Answer:
245 + k
Step-by-step explanation:
Since we know that,
245 = amt. of pies baked for the bake sale last year.
--> and k = (unknown) amt. of pies baked for the bake sale this year.
Using k, we need to write the total amt. of pies baked for bake sales in the 2 years.
last year + this year =>
respectively, 245 and k
Thus, we get 245 + k
the king needs a 10th graders help DX
Answer:
12) 1/8 inch = 0.125 inch
= 0.003175 m
= 3.175 x 10-3 m
= 0.3175 cm
13) 2 is rational and π is irrattional. π is approximately 3.14 and is the bigger of two
14) C= 40,005,306.33 m
= 4.0005 x 107 m
15) 12,615,800,000
= 1.26158 x 1010
=126158 x 105
16) Let's take speed of ant as 1Km/h=1000m/h. Then time 1666.875 days
Step-by-step explanation:
Triangle P Q R is shown. The length of P Q is 17, the length of Q R is 15, and the length of P R is 14. Law of cosines: a2 = b2 + c2 – 2bccos(A) What is the measure of AngleP to the nearest whole degree? 35° 52° 57° 72°
Answer:
P = 57°
Step-by-step explanation:
Given the following :
PQ = 17
QR = 15
PR = 14
Using the cosine formula since the length of the three sides are given:
a2 = b2 + c2 – 2bccos(A)
To find P:
QR^2 = PQ^2 + PR^2 – 2(PQ)(PR)cos(P)
15^2 = 17^2 + 14^2 – 2(17)(14)cos(P)
225 = 289 + 196 - 476 cosP
476*CosP = 485 - 225
476*CosP = 260
CosP = 260/476
CosP = 0.5462184
P = Cos^-1(0.5462184)
P = 56.892029
P = 57°
Answer:
57 degrees
Step-by-step explanation:
just took the test on edg2020
Find the value of x to the nearest degree.
A. 35
B. 28
C. 51
D. 55
Answer:
A
Step-by-step explanation:
First, we are already given the sides adjacent and opposite to ∠x. Therefore, we can use the tangent function. Recall that:
[tex]\tan(x)=opp/adj[/tex]
The opposite side is 20 while the adjacent side is 14.
Plug in the numbers. Use a calculator:
[tex]\tan(x)=20/14=10/7\\x=\tan^{-1}(10/7)\\x\approx55.0080\textdegree\approx55\textdegree[/tex]
Edits: Improved Answer. Removed Wrong Answer.
Answer:
55
Step-by-step explanation:
Since this is a right triangle, we can use trig functions
tan theta = opp/ adj
tan x = 20/14
Taking the inverse tan of each side
tan ^-1 tan x = tan ^ -1 (20/14)
x =55.0079798
To the nearest degree
x = 55
i need help with this question
Answer:
1000ml
Step-by-step explanation:
4 days she drank ½ of the bottle
so she drank ⅛ l of juice everyday
so
1000ml is the answer
The sum of 2 numbers is 250. One of them is greater than 150. Which of these is definitely true about the other number? a) It is equal to 100. b) It has to be less than 100. c) It has to be greater than 100. d) It has to be a number between 150 and 250. Please answer fast and do explain how you got the answer...
Answer:
b
Step-by-step explanation:
Answer:
d) it has to be greater than 150 and 250
Step-by-step explanation:
It says in the question it is greater than 150. So the number will be between 150 and 250.
Mark it as Brainliest pls
Hope it helps!!!
What is the solution to the system of linear equations? Write you answer as a coordinate. 2x − y = 4 5x + 2y = 10 Show All Work !!
Answer:
(2, 0)
Step-by-step explanation:
2x - y = 4
5x + 2y = 10
Solve by elimination by multiplying the top equation by 2, so the y values will cancel out (-2y + 2y = 0)
4x - 2y = 8
5x + 2y = 10
Add them together and solve for x:
9x = 18
x = 2
Plug in 2 as x in one of the equations to find y:
2x - y = 4
2(2) - y = 4
4 - y = 4
-y = 0
y = 0
The solution is (2, 0)
which of these correctly rearranges the terms in this polynomial so like terms are next to each other ? 3-6x+4x^2+3x-6x^2-4 PLEASE HELP!!
