Answer:
Step-by-step explanation:
A=a(r)^t
a=1
time=2.5 hours=25/10 ×60=150 minutes
10t=150
t=150/10=15
[tex]A=1(2)^{15}=32,768[/tex]
The fraction subtracted from 5/3 to get 1 is_____
Answer:
2/3
Step-by-step explanation:
I am not sure
Answer:
2/3Step-by-step explanation:
[tex]Let \:the \: unknown \: fraction \: be \: x\\\\\frac{5}{3} -x = 1\\\\\frac{5}{3}-x=1\\\\\mathrm{Subtract\:}\frac{5}{3}\mathrm{\:from\:both\:sides}\\\\\frac{5}{3}-x-\frac{5}{3}=1-\frac{5}{3}\\\\\frac{5}{3}-x-\frac{5}{3}=-x\\\\1-\frac{5}{3}=-\frac{2}{3}\\-x=-\frac{2}{3}\\\\x=\frac{2}{3}\\[/tex]
Given that ΔABC is a right triangle with the right angle at C, which of the following is true?
1. tan A = 1/(tan B)
2. tan A = sin B
3. cos A = 1/(cos B)
4. sin B = 1/(sin A)
Answer:
1. tan A = 1/(tan B)
Step-by-step explanation:
By definition,
tangent A = opposite / adjacent = a / b
and
tangent B = opposite / adjacent = b / a
Therefore tangent A = a/b = 1/tan(B)
Answer: Tan a=tan b
I belive
Step-by-step explanation:
is 1 whole 1 by 3 considered as an integer??
Answer:
No it's not.
Step-by-step explanation:
[tex]1 \frac{1}{3} = \frac{4}{3} = 1.333333[/tex]
Integers are set of numbers consisting
Whole numberNatural numberNegative numbersIt doesn't consist
Fractions &DecimalsHope this helps ;) ❤❤❤
Answer:
[tex]\boxed{\sf No}[/tex]
Step-by-step explanation:
[tex]\displaystyle 1 \frac{1}{3} =1.3333333...[/tex]
Integers are whole numbers that can be positive or negative. Integers do not include fractions and decimals.
Evaluate without actual multiplication 1) 95x96 2)103x107
Answer:
:
"(100 + 3) (100 + 7)
Now, by using identity
(x + a) (x + b) = x² + (a+b)*x + ab
So,
x = 100 , a = 3 , b = 7
= (100)² + (3+7)*100 + (3*7)
= 10000 + 1000 + 21
= 11021
.
(110 - 7) (110 - 3)
by using identity
(x + a) (x + b) = x² + (a+b)*x + ab
So,
x = 100 , a = (-7) , b = (-3)
= (110)² + { (-7) + (-3) }*110 + {(-7)*(-3)}
= 12100 + (-10)*110 + 21
= 21200 - 1100 + 21
= 11021
.
➖➖➖➖➖➖➖➖➖➖
.
(90 + 5) (90 + 6)
by using identity
(x + a) (x + b) = x² + (a+b)*x + ab
So,
x = 90 , a = 5 , b = 6
= (90)² + (5+6)*90 + (5*6)
= 8100 + 990 + 30
= 9120
.
(100 - 5) (100 - 4)
by using identity
(x + a) (x + b) = x² + (a+b)*x + ab
So,
x = 100 , a = (-5) , b = (-4)
= (100)² + { (-5) + (-4) }*100 + 20
= 10000 + (-9)*100 + 20
= 10000 - 9000 + 20
= 10020 - 900
= 9120
.
➖➖➖➖➖➖➖➖➖➖
.
(100 + 4) (100 - 4)
by using identity
(x + a) (x + b) = x² + (a+b)*x + ab
So,
x = 100 , a = 4 , b = (-4)
= (100)² + { 4 + (-4) }*100 + 4*(-4)
= 10000 + (4 - 4)*100 - 16
= 10000 + 0*100 - 16
= 10000 - 16
= 9984
.
