, -6)
Then the slope is:
a = (-6 - (-5))/(-3 - (-8)) = (-6 + 5)/(-3 + 8) = -1/5
now, knowing one of the points like (-3, - 6) we can find the value of b.
y(x) = (-1/5)*x + b
y(-3) = -6 = (-1/5)*-3 + b
-6 = 3/5 + b
b = -6 - 3/5 = -33/5
then the first line is:
ya = (-1/5)*x -33/5
For the second line, we know that it passes through the points:
(-8, -15) and (-3, -11)
Then the slope is:
a = (-11 - (-15))/(-3 -(-8)) = (-11 + 15)/(-3 + 8) = 4/5
The our line is:
y(x) = (4/5)*x + b
and for b, we do the same as above, using one of the points, for example (-3, -11)
y(-3) = -11 = (4/5)*-3 + b
b = -11 + 12/5 = -(55 + 12)/5 = -43/5
then:
yb = (4/5)*x - 43/5.
Ok, our system of equations is:
ya = (-1/5)*x -33/5
yb = (4/5)*x - 43/5.
To solve this, we suppose ya = yb
then:
(-1/5)*x + -33/5 = (4/5)*x - 43/5.
-33/5 + 43/5 = (4/5)*x + (1/5)*x
10/5 = 2 = (4/5 + 1/5)*x = x
2 = x
now we evaluate x = 2 in one of the lines:
ya = (-1/5)*2 -33/5 = -2/5 - 33/5 = -35/5 = -7
Then the lines intersect at the point (2, - 7), which is the solution for the system.
help meplz i want help i bad
Answer:
.00002
Step-by-step explanation:
2 * 10 ^-5
Move the decimal 5 places to the left since the exponent is negative
2.
We will need to add zeros on the left Add 4 zeros since we can move it one place already
.00002
Answer:
(D) 0.00002
Step-by-step explanation:
Let's first forget about the 2 in the expression and focus on [tex]10^{-5}[/tex].
If we have 10 to a positive number, that many times the decimal place will move to the right. It's the opposite for 10 to the power of a negative number.
The decimal place will move 5 places to the LEFT.
So:
[tex]0000010\\\\0.00001[/tex]
Now we remember the two, and multiply this by two to get 0.00002.
Hope this helped!
WILL GIVE BRAINLY!!!!!! NEED HELP ASAP!!!!!!!! what is the range of f(x)=3^x+9
Answer:
y > 9
Step-by-step explanation:
The range of a function is the interval of all possible y-values that make the function true.
Here, one way to figure this out is to look at a graph of the function (see attachment).
From the graph, we can see that y-values approach very closely the value 9 and then the line rises beyond 9 forever. Thus, we can conclude that the range for f(x) is y > 9.
~ an aesthetics lover