Answer:
A is the answer
Step-by-step explanation:
Answer:
the answer is A.
Step-by-step explanation:
The length of the major axis of the ellipse below is 10 What is the sum of the lengths of the red and blue line segments? A. 10 B. 5 C. 15 D. 20
Answer:
A. 10
Step-by-step explanation:
As we know that
The length of the major axis of the ellipse is 10
i.e
2 a = 10
Also, the ellipse is the curve that consists of 2 focal points in order that the total of the distance to the 2 focal points would remain constant for each and every point displayed in the curve
Now we assume that P is the curve point
So,
PF1 + PF2
i.e
2 a (blue line) + (red line)
2 a = 10
Therefore the sum of the length is 10
Answer:
10
Step-by-step explanation:
for 0°<θ<-180° which of the primary trigonometric functions may have positive values?
sine and cosecant.
you can see the graph or on unit circle, as the for these ratios, (which depend on y coordinate) 1st and 2nd quadrant have positive y coordinate
1)A cylindrical container has a diameter of 14cm and a height of 20cm and is full of water. A student pours the water into another cylinder of diameter 20cm. How deep is the water in the second cylinder?
2)A cylindrical water tank is 70cm in diameter. To begin with, it is full of water. A leak starts at the bottom so that it loses 10l of water every hour. How long will it take for the water level to fall by 20cm?
3) A cylindrical storage vessel is 4m in diameter and 31/2m deep. How many kilolitres will it hold?
1) 9.8 cm
3) 194.68 kilo litters
Step By Step Explanation
Sister these questions are related to volume of cylinder.
You need to use this formula πr²h [ Where r is radius and h is height or depth]
_______________________________________
3)
Given:
Diameter = 4m
Therefore radius = 2m
Depth is 31/2 m
To Find:
How many kilo litters will it hold ?
Actually It's asking about Volume.
Solution:
You know, volume = πr²h
[tex] = \pi {(2 \: m)}^{2} \times ( \dfrac{31}{2})m[/tex]
[tex] = 3.14 \times 4 \: {m}^{2} \times \dfrac{31}{2} m[/tex]
[tex] = \: 62 \times 3.14 \times {m}^{3} \sf [\because \: {m}^{3} = kilolitters][/tex]
[tex] = \sf 194.68 \: \: kilolitters[/tex]
_______________________________________
1)
Given:
Diameter = 14 cm
[tex] \sf \therefore \: radius \: = 7 \: cm[/tex]
height = 20 cm
Diameter of other cylinder = 20 cm
[tex] \sf \therefore \: radius = 10 \: cm[/tex]
To Find:
Deep of water in other cylinder
Consider the depth of water be x
Solution:
Volume of water will remain constant in both
So,
[tex]V_1 = V_2[/tex]
[tex] \sf \: \pi {(r_1)}^{2} h_1 = \pi {( r_2 )}^{2} h_2[/tex]
[Eliminating π from both sides]
[tex] {(7)}^{2} \times 20= {(10)}^{2}x[/tex]
[tex]49 \times 20 = 100x [/tex]
[tex]x = \dfrac{49 \times 2}{10} [/tex]
[tex]x = \dfrac{98}{10} \implies \: 9.8[/tex]
Therefore the required value of x is 9.8 cm .
the maximum value of 3/5sinx-12cosx+19
Answer:
Step-by-step explanation:
The given trigonometric expression is :
11 cos^2 x +3 sin^2 x+6sinx cosx +5
or, we can write it as,
(9 cos^2 x + 2 cos^2 x) + (2 sin^2 x + sin^2 x) + 6sinx cosx +5
Again, after rearranging the terms, we can write the whole expression as,
(9 cos^2 x + sin^2 x + 6sinx cosx) + (2 cos^2 x + 2 sin^2 x) + 5
Then if you factor the following underlined section as you would with a polynomial:
(9 cos^2 x + sin^2 x + 6sinx cosx) + (2 cos^2 x + 2 sin^2 x) + 5
You get:
(3 cos x + sin x)^2 + 2 (cos^2 x + sin ^2 x) + 5
Now, the term inside the second bracket (cos^2 x + sin ^2 x) is a very popular trigonometric identity and it's value is equal to one.
