A woman walks in a straight line with the sun to her right at six o'clock in the morning.
The sun rises East of her, so the woman is walking toward the North pole.
A man walks in a straight line with the sun to his right at six o'clock in the evening.
The sun sets West of him, so the man is walking toward the South pole.
The woman and the man are both walking along lines of constant longitude.
How does speed and mass effect kinetic energy ?
Answer:
in fact, kinetic energy is directly proportional to mass: if you double the mass, then you double the kinetic energy. Second, the faster something is moving, the greater the force it is capable of exerting and the greater energy it possesses. ... Thus a modest increase in speed can cause a large increase in kinetic energy.
Explanation:
Answer: The more mass of an object has, the more Kinetic energy it has.
Explanation:
Kinetic energy is comparable to mass. If you double the mass then you double the kinetic energy. The faster the object is moving the greater the energy possesses. A large increase in speed can have a large increase in kinetic energy.
What is the gravitational potential energy of 4.0 kg pinata suspended 2.5 meters above the ground
Answer:
100 or 95
Explanation:
GPE=M*GFS*change in height
GPE=4.0*10*2.5
=100
For the gravitational field strength you can use 10 or 9.5 but if it says specifically to use a certain value, than use that
state four law of photoelectric effect
Answer:
LAW 1 : For a given metal and frequency, the number of photoelectrons emitted is directly proportional to the intensity of the incident radiation.
---------------------------------------------
LAW 2: For a given metal, there exists a certain frequency below which the photoelectric emission does not take place. This frequency is called threshold frequency.
-----------------------------------------------
LAW 3: For a frequency greater than the threshold frequency, the kinetic energy of photoelectrons is dependent upon frequency or wavelength but not on the intensity of light.
-----------------------------------------------
LAW 4: Photoelectric emission is an instantaneous process. The time lag between incidence of radiations and emission of electron is 10^-9 seconds.
Explanation:
Answer:
LAW 1 : For a given metal and frequency, the number of photoelectrons emitted is directly proportional to the intensity of the incident radiation. ... LAW 4: Photoelectric emission is an instantaneous process.
Scientists believe that the boundary stratum between the Cretaceous and Paleogene was caused by an asteroid. What evidence is most consistent with this theory?
Answer:
Because there was fewer fossils
Explanation:
Answer:
Actually the answer is "The stratum contains iridium.".
Explanation:
Sam heaves a 16lb shot straight upward, giving it a constant upward acceleration from rest of 35 m/s^2 for 64.0 cm. He releases it 2.20m above the ground. You may ignore air resistance.
(a) What is the speed of the shot when Sam releases it?
(b) How high above the ground does it go?
(c ) How much time does he have to get out of its way before it returns to the height of the top of his head, 1.83 m above the ground?
Answer:
6.69 m/s
4.483 m
1.42s
Explanation:
Given that:
Initial Velocity, u = 0
Final velocity, v =?
Acceleration, a = 35m/s²
1.) using the relation :
v² = u² + 2as
v² = 0 + 2(35) * 64*10^-2m
v² = 70 * 0.64
v = sqrt(44.8)
v = 6.693
v = 6.69 m/s
B.) height from the ground, h0 = 2.2
How high ball went , h:
Using :
v² = u² + 2as
Upward motion, g = - ve
0 = 6.69² + 2(-9.8)*(h - 2.2)
0= 6.69² - 19.6(h - 2.2)
44.7561 + 43.12 - 19.6h = 0
19.6h = 44.7561 - 43.12
h = 87.8761 / 19.6
h = 4.483 m
C.)
vt - 0.5gt² = h - h0
6.69t - 0.5(9.8)t²
6.69t - 4.9t² = 1.83 - 2.2
-4.9t² + 6.69t + 0.37 = 0
Using the quadratic equation solver :
Taking the positive root:
1.4185 = 1.42s
If the ball that is thrown downward has an acceleration of magnitude aaa at the instant of its release (i.e., when there is no longer any force on the ball due to the woman's hand), what is the relationship between aaa and ggg, the magnitude of the acceleration of gravity
Explanation:
At the instant of release there is no force but an acceleration of a, this means the ball is falling freely under the force of gravity. Then the acceleration would be due to force of gravity and acceleration a = g =9.81 m/s^2.