(90 + 14) (90 + 6)
by using identity
(x + a) (x + b) = x² + (a+b)*x + ab
So,
x = 90 , a = 14 , b = 6
= (90)² + (14 + 6)*90 + (14*6)
= 8100 + 20*90 + 84
= 8100 + 1800 + 84
= 9984"
This answer was in another question
This answer was given by BloomingBud
Step-by-step explanation:
Answer:
1) 9120 2) 11021
Step-by-step explanation:
95 * 96 = (100-5)(100-4) = 10000 - 500 - 400 + 20 = 9120
103 * 107 = (100+3)(100+7) = 10000 + 300 + 700 + 21 = 11021
Each lap around a park is 1 1⁄5 miles. Kellyn plans to jog at least 7 1⁄2 miles at the park without doing partial laps. How many laps must Kellyn jog to meet her goal?
Answer:
25/4 laps or (6.25 laps)
Step-by-step explanation:
1 lap = 1 1/5 miles
kellyn plans to jog 7 1/2 miles
1 lap
number of laps = 7 1/2 miles x -------------- = 25/4 laps or (6.25 laps)
1 1/5 miles
Peter has one of each of the following coins in his pocket: a penny, a nickel, a dime, a quarter, and a half-dollar. Four of these coins are taken out of the pocket and the sum of their values is calculated. How many different sums are possible?
Answer:
10
Step-by-step explanation:
This is a combinations problem, involving factorials.
5!/3!*2!=5*4/2=20/2=10
The different sum of the 4 coins from the list of 5 coins is an illustration of combination or selection. There are 5 different possible sums.
Given
[tex]n = 5[/tex] --- number of coins
[tex]r = 4[/tex] --- coins to be selected to calculate sum
For the sum of the coin value to be calculated, the 4 coins must be selected. This means combination.
So, we make use of:
[tex]^nC_r = \frac{n!}{(n - r)!r!}[/tex]
This gives
[tex]^5C_4 = \frac{5!}{(5 - 4)!4!}[/tex]
[tex]^5C_4 = \frac{5!}{1!4!}[/tex]
Expand
[tex]^5C_4 = \frac{5*4!}{1*4!}[/tex]
[tex]^5C_4 = \frac{5}{1}[/tex]
[tex]^5C_4 = 5[/tex]
Hence, there are 5 different possible sums.
Read more about combinations at:
https://brainly.com/question/15401733
E
What is the value of x in the equation 3x.. by y 18, when y27
Answer:
x = 15
Step-by-step explanation:
We need to find the value of x in the equation 3x – y = 18 when y = 27.
To find the value of x, put y = 27 in the above equation.
So,
3x - 27 = 18
3x = 45
x = 15
So, the value of x is 15.
Find the next three terms in the geometric sequence.
Answer: D
Step-by-step explanation:
The common difference is -2/3 so using the last term which is -8/27 multiply it by -2/3 to find the next terms.
[tex]-\frac{8}{27} * -\frac{2}{3}[/tex] = [tex]\frac{16}{81}[/tex]
[tex]\frac{16}{81} * -\frac{2}{3} = -\frac{31}{243}[/tex]
[tex]-\frac{32}{243} * -\frac{2}{3} = \frac{64}{729}[/tex]
A driver of a car stopped at a gas station to fill up his gas tank. He looked at his watch, and the time read exactly 3:40 p.m. At this time, he started pumping gas into the tank. At exactly 3:44, the tank was full and he noticed that he had pumped 6 gallons.
Answer:
3.625 gpm
Step-by-step explanation:
a rectangle is 12 in wide and 18 in tall.if it is reduce to a height of 3 inches, then how wide will it be?
Answer:
2 in
Step-by-step explanation:
18/3=6 , 6 is the scale factor
12/6=2
Answer:
width= 2
Step-by-step explanation:
18 inches is the original height and we are now reducing that to 3 inches.
In order to do that, we have to divide 18 by 3 which equals 6.
