Answer:
[tex]120^{0}[/tex]
Step-by-step explanation:
Given: pentagon (5 sided polygon), two interior angles = [tex]90^{0}[/tex] each, other three interior angles are congruent.
Sum of angles in a polygon = (n - 2) × [tex]180^{0}[/tex]
where n is the number of sides of the polygon.
For a pentagon, n = 5, so that;
Sum of angles in a pentagon = (5 - 2) × [tex]180^{0}[/tex]
= 3 × [tex]180^{0}[/tex]
= [tex]540^{0}[/tex]
Sum of angles in a pentagon is [tex]540^{0}[/tex].
Since two interior angles are right angle, the measure of one of its three congruent interior angles can be determined by;
[tex]540^{0}[/tex] - (2 × [tex]90^{0}[/tex]) = [tex]540^{0}[/tex] - [tex]180^{0}[/tex]
= [tex]360^{0}[/tex]
So that;
the measure of the interior angle = [tex]\frac{360^{0} }{3}[/tex]
= [tex]120^{0}[/tex]
The measure of one of its three congruent interior angles is [tex]120^{0}[/tex].
Loreto quería decorar un viejo tambor metálico para usarlo de paragüero. Para ello, contaba con un grueso cordón que pretendía pegar en el contorno del borde superior del tambor. Sabiendo que el diámetro de este era 58,5 cm, cortó el cordón, dejando el trozo más largo de 175,5 cm de longitud de modo que le alcanzara justo, pero le faltaron 7 cm. ¿Cuál fue el error de Loreto?
Answer:
u should put the question in English to so English people can also help
Angles L and M are supplementary. What is the sum of
their measures?
The sum of the measures of angles L and M is
180 degree
Step-by-step explanation:
supplementary means anhke havinv sum of 180 degree
so sum to two supplemrntary angles is 180 drgree
Supplementary angles always add to 180.
One way I think of it is "supplementary angles form a straight angle", and both the words "supplementary" and "straight" start with the letter "S".
In contrast, complementary angles form a corner. Both "complementary" and "corner" start with "co". By "corner", I mean a 90 degree corner.
The cost for an upcoming field trip is $30 per student. The cost of the field trip C. in dollars, is a function of the number of students x.
Select all the possible outputs for the function defined by
C(x)=30
a. 20
b. 30
c. 50
d. 90
e. 100
Answer: B and D
Step-by-step explanation: since it is $30 per student the total cost would have to be a multiple of 30
which of these is an example of a discrete random variable? A. Time worked on a job B. Weight of a child C. First digit of a phone number D. Length of a fish
A discrete random variable has a countable number of possible values. In this case I am pretty sure it is either none of the above or maybe the phone one.
Discrete random variables are simply countable, which should be a finite number and it should not change continuously. So, Time worked on a job is the discrete random variable among the four options.
Discrete random variable:A random variable is said to be discrete if an experiment gives a finite number that is countable and should not change continuously.
Here, Time worked on a job has a fixed time for a job has to be done. So, it is a discrete random variable.
Some more examples of Discrete random variables are:No. of girls in a family,
No. of outcomes of the head when two coins are flipped.
No. of defective street lights out of 100 bulbs in a certain area.
No. of the possible outcome of getting 4 when a dice is thrown twice.
Wrong answers with explanation:The weight of a child changes as the child grows. So, it cannot be a discrete random variable.
The first digit of a phone number also changes for each and every person, whenever a person changes his /her number automatically will get a new number and it will have a different digit. So, it cannot be a discrete random variable.
The length of fish also varies according to the different sizes of fish. So, it cannot be a discrete random variable.
Know more about the discrete random variables:
https://brainly.com/question/17238189?referrer=searchResults
#SPJ2
6 points are place on the line a, 4 points are placed on the line b. How many triangles is it possible to form such that their verticies will be the given points, if a ∥b?
Answer: 96
Step-by-step explanation:
Ok, lines a and b are parallel.
We can separate this problem in two cases:
Case 1: 2 vertex in line a, and one vertex in line b.
Here we use the relation:
"In a group of N elements, the total combinations of sets of K elements is given by"
[tex]C = \frac{N!}{(N - K)!*K!}[/tex]
Here, the total number of points in the line is N, and K is the ones that we select to make the vertices of the triangle.
Then if we have two vertices in line a, we have:
N = 6, K = 2
[tex]C = \frac{6!}{4!*2!} = \frac{6*5}{2} = 3*5 = 15[/tex]
And the other vertex can be on any of the four points on the line b, so the total number of triangles is:
C = 15*4 = 60.