g= acceleration due to gravity
2.19 The drag characteristics of a blimp traveling at 4 m/s are to be studied by experiments in a water tunnel. The prototype is 20 m in diameter and 110 m long. The model is one-twentieth scale. What velocity must the model have for dynamic similarity
Answer:
[tex]Vm=0.894m/s[/tex]
Explanation:
From the question we are told that
Velocity if travel [tex]v=4m/s[/tex]
Diameter of prototype [tex]d_1=20m[/tex] and [tex]d_2=110m[/tex]
Scale ratio=[tex]\frac{1}{20}[/tex]
Generally Velocity of of the model using Froud's model is mathematically given as
[tex]Fm=Fp[/tex]
[tex]\frac{Vm}{\sqrt{Lmg}} =\frac{Vp}{\sqrt{Lpg}}[/tex]
[tex]Vm=Vp*\frac{Vp}{\sqrt{Lpg} }[/tex]
[tex]Vm=4*\frac{1}{\sqrt{20}}[/tex]
[tex]Vm=0.894m/s[/tex]
what is energy? list the three mechanical forms of energy and their associated equations.
Answer:
mm hope that helps
Explanation:
What are the 3 forms of energy?
Forms of energy
Potential energy.
Kinetic energy.
7. If the impact of the golf club on the ball in the previous question occurs over a time of 2 x 10 seconds, what
force does the ball experience to accelerate from rest to 73 m/s?
Answer:
3.65 x mass
Explanation:
Given parameters:
Time = 20s
Initial velocity = 0m/s
Final velocity = 73m/s
Unknown:
Force the ball experience = ?
Solution:
To solve this problem, we apply the equation from newton's second law of motion:
F = m [tex]\frac{v - u}{t}[/tex]
m is the mass
v is the final velocity
u is the initial velocity
t is the time taken
So;
F = m ([tex]\frac{73 - 0}{20}[/tex] ) = 3.65 x mass
What energy store is in the torch
BEFORE it gets switched on?
Answer:
Chemical energy
Explanation:
The energy in the torch is stored as chemical energy before the torch gets switch on.
The chemical energy energy in the battery of cell will power the cell and allows it to produce light.
Chemical energy is a form of potential energy. The electrolytes within the battery are capable of producing electric current. So the chemical energy is transformed into electrical energy which is used to produce the light of the torch.According to Newton’s law of universal gravitation, in which of the following situations does the gravitational attraction between two bodies always increase
Answer:
When the mass increases or when distance between the bodies reduces
Explanation:
According to Newton's law of universal gravitation, the gravitational attraction between two bodies always increase if the mass increases and the distance between the bodies reduces.
The law of universal gravitation states that "the gravitational force of attraction between two bodies is directly proportional to the product of their masses and inversely proportional to the square of the distances between them".
Mathematically;
Fg = [tex]\frac{G m1 m2}{r^{2} }[/tex]
G is the universal gravitation constant
m is the mass
r is the distance
What is displacement?
a. The distance an object travels.
b. The distance between the starting point and the ending point of an object's
journey.
C. The amount of time it takes an object to travel to a destination.
d. The path in which an object travels.
Answer:
displacement is the distance between the starting point and the ending point of an object's journey
In the measurement 365 cL the “c” stands for the___ And the “ L”stands for the___
Answers
A.base unit and prefix
B.suffix and prefix
C.prefix and suffix
D.prefix and base unit
12. A bag weighing 20 N CARRIED horizontally a distance of 35 m, How much
work is done on the bag in Joules? (Do not put units with your answer.) W=Fd *
Your answer
13. A child performs 10J of work in lifting a box 1 m in 2 seconds. How much
power did the child apply to the box? (Do not include units with your answer.)
P=W/t *
Your answer
Answer:
Explanation:
Well they told you the exact formula to use. Work is the force multiplied by the distance through which its applied.
W = (20N)(35m)
= 700 Joules
13.) Power is the amount of work done over the time through which the work is being done.
P = W/t
= 10J/2s
= 5J/s
A water-skier is being pulled by a tow rope attached to a boat. As the driver pushes the throttle forward, the skier accelerates. A 77.0-kg water-skier has an initial speed of 6.3 m/s. Later, the speed increases to 10.9 m/s. Determine the work done by the net external force acting on the skier.
Answer:
the work done by the net external force acting on the skier is 3046.12 J.
Explanation:
Given;
initial speed of the water skier, u = 6.3 m/s
final speed of the water skier, v = 10.9 m/s
mass of the water skier, m = 77 kg
The work done by the net external force is calculated as;
W = ΔK.E
[tex]W = \frac{1}{2} m(v^2 - u^2)\\\\W = \frac{1}{2} \times \ 77.0(10.9^2 - 6.3^2)\\\\ W= 3046.12 \ J[/tex]
Therefore, the work done by the net external force acting on the skier is 3046.12 J.