Next, take the width of the rectangle, which is twelve and divide it by the scale factor of 6 which equals 2.
Your final answers should be: width= 2
Plz Help I Will Mark Brainliest If Right!!!!!!!!!!!!!!!!!!!!!!!
Determine the domain of the function.
f as a function of x is equal to the square root of one minus x.
A). All real numbers
B). x > 1
C). x ≤ 1
D). All real numbers except 1
Hey There!!~
Your best answer choice is B). x > 1.
Good Luck!!
Hey there please help me with this question
Answer:
see explanation
Step-by-step explanation:
sum the parts of the ratio, 2 + 1 = 3 parts , thus
81 cm² ÷ 3 = 27 cm² ← value of 1 part of the ratio
2 parts = 2 × 27 = 54 cm²
Area of A = 54 cm² and area of B = 27 cm²
The side of the original square = [tex]\sqrt{81}[/tex] = 9 cm
The width of both rectangles is 9 cm ( width remains unchanged after cut )
Thus
Rectangle A
9 × length = 54 ( divide both sides by 9 )
length = 6 cm
Rectangle B
9 × length = 27 ( divide both sides by 9 )
length = 3 cm
Rectangle A → length = 6 cm, width = 9 cm
Rectangle B → length = 3 cm , width = 9 cm
Answer:
Rectangle A Rectangle B
length = 9 cm length = 9 cm
width = 6 cm width = 3 cm
Step-by-step explanation:
Area of square At = 81 cm²
Square is cut into two pieces = A + B
The ration of area A to B = 2:1
Find
Rect A Rect B
length length
width width
---------------------------------
first, get the side of the square = A = s²
81 = s²,
s = √81
s = 9 cm
since the ratio is 2:1, therefore the side can be divided into 3
9 ÷ 3 = 3 cm ----- take note of this to get the Width
Rectangle A
L = 9 cm (which is the s = 9 cm)
W = 3 cm (2 ratio) = 6 cm
Rectangle B
L = 9 cm (which is the s = 9 cm)
W = 3 cm (1 ratio) = 3 cm
Proof:
At = A + B
81 = (9x6) + (9x3)
81 = 54 + 27
81 = 81 ----- OK
if a man works 400km in 6 minutes.How long will he work in 9 minutes
Answer:
600 kmStep-by-step explanation:
400 km = x
6 min 9 min
cross multiply:
6x = 400 ( 9)
x = 3600 / 6
x = 600 km
What is the value of x in the equation 3x-4y=65, when y =4 will give brainliest
Hello!
Answer:
[tex]\huge\boxed{x = 27}[/tex]
Given:
3x - 4y = 65 where y = 4;
Substitute in 4 for "y":
3x - 4(4) = 65
Simplify:
3x - 16 = 65
Add 16 to both sides:
3x - 16 + 16 = 65 + 16
3x = 81
Divide both sides by 3:
3x/3 = 81/3
x = 27.
Hope this helped you! :)
Answer:
x=27
Step-by-step explanation:
3x-4y=65
Let y=4
3x - 4(4) = 54
3x -16 = 65
Add 16 to each side
3x -16+16 = 65+16
3x = 81
Divide each side by 3
3x/3 =81/3
x =27
1. At the end of one school day a teacher had 17 crayons left. The teacher remembered
giving out 14 crayons in the morning, getting 12 crayons back at recess, and giving out
11 crayons after lunch. How many crayons did the teacher have at the start of the
day?
Answer:
30 crayons
Step-by-step explanation:
Let x be the number of crayons he started with
gave out 14 crayons
x-14
Got 12 back
x-14+12
Gave out 11 after lunch
x-14+12 -11
This equals 17
x-14+12 -11 =17
Combine like terms
x-13 = 17
Add 13 to each side
x -13+13 =17+13
x = 30
Answer: 30
Step-by-step explanation:
For this problem work backwards. Start from 17 and add 14. You should get 31. Then subtract 12, which equals 19. Finally add 11 to 19, which equals 30. Basically you are doing the inverse operation to get your answer. Hope this helps!