So, now the whole expression becomes,
(3 cos x + sin x)^2 +7
Now, the maximum and the minimum value of the whole expression depends upon the maximum and the minimum value of the term (3 cos x + sin x), which is of the form (a cosx + b sinx),
The maximum and minimum value of (a cosx + b sinx) is relatively easy to find.
So, I've attached a screenshot from a relevant document below:
Here, a=3 and b=1,
So, R= √10
As the value of cosine of any angle lies between -1 to 1, so the value of the value of expression cos(x − α) will lie between -1 to 1.
Hence, the maximum and the minimum value of (a cosx + b sinx) will be -R and R and all the values of the expression will lie between them.
i.e., in our case between (-√10) to √10.
Again, coming back to our original expression,
(3 cos x + sin x)^2 +7
The value of the term in bracket will lie between (-√10) and √10.
But, there is a catch here, as the squares of negative terms come out be positive, hence we can't take the negative term to find the minimum value of our expression. the minimum value of the expression will be at the minimum non-negative value in the range, which is zero.
So, the minimum value will be,
(0)^2 + 7=7
and the maximum value will be,
(√10)^2 +7 = 17
NEED IN NEXT HOUR solve the following equation: 20= 4t -5t^2
Answer:
2/5 ±i4/5sqrt(6)= t
Step-by-step explanation:
20= 4t -5t^2
Rewriting
20 = -5t^2 +4t
Divide by -5
20 = -5t^2 +4t
20/-5 = -5/-5t^2 +4/-5t
-4 = t^2 -4/5 t
Complete the square
Take the coefficient of t
-4/5
Divide by 2
-4/10 = -2/5
Square it
(-2/5)^2 = 4/25
Add to each side
-4 +4/25 = t^2 -4/5 t + 4/25
-100/25+4/25 = ( t-2/5)^2
-96/25 = ( t-2/5)^2
Take the square root of each side
sqrt(-96/25) = sqrt(( t-2/5)^2)
±isqrt(96/25)=( t-2/5)
±i4/5sqrt(6)=( t-2/5)
Add 2/5 to each side
2/5 ±i4/5sqrt(6)= t
Type the correct answer in the box. Simplify this expression: 4(1 – 3x) + 7x – 8.
Answer:
-4 -5x
Step-by-step explanation:
4(1 – 3x) + 7x – 8.
Distribute
4 -12x +7x -8
Combine like terms
-4 -5x
Answer:
The simplified answer of this expression is -5x - 4
Step-by-step explanation:
4(1 - 3x) + 7x - 8
Distribute 4 to (1 - 3x)
4 - 12x + 7x - 8
Rearrange the terms so it'll be easier to combine them.
4 - 8 - 12x + 7x
Combine like terms.
-4 - 5x
Put the equation in standard form.
-5x - 4
help me solve please
Answer:
B
Step-by-step explanation:
The side you have drawn in is 4√3 (calculate via pythagoras as √(8²-4²) = √48 = √16·3 = √4²·3 = 4√3)
So the area of the small triangle is 4*2√3 and the area of the small rectangle is 2*4√3. Together makes 4*2√3 + 2*4√3 = 16√3
John used 1 3/4 kg os salt to melt the ice on the sidewalk. He then used another 3 4/5 kg on the driveway. How much salt did he use in all? PLEASE SHOW YOUR WORK I WILL MARK YOU BRAINIEST AND PLEASE EXPLAIN HOW YOU GOT YOUR WORK.
Answer:
111/20 = 5.55
Step-by-step explanation:
He used a total of 1 3/4 and 3 4/5 salt.
Convert both these mixed numbers into fractions.
=> 7/4 + 19/5
Take the LCM of the denominators
=> 35/20 + 76/20
Add the numerators
=> 111/20 = 5.55
He used a total of 111/20 or 5.55 kgs of salt.