How do you calculate area when pressure and force are given to you
Answer:
This is my answer
Explanation:
First convert 150 kPa to Pa:
150 × 1,000 = 150,000.
Next substitute the values into the equation:
force normal to a surface area = pressure × area of that surface.
force = 150,000 × 180.
force = 27,000,000 N.
1.First convert 150kPato Pa:
2.150 x 1,000 + 150,000
3.next substitute the values into the equations:
4.force normal to a surface area =pressure x area of that surface.
5.force=150,000 x 180.
6.force = 27,000,000N.
can i have brainliest please
Using equations, determine the temperature, pressure and density of the air for a aircraft flying at 19.5 km. Is this aircraft subsonic or supersonic
Answer:
a) - 72.5°c
b) pressure = 3625.13 Pa
c) density = 0.063 kg/m^3
d) it is a subsonic aircraft
Explanation:
a) Determine Temperature
Temperature at 19.5 km ( 19500 m )
T = -131 + ( 0.003 * altitude in meters )
= -131 + ( 0.003 * 19500 ) = - 72.5°c
b) Determine pressure and density at 19.5 km altitude
Given :
Po (atmospheric pressure at sea level ) = 101kpa
R ( gas constant of air ) = 0.287 KJ/Kgk
T = -72.5°c ≈ 200.5 k
pressure = 3625.13 Pa
hence density = 0.063 kg/m^3
attached below is the remaining part of the solution
C) determine if the aircraft is subsonic or super sonic
Velocity ( v ) = [tex]\sqrt{CRT}[/tex] = [tex]\sqrt{1.4*287*200.5 }[/tex] = 283.8 m/s
hence it is a subsonic aircraft
3. A 200-g ball falls vertically downward, hitting the floor with a speed of 2.5 m/s and rebounding upward with a speed of 2.0 m/s. a. Determine the change in momentum of the ball.. b. If the ball is in contact with the floor for 0.02 ms (milliseconds), what is the average force applied to the ball
Answer:
Explanation:
A 200-g ball falls vertically downward, hitting the floor with a speed of 2.5 m/s and rebounding upward with a speed of 2.0 m/s. a. Determine the change in momentum of the ball.. b. If the ball is in contact with the floor for 0.02 ms (milliseconds), what is the average force applied to the ball
Given data
mass= 200g= 0.2kg
initial velocity= 2.5m/s
final velocity= 2m/s
time= 0.02ms
time= 0.00002 seconds
ΔP= mΔv
ΔP= 0.2*2.5-2
ΔP= 0.2*0.5
ΔP=0.1kgm/s
F= mv/t
F=0.1/0.00002
F=5000N
A rocket blasts off and moves straight upward from the launch pad with constant acceleration. After 2.7 s the rocket is at a height of 93 m.
What are the magnitude and direction of the rocket's acceleration?
What is its speed at this elevation?
Answer:
The magnitude and direction of the rocket acceleration is 68.89 m/s² upward.
The speed of the rocket at the given elevation is 186 m/s.
Explanation:
Given;
time to reach the given height, t = 2.7 s
height reached, h = 93 m
initial velocity of the rocket, u = 0
The magnitude and direction of the rocket acceleration is calculated as;
h = ut + ¹/₂at²
h = 0 + ¹/₂at²
h = ¹/₂at²
a = 2h / t²
a = (2 x 93) / 2.7
a = 68.89 m/s²
the direction of the acceleration is upward.
The speed at this elevation, V = u + at
V = at
V = 68.89 x 2.7
V = 186 m/s
A circus tightrope walker weighing 800 N is standing in the middle of a 15 meter long cable stretched between two posts. The cable was originally horizontal. The lowest point of the cable is now at his feet and is 30 cm below the horizontal. Assume the cable is massless. What is the tension in the cable
Answer:
T = 10010 N
Explanation:
To solve this problem we must use the translational equilibrium relation, let's set a reference frame
X axis
Fₓ-Fₓ = 0
Fₓ = Fₓ
whereby the horizontal components of the tension in the cable cancel
Y Axis
[tex]F_{y} + F_{y} - W =0[/tex]
2[tex]F_{y}[/tex] = W
let's use trigonometry to find the angles
tan θ = y / x
θ = tan⁻¹ (0.30 / 0.50 L)
θ = tan⁻¹ (0.30 / 0.50 15)
θ = 2.29º
the components of stress are
F_{y} = T sin θ
we substitute
2 T sin θ = W
T = W / 2sin θ
T = [tex]\frac{ 800}{ 2sin 2.29}[/tex]
T = 10010 N
Required
Momentum
The magnitude of the momentum of an object is 64 kg*m/s. If the velocity of the
object is doubled, what will be the magnitude of the momentum of the object? *
32 kg*m/s
64 kg*m/s
128 kg*m/s
256 kg*m/s
Answer:
C) 128 kg*m/s
Explanation:
When you double something you multiply it by 2 most of the time. 64*2=128 or you can add it 64+64=128. Hope this helps.