Please help I did the first 2
Answer:
x = 1.5
Step-by-step explanation:
6 - 2x = 3
→ Minus 6 from both sides to isolate -2x
-2x = -3
→ Divide -2 from both sides to isolate x
x = 1.5
A line passes through point (4,-3) and has a slope of 5/4. Write an equation in Ax + By = C
Answer:
The answer is
5x - 4y = 32Step-by-step explanation:
To write an equation of a line using a point and slope use the formula
y - y1 = m(x - x1)where
m is the slope
(x1 , y1) is the point
So we have
Equation of the line using point (4 , -3) and slope 5/4 is
[tex]y + 3 = \frac{5}{4} (x - 4)[/tex]
Multiply through by 4
4y + 12 = 5(x - 4)
4y + 12 = 5x - 20
5x - 4y = 20 + 12
The final answer is
5x - 4y = 32Hope this helps you
The three-dimensional figure shown consists of a cylinder and a right circular cone. The radius of the base is 10 centimeters. The height of the cylinder is 16 centimeters, and the total height of the figure is 28 centimeters. The slant height of the cone is 13 centimeters. Which choice is the best approximation of the surface area of the figure? Use 3.14 to approximate pi.
Answer:
2,041 square centimeters
Step-by-step explanation:
surface area = (2 × π × r × h) + ((π × r) × (r+ (√(c² + r²))))+(π × r²)
where,
cylinder base radius (r) = 10 cm
height of cylinder (h) = 16 cm
total height = 28 cm
cone height (c) = total height - height of cylinder = 28 - 16 = 12cm
π = 3.14
surface area = (2 × 3.14 × 10 × 16) + ((3.14 × 10) × (10+ (√(12² + 10²))))+(3.14 × 10²)
surface area = 1004.8 + (31.4 * 25.6) + 314
surface area = 2122.64 cm²
therefore the approximate surface area given is 2,041 square centimeters
If area of a rhombus is 336 cm and one of its diagonal is 14 cm, find its perimeter.
Answer:
The perimeter of the Rhombus is 100 cm
Step-by-step explanation:
First of all, we will need to find the length of the other diagonal.
let’s call the diagonals p and q
Mathematically, the area of the Rhombus is;
pq/2 = Area of Rhombus.
Let’s call the missing diagonal p
So;
(p * 14)/2 = 336
14p = 672
p = 672/14
p = 48 cm
Now, we can find the perimeter of the Rhombus using these diagonals.
Mathematically;
P = 2 √(p^2 + q^2)
Substituting these values, we have;
P = 2 √(14)^2 + (48^2)
P = 2 √(2500)
P = 2 * 50
P = 100 cm
The perimeter of the rhombus is the sum of its side lengths
The perimeter of the Rhombus is 100 cm
The length of one of its diagonal is given as:
[tex]p= 14[/tex]
And the area is given as:
[tex]A = 336[/tex]
Assume the other diagonal is q.
The area of the rhombus is represented as:
[tex]A = \frac{pq}2[/tex]
So, we have:
[tex]336 = \frac{14q}2[/tex]
This gives
[tex]336 = 7q[/tex]
Divide both sides by 7
[tex]48 = q[/tex]
Rewrite as:
[tex]q = 48[/tex]
The perimeter (P) of the rhombus is calculated as:
[tex]P =2\sqrt{p^2 + q^2[/tex]
So, we have:
[tex]P =2\sqrt{48^2 + 14^2[/tex]
Evaluate the squares
[tex]P =2\sqrt{2500[/tex]
Take positive root of 2500
[tex]P =2 \times 50[/tex]
[tex]P =100[/tex]
Hence, the perimeter of the Rhombus is 100 cm
Read more about areas and perimeters at:
https://brainly.com/question/14137384
Nina is training for a marathon. She can run 4 1/2 kilometers in 1/3 of an hour. At this pace, how many kilometers can Nina run in 1 hour?