Solve for a.
ab+c=d
a= b + c/d
a = b/(c-d)
a = (d - c)/b
Answer:
A=d-c/b
Step-by-step explanation:
Answer:
ab+c=d
Step-by-step explanation:
just took the test
If 48% of the students in a certain college are female and there are 1440 female students, what is the total number of students in the college?
Answer:
3000 students
Step-by-step explanation:
If 48% of the students are female, and there are 1440 female students, we can set up a percentage proportion, assuming x is the total amount of students.
[tex]\frac{1440}{x} = \frac{48}{100}[/tex]
We can use the cross products property to find the value of x.
[tex]1440\cdot100=144000\\\\144000\div48=3000[/tex]
Hope this helped!
If 3sinA+4cosA=5 then find the value of cosA
Answer:
cos(A) = 4/5
Step-by-step explanation:
3sinA+4cosA=5
Divide by 5 on both sides
(3/5)sinA+(4/5)cosA = 1 .................(1)
from which sin(A) = 3/5, cos(A) = 4/5 by inspection, since
(3/5)^2+(4/5)^2 = 1
For more details,
Let
cos(B) = (3/5), then
sin(B) = (4/5)
Substitute in (1)
cos(B)sin(A) + sin(B)cos(A) = 1 substitute trigonometric sum
sin(A+B) = 1 => A & B are complementary
cos(A) = sin(B) = 4/5
Victoria is scuba diving off the coast of Hawaii. When she is ready to come back to the surface, she rises 40 yards at a safe speed. She climbs 1 foot every 2 seconds. How many minutes will it take her to reach the surface?
Answer:
it will take her 79.76 minutes to rise to the surface
Step-by-step explanation:
Total distance to the surface = 40 yards
speed of rising = 1 foot per seconds
1 foot = 1 second
since the total distance is in yards, let's convert from foot to yards:
1 yard = 3 feet
1 foot = 1/3 yards = 0.333 yards
0.33 yards = 1 second
Next, let's convert from seconds to minutes
60 seconds = 1 minute
∴ 1 second = 1/60 minute
1 second = 0.0167 minute
Therefore the speed at which she rose:
speed
0.333 yards = 0.0167 minutes
Now for a distance of 40 yards:
[tex]1\ yard = \frac{0.0333}{0.0167} minutes\\\therefore\ 40\ yards = \frac{0.0333}{0.0167} \ \times\ \frac{40}{1} \\= \frac{1.332}{0.0167} \\= 79.76\ minutes[/tex]
Answer:
4 minutes
Step-by-step explanation:
(y 2 - 3)(y 4 - 6y 2 + 9)
Find the product.
Answer:
y^6 - 9y^4 + 27y² - 27
Step-by-step explanation:
(y² - 3) (y^4 - 6y² + 9)
y^6 - 6y^4 + 9y² - 3y^4 + 18y² - 27
y^6 - 9y^4 + 27y² - 27
Evaluate without actual multiplication 1) 95x96 2)103x107
Answer:
:
"(100 + 3) (100 + 7)
Now, by using identity
(x + a) (x + b) = x² + (a+b)*x + ab
So,
x = 100 , a = 3 , b = 7
= (100)² + (3+7)*100 + (3*7)
= 10000 + 1000 + 21
= 11021
.
(110 - 7) (110 - 3)
by using identity
(x + a) (x + b) = x² + (a+b)*x + ab
So,
x = 100 , a = (-7) , b = (-3)
= (110)² + { (-7) + (-3) }*110 + {(-7)*(-3)}
= 12100 + (-10)*110 + 21
= 21200 - 1100 + 21
= 11021
.
➖➖➖➖➖➖➖➖➖➖
.
(90 + 5) (90 + 6)
by using identity
(x + a) (x + b) = x² + (a+b)*x + ab
So,
x = 90 , a = 5 , b = 6
= (90)² + (5+6)*90 + (5*6)
= 8100 + 990 + 30
= 9120
.