6 A test of a driver's perception/reaction time is being conducted on a special testing track with level, wet pavement and a driving speed of 50 mi/h. When the driver is sober, a stop can be made just in time to avoid hitting an object that is first visible 385 ft ahead. After a few drinks under exactly the same conditions, the driver fails to stop in time and strikes the object at a speed of 30 mi/h. Determine the driver's perception/reaction time before and after drinking. (Assume practical stopping distance.)
Answer:
a. 10.5 s b. 6.6 s
Explanation:
a. The driver's perception/reaction time before drinking.
To find the driver's perception time before drinking, we first find his deceleration from
v² = u² + 2as where u = initial speed of driver = 50 mi/h = 50 × 1609 m/3600 s = 22.35 m/s, v = final speed of driver = 0 m/s (since he stops), a = deceleration of driver and s = distance moved by driver = 385 ft = 385 × 0.3048 m = 117.35 m
So, a = v² - u²/2s
substituting the values of the variables into the equation, we have
a = v² - u²/2s
a = (0 m/s)² - (22.35 m/s)²/2(117.35 m)
a = - 499.52 m²/s²/234.7 m
a = -2.13 m/s²
Using a = (v - u)/t where u = initial speed of driver = 50 mi/h = 50 × 1609 m/3600 s = 22.35 m/s, v = final speed of driver = 0 m/s (since he stops), a = deceleration of driver = -2.13 m/s² and t = reaction time
So, t = (v - u)/a
Substituting the values of the variables into the equation, we have
t = (0 m/s - 22.35 m/s)/-2.13 m/s²
t = - 22.35 m/s/-2.13 m/s²
t = 10.5 s
b. The driver's perception/reaction time after drinking.
To find the driver's perception time after drinking, we first find his deceleration from
v² = u² + 2as where u = initial speed of driver = 50 mi/h = 50 × 1609 m/3600 s = 22.35 m/s, v = final speed of driver = 30 mi/h = 30 × 1609 m/3600 s = 13.41 m/s, a = deceleration of driver and s = distance moved by driver = 385 ft = 385 × 0.3048 m = 117.35 m
So, a = v² - u²/2s
substituting the values of the variables into the equation, we have
a = v² - u²/2s
a = (13.41 m/s)² - (22.35 m/s)²/2(117.35 m)
a = 179.83 m²/s² - 499.52 m²/s²/234.7 m
a = -319.69 m²/s² ÷ 234.7 m
a = -1.36 m/s²
Using a = (v - u)/t where u = initial speed of driver = 50 mi/h = 50 × 1609 m/3600 s = 22.35 m/s, v = final speed of driver = 30 mi/h = 30 × 1609 m/3600 s = 13.41 m/s, a = deceleration of driver = -1.36 m/s² and t = reaction time
So, t = (v - u)/a
Substituting the values of the variables into the equation, we have
t = (13.41 m/s - 22.35 m/s)/-1.36 m/s²
t = - 8.94 m/s/-1.36 m/s²
t = 6.6 s
Which of the following is NOT a step used to perform a scientific inquiry
Answer:
b. Designing an uncontrolled experiment.
Explanation:
They always have it controlled.
Answer:
B. Designing an uncontrolled experiment.
Explanation:
Correct Answer!!!!!!
The pickup truck has a changing velocity because the pickup truck
A.can accelerate faster than the other two vehicles
B.is traveling in the opposite direction from the other two vehicles
C.is traveling on a curve in the road
D.needs a large amount of force to move
please get right i need awnser today
Answer:
C. Is traveling on a curve in the road
Hope this helps :3
The pick up truck has a changing velocity because, it is travelling on a curve in the road. A change in direction results in its change in velocity because, velocity is a vector quantity.
What is velocity ?Velocity is a physical quantity that measures the distance covered by an object per unit time. It is a vector quantity, thus having magnitude as well direction.
The rate of change in velocity is called acceleration of the object. Like velocity, acceleration also is a vector quantity. Thus, a change in magnitude or direction or change in both for velocity make the object to accelerate.