Answer:
Nina can run:
13 1/2 km in 1 hour
Step-by-step explanation:
4 1/2 = 4 + 1/2 = 8/2 + 1/2 = 9/2
proportions:
9/2 hours ⇔ 1/3 hour
N hours ⇔ 1 hour
N = (9/2)*1 / (1/3)
N = (9/2) / (1/3)
N = (9*3) / (2*1)
N = 27/2
27/2 = 26/2 + 1/2 = 13 + 1/2 = 13 1/2
Nina can run:
13 1/2 km/h
13 1/2 km in 1 hour
Nina can run [tex]13\frac{1}{2}[/tex] km in an hour
The distance Nina can run in an hour can be determined by dividing the distance she can run in 1/3 of an hour by 1/3
Distance Nina can run in an hour = distance run ÷ [tex]\frac{1}{3}[/tex]
[tex]4\frac{1}{2}[/tex] ÷ [tex]\frac{1}{3}[/tex]
Convert the mixed fraction to an improper fraction [tex]\frac{9}{2}[/tex] × 3 = [tex]\frac{27}{2}[/tex]
Convert the improper fraction back to an mixed fraction = [tex]13\frac{1}{2}[/tex] km
To learn more about fractions, please check:
https://brainly.com/question/21449807?referrer=searchResults
Do the ratios 2/3 and 12/18 form a proportion?
yes
no
Answer:
Yes
Step-by-step explanation:
Because 12/18 = 2/3..(cancel 12 and 18 by 6)
Answer:
yes
Step-by-step explanation:
2x6=12
3x6=18
6 is the multiplying number
( the 2 equations are the same amount )
which one is irrational?
Basically everything but choice C
==========================================
Explanation:
sqrt is shorthand for square root
sqrt(4) = 2 = 2/1 showing that sqrt(4) is rational. We can write it as a fraction of two whole numbers, where 0 is not in the denominator.
-------
In contrast, we cannot write sqrt(2), sqrt(3), or sqrt(5) as a fraction of two whole numbers. Using your calculator, note how
sqrt(2) = 1.4142135623731
sqrt(3) = 1.73205080756888
sqrt(5) = 2.23606797749979
all of those decimal expansions go on forever without any pattern, which is a sign that those numbers are irrational. If they were rational, then a pattern would repeat at some point or the decimals would terminate at some point.
Answer:
a, b, d are irrational
Step-by-step explanation:
root 2 = 0.414.....
root 3 = 0.732.....
root 5 = 2.236.....
Hope this helps.....
Pls mark my ans as brainliest
If u mark my ans as brainliest u will get 3 extra points
One researcher wishes to estimate the mean number of hours that high school students spend watching TV on a weekday. A margin of error of 0.28 hour is desired. Past studies suggest that a population standard deviation of hours is reasonable. Estimate the minimum sample size required to estimate the population mean with the stated accuracy.
Complete question:
One researcher wishes to estimate the mean number of hours that high school students spend watching TV on a weekday. A margin of error of 0.28 hours is desired. Past studies suggest that a population standard deviation of 1.5 hours is reasonable. Estimate the minimum sample size required to estimate the population mean with the stated accuracy.
Answer:
111 students
Step-by-step explanation:
Given the following :
Margin of Error (E) = 0.28
Population standard deviation (sd) = 1.5
Recall:
Margin of Error(E) = Z * (sd/√n)
Taking a confidence interval of 95%
The Z value at a 95% confidence interval is 1.96
Plugging our values, we have :
Margin of Error(E) = Z * (sd/√n)
0.28 = 1.96 * (1.5/√n)
0.28 = 2.94 / √n
√n × 0.28 = 2.94
√n = 2.94 / 0.28
√n = 10.5
Square both sides to obtain n
n = 10.5^2
n = 110.25
4. The rental for a television set changed from $80 per year to $8 per month
What is the percentage increase in the yearly rental?