(100 - 5) (100 - 4)
by using identity
(x + a) (x + b) = x² + (a+b)*x + ab
So,
x = 100 , a = (-5) , b = (-4)
= (100)² + { (-5) + (-4) }*100 + 20
= 10000 + (-9)*100 + 20
= 10000 - 9000 + 20
= 10020 - 900
= 9120
.
➖➖➖➖➖➖➖➖➖➖
.
(100 + 4) (100 - 4)
by using identity
(x + a) (x + b) = x² + (a+b)*x + ab
So,
x = 100 , a = 4 , b = (-4)
= (100)² + { 4 + (-4) }*100 + 4*(-4)
= 10000 + (4 - 4)*100 - 16
= 10000 + 0*100 - 16
= 10000 - 16
= 9984
.
(90 + 14) (90 + 6)
by using identity
(x + a) (x + b) = x² + (a+b)*x + ab
So,
x = 90 , a = 14 , b = 6
= (90)² + (14 + 6)*90 + (14*6)
= 8100 + 20*90 + 84
= 8100 + 1800 + 84
= 9984"
This answer was in another question
This answer was given by BloomingBud
Step-by-step explanation:
Answer:
1) 9120 2) 11021
Step-by-step explanation:
95 * 96 = (100-5)(100-4) = 10000 - 500 - 400 + 20 = 9120
103 * 107 = (100+3)(100+7) = 10000 + 300 + 700 + 21 = 11021
What is the slope of the line represented by the equation y
4 X - 3?
0.-
to
Answer:
The slope is 4/1
Step-by-step explanation:
for every 4 units you go up on the y-axis, you go 1 unit on the x-axis.
anyone know how to solve a functions equation such as x^2-x-x <0
Answer:
Step-by-step explanation:
[tex]x^{2} -x-x<[/tex] 0
[tex]x^{2} -2x[/tex] < 0
x^2-2x+1<1
(x-1)^2<1
-1<x-1<1
0<x<2
[tex](x-1)^{2}[/tex][tex](x-1)^{2}[/tex]
A Gallup poll asked 1200 randomly chosen adults what they think the ideal number of children for a family is. Of this sample, 53% stated that they thought 2 children is the ideal number.
A Gallup poll asked 1200 randomly chosen adults what they think the ideal number of children for a family is. Of this sample, 53% stated that they thought 2 children is the ideal number. Construct and interpret a 95% confidence interval for the proportion of all US adults that think 2 children is the ideal number.
Answer:
at 95% Confidence interval level: 0.501776 < p < 0.558224
Step-by-step explanation:
sample size n = 1200
population proportion [tex]\hat p[/tex]= 53% - 0.53
At 95% confidence interval level;
level of significance ∝ = 1 - 0.95
level of significance ∝ = 0.05
The critical value for [tex]z_{\alpha/2} = z _{0.05/2}[/tex]
the critical value [tex]z _{0.025}= 1.96[/tex] from the standard normal z tables
The standard error S.E for the population proportion can be computed as follows:
[tex]S,E = \sqrt{\dfrac{\hat p \times (1-\hat p)}{n}}[/tex]
[tex]S,E = \sqrt{\dfrac{0.53 \times (1-0.53)}{1200}}[/tex]
[tex]S,E = \sqrt{\dfrac{0.53 \times (0.47)}{1200}}[/tex]
[tex]S,E = \sqrt{\dfrac{0.2491}{1200}}[/tex]
[tex]S,E = 0.0144[/tex]
Margin of Error E= [tex]z_{\alpha/2} \times S.E[/tex]
Margin of Error E= 1.96 × 0.0144
Margin of Error E= 0.028224
Given that the confidence interval for the proportion is 95%
The lower and the upper limit for this study is as follows:
Lower limit: [tex]\hat p - E[/tex]
Lower limit: 0.53 - 0.028224
Lower limit: 0.501776
Upper limit: [tex]\hat p + E[/tex]
Upper limit: 0.53 + 0.028224
Upper limit: 0.558224
Therefore at 95% Confidence interval level: 0.501776 < p < 0.558224
Write the expression 12-2 in simplest form.
Answer:
convert into a whole number 6
Please answer this question now
Answer:
320 square inches
Step-by-step explanation:
4 * 1/2(8)(16) + 8*8 = 320
Answer:
320 sq. in.