Here, all the three vehicles are travelling with the same velocity. But, the truck is moving to a curve on the road. The curvature in the path will make a change in its velocity.
Find more on velocity:
https://brainly.com/question/16379705
#SPJ6
The image related with this question is attached below:
A daredevil is attempting to jump his motorcycle over a line of buses parked end to end by driving up a ramp of 64.8 degrees at a speed of 25.4 m/s. What would be the largest number of buses he can clear if the top of the takeoff ramp is at the same height as the bus tops and the buses are 10.0 m long
Answer: he can only make it over 5 buses
Explanation:
Given the data in the question;
we know that range is expressed as;
R = (V₀²sin2∅₀)/g
V₀ is the initial velocity( 25.4 m/s), ∅₀ is the angle of projection( 64.8°), g is acceleration due to gravity( 9.8 m/s²),
so we substitute
R = ((25.4)²sin2(64.8))/9.8
R = 50.7 m
now, them number of buses will be;
n = R / bus length
given that bus length is 10.0 m
we substitute
n = 50.7 m / 10.0
n = 5.07 ≈ 5
Therefore, he can only make it over 5 buses
Surface currents are on the
of the Earth's oceans
As a laudably skeptical physics student, you want to test Coulomb's law. For this purpose, you set up a measurement in which a proton and an electron are situated 865 nm from each other and you study the forces that the particles exert on each other. As expected, the predictions of Coulomb's law are well confirmed. You find that the forces are attractive and the magnitude of each force is:______
Answer:
force F = 1.66 × [tex]10^{-13}[/tex] N
Explanation:
given data
proton and an electron = 865 nm
solution
we get here force that is express as
force F = k q1 q2 ÷ r² ......................1
put here value and we get
force F = 9 × [tex]10^{9}[/tex] × [tex]\frac{1.6\times (10^{-19})^{2}}{865 \times (10^{-9})^{2}}[/tex]
force F = 1.66 × [tex]10^{-13}[/tex] N
What is the difference between a wave and energy?
Answer:
The higher the amplitude, the higher the energy. To summarise, waves carry energy. The amount of energy they carry is related to their frequency and their amplitude. The higher the frequency, the more energy, and the higher the amplitude, the more energy
Explanation:
The main difference between a wave and energy is: wave is oscillation of energy whereas energy is ability of doing work.
What is wave?A wave is an energetic disturbance in a medium that doesn't include any net particle motion. Elastic deformation, a change in pressure, an electric or magnetic intensity, an electric potential, or a change in temperature are a few examples.
What is energy?The capacity to do work is energy. Energy can only be changed from one form to another; it cannot be created or destroyed. Energy is measured in Joules, the same unit used to measure work. There are several sorts of energy since it is present in many different things.
There are two types of energy: kinetic and potential. Kinetic energy is the energy that is in motion, whereas potential energy is the energy that is stored in an object and is determined by the amount of work that is required.
Learn more about energy here:
https://brainly.com/question/1932868
#SPJ2
What is average acceleration due to gravity on Earth for a 2000 kg boulder, in proper SI units?
Answer:
9.8m/s²
Explanation:
The average acceleration due to gravity on Earth for a 2000kg boulder is 9.8m/s².
Every object on earth is accelerated towards the center by a rate of change of velocity with time value of 9.8m/s².
The acceleration due to gravity on earth is a constant value from places to places.
For other planetary bodies, the value varies and it differs.
But on earth every object is accelerated at 9.8m/s².
) A 1000-nF capacitor with circular parallel plates with a radius of 1cm is accumulating charge at the rate of 52 mC/s at some point in time. What will be the induced magnetic field strength if you are positioned 20 cm radially outward from the center of the plates
Answer:
[tex]B=5.2*10^-^8T[/tex]
Explanation:
From the question we are told that
Capacitor [tex]c=1000nf[/tex]
Radius [tex]r=1cm =>0.001m[/tex]
Charge rate [tex]Q/t=52mC/s[/tex]
Distance [tex]d=20cm =0.2m[/tex]
Generally the rate of charge I is mathematically given as
[tex]I=\frac{dQ}{dt}[/tex]
[tex]I=52Cm/s[/tex]
[tex]I=52*10^-^3C[/tex]
Generally the the magnetic field intensity at distance d is mathematically given as
[tex]B=\frac{\mu I}{2\pi d}[/tex]
[tex]B=\frac{(4 * \pi *10^-^7)(52*10^-^3C)}{2\pi (0.2)}[/tex]
[tex]B=5.2*10^-^8T[/tex]