Answer:
16%
Step-by-step explanation:
rental charge per year = $80
rental charge at the rate $8 per year = 8 * 12 = 96
the increased amount = 96 - 80 = 16
% = 16 / 100 = 16%
Answer ASAP, Will give brainliest!!
Answer:
First. 115°
Second. 65°
Third. 65°
Fourth. 7
Fifth. 425.25
First
angle DAB = angle ADC (since this is an isosceles trapezoid)
Second
In a trapezoid adjacent angle are supplmentary (that is their sum is 180°)
180-115 is 65°
Third
(Same reason as second)
Fourth
The side 3x+4 is same as the opposite side
So 3x + 4 = 25
on solving you get x = 7 in
Fifth
[tex]area \: = \frac{1}{2} \times length \: of \: the \: perpendicular \: (b1 + b2)[/tex]
area = 1/2 × 13.5 (20+43)
area = 1/2 × 13.5 × 63
Thus area is 425.25
Answer:
Step-by-step explanation:
1)As ABCD is isosceles trapezium,
∠ADC= ∠DAB
∠ADC = 115°
2) AD //BC
∠ADC + ∠DCB = 180° {co interior angles}
115 + ∠DCB = 180
∠DCB = 180 - 115
∠DCB = 65°
3) As ABCD is isosceles trapezium,
∠CBA = ∠DCB
∠CBA = 65°
4) As ABCD is isosceles trapezium, non parallel sides are congruent.
AB = DC
3x + 4 = 25 in
3x = 25 - 4
3x = 21
x = 21/3
x = 7 in
5) height = 13.5 in
a= 43 in
b= 20 in
Area of trapezium = [tex]\frac{(a+b)*h}{2}\\[/tex]
[tex]= \frac{(43 +20)*13.5}{2}\\\\=\frac{63*13.5}{2}\\\\\\= 425.25 in^{2}[/tex]
How do you graph y=2/3x-4
━━━━━━━☆☆━━━━━━━
▹ Answer
You can use a graphing calculator.
▹ Step-by-Step Explanation
Attached is a screenshot.
Hope this helps!
CloutAnswers ❁
━━━━━━━☆☆━━━━━━━
Answer:
See explanation and picture attached
Step-by-step explanation:
We can break down this expression into it's core components:
Since the constant here is -4, the y intercept is -4.
Since the value we are multiplying x by is [tex]\frac{2}{3}[/tex], the slope is [tex]\frac{2}{3}[/tex]. This means for every time we go horizontal 3 units, the line increases by 2.
The graph is attached.
Hope this helped!
Write the expression 12-2 in simplest form.
Answer:
convert into a whole number 6
A principal of $2600is invested at 6.75% interest, compounded annually. How much will the investment be worth after 14 years
Answer:
$6488.19
Step-by-step explanation:
To solve this problem we use the compounded interest formula:
[tex]amount = principal(1 + (r \n))^({n}{t})[/tex]
a = $2600(1+(0.0675/1))¹*¹⁴
a = $6488.19
A debt of $12,000 with interest at 5% compounded monthly is to be repaid by equal payments at the end of each year for three years and nine months. What is the term of repayment? None 12 months 3.9 years 3.75 years
Answer:
3.75 years
Step-by-step explanation:
If the debt is to be paid in 3 years, 9 months, then the term of the loan is ...
3 9/12 = 3 3/4 = 3.75 . . . years
What is the image point of (-5,9) after a translation left 1 unit and down 1 unit?
Answer: (-6,8)
Step-by-step explanation:
Translation is a rigid motion inn which every point of the figure moved in the same direction and for the same distanceTranslation rules are
Left c units : [tex](x,y)\to(x-c,y)[/tex]
Down c units : [tex](x,y)\to(x,y-c)[/tex]
The image point of (-5,9) after a translation left 1 unit and down 1 unit will be:
[tex](-5,9)\to(-5-1,9-1)=(-6,8)[/tex]
Hence, the image point is (-6,8).