Step-by-step explanation:
The formula for finding the area of a triangle is:
[tex]\frac{hb}{2}[/tex] (basically multiplying the height and the base and then dividing by 2)
Since there are 4 triangles, we can multiply the area of 1 triangle by 4 (64 times 4 is 256).
Then, on the bottom we have a (8 times 8) square (64).
Triangles: 256
Square: 64
256 + 64 = 320 sq. in!
Hope that helps and maybe earns a brainliest!
Have a great day!
Vladimir builds 3 legged stools and 4 legged tables. Last month he used 72 legs to build 3 more stools than tables. How many stools and how many tables did he build?
Answer:
9 tables
12 stools
Step-by-step explanation:
x= number of tables
x+3= number of stools
4x+3(x+3)=72
4x+3x+9=72
4x+3x=72-9
7x=63
x=9
So he built 9 tables and 12 stools
(9x4=36, 3X12=36, 36+36=72) CHECK
The perpendicular distance of the point from x axis is 2 units and the perpendicular distance from y axis is 3 units.Write the co-ordinates of the if it lies in
Answer:
Step-by-step explanation:
Given that :
the perpendicular distance of the point from x axis = 2 units
the perpendicular distance from y axis is 3 units
The objective is to the write the coordinates of the points if it lies in
(i) | Quadrant (ii) || Quadrant (iii) ||| Quadrant (iv) |v Quadrant
The position of a point in a plane is conveniently specified by the distances fro two perpendicular lines.The lines are called the x-axis and y-axis and their [point of intersection is called the origin.
The perpendicular distance from the y-axis is called the x- coordinate or abscissa and the perpendicular distance from x-axis is called the y-coordinate or ordinate,The coordinate form an ordered pair with the abscissa written as first.
With that be said, So In the given question,
the perpendicular distance of the point from x axis = 2 units
y coordinate = ±2
the perpendicular distance from y axis is 3 units
x coordinate = ±3
The ordered pair of the coordinates = ( ±3, ±2)
Therefore;
in | quadrant ; we have (3,2) where x and y are both on the positive axis
in || quadrant ; we have (-3,2) x is on the negative axis and y is on the positive axis
In ||| quadrant ; we have (-3. -2) both x and y are on the negative axis
In |v quadrant ; we have ( 3, -2) x is on the positive axis and y is on the negative axis.
Two pipes A and B can fill an empty tank in 3hrs and 5hrs respectively. Pipe C can empty the full tank in 6 hours. If the three pipes A, B, and Care opened at the same time, find how long it will take for the tank to be full. *
Answer:
30/11 (hours)
Step-by-step explanation:
Pipe A can fill the tank until it is full in 3 hours.
=> In 1 hour, pipe A can fill 1/3 of tank
Pipe B can fill the tank until it is full in 5 hours.
=> In 1 hour, pipe A can fill 1/5 of tank
Pipe C can empty the full tank in 6 hours.
=> In 1 hour, pipe A can empty 1/6 of tank
Assume that we open 3 pipes A, B, and C at the same time.
Then, in 1 hour, the amount of water in tank is:
A = 1/3 + 1/5 - 1/6 = 10/30 + 6/30 - 5/30 = 11/30 (tank)
=> The time to fill up the tank is:
T = 1/A = 1/(11/30) = 30/11 (hours)
Answer:
30/11
Step-by-step explanation:
Imagine the tank can hold x litre of water
So,A can fill x/3 litre water per hour
And B can fill x/5 litre water per hour
And C can reduce x/6 litre of water per hour which is filled by A and B.
So the gross calculation per hour is:
(x/3+x/5)-x/6
=11x/30
Now suppose it tooks 'a' hour to fill the tank.
So, a(11x/30)=x
⇨ a= (30/11x)x
⇨a=30/11
-104=8x what is the answer?
Answer:
x=-12
Step-by-step explanation:
8x=-104
8x÷8=-104÷8
x=-104÷8
x=-13
Step-by-step explanation:
8x:-104
8÷8x:-104÷8
x:13