But we still have the case 2, where we have 2 vertices on line b, and one on line a.
First, the combination for the two vertices in line b is:
We use N = 4 and K = 2.
[tex]C = \frac{4!}{2!*2!} = \frac{4*3}{2} = 6[/tex]
And the other vertice of the triangle can be on any of the 6 points in line a, so the total number of triangles that we can make in this case is:
C = 6*6 = 36
Then, putting together the two cases, we have a total of:
60 + 36 = 96 different triangles
Solve using quadratic formula.
1.)5x^2+13x=6
2.)3x^2+1=-5x
PLEASE HELP!!! WILL MARK BRAINLIEST!!!
Answer:
1. 2/5,-3 2. [tex]x=\frac{-5+-\sqrt{13} }{6}[/tex]
Step-by-step explanation:
i used the quadratic formula to find x also please note that 2 has 2 answers bc of the +- beofre the sqrt of 13
Step-by-step explanation:
1).5x² + 13x - 6 = 0
Using the quadratic formula
[tex]x = \frac{ - b± \sqrt{ {b}^{2} - 4ac} }{2a} [/tex]
a = 5 , b = 13 c = - 6
We have
[tex]x = \frac{ - 13± \sqrt{ {13}^{2} - 4(5)( - 6) } }{2(5)} [/tex]
[tex]x = \frac{ - 13± \sqrt{169 + 120} }{10} [/tex]
[tex]x = \frac{ - 13± \sqrt{289} }{10} [/tex]
[tex]x = \frac{ - 13±17}{10} [/tex]
[tex]x = \frac{ - 13 + 17}{10} \: \: \: \: \: or \: \: \: \: x = \frac{ - 13 - 17}{10} [/tex]
x = 2/5 or x = - 32).3x² + 5x + 1 = 0
a = 3 , b = 5 , c = 1
[tex]x = \frac{ -5 ± \sqrt{ {5}^{2} - 4(3)(1)} }{2(3)} [/tex]
[tex]x = \frac{ - 5± \sqrt{25 - 12} }{6} [/tex]
[tex]x = \frac{ - 5± \sqrt{13} }{6} [/tex]
[tex]x = \frac{ - 5 + \sqrt{13} }{6} \: \: \: \: or \: \: \: x = \frac{ - 5 - \sqrt{13} }{6} [/tex]
Hope this helps you
A man died leaving property
worth 49000 for his three daughters and a son. Find out the share of each in inheritance?
Answer:
49000
Step-by-step explanation:
since it's the same worth
Answer:
49000
Step-by-step explanation:
since there was the same worth given to all
Set A={XIX is an even whole number between 0 and 2) = 0
True? or false?
false
Step-by-step explanation:
false
Answer it answer it answer it.
Answer:
Option C. P = 3/q
Step-by-step explanation:
To know the the correct answer to the question, do the following:
Let us assume a certain number for P say 2 and 3, and then, find the corresponding value for q in each case to see which will give a decreased value for q.
Option A
When P = 2, q =.?
P = 3q
2 = 3q
Divide both side by 3
q = 2/3
When P = 3, q =.?
P = 3q
3 = 3q
Divide both side 3
q = 3/3
q = 1
From the above illustration, we can see that as P increase, q also increase.
Option B
When P = 2, q =.?
P – 3 = q
2 – 3 = q
q = – 1
When P = 3, q =.?
P – 3 = q
3 – 3 = q
q = 0
From the above illustration, we can see that as P increase, q also increase.
Option C
When P = 2, q =.?
P = 3/q
2 = 3/q
Cross multiply
2 × q = 3
Divide both side by 2
q = 3/2
q = 1.5
When P = 3, q =.?
P = 3/q
3 = 3/q
Cross multiply
3 × q = 3
Divide both side by 3
q = 3/3
q = 1
From the above illustration, we can see that as P increase, q decreases.
Option D.
When P = 2, q =.?
1/p = 3/q
1/2 = 3/q
Cross multiply
1 × q = 2 × 3
q = 6
When P = 3, q =.?
1/p = 3/q
1/3 = 3/q
Cross multiply
1 × q = 3 × 3
q = 9
From the above illustration, we can see that as P increase, q also increase.
Now, haven done the above, only option C gives a decreased value for q as the value of P increases.
c
this before
Step-by-step explanation:
Write 30+x^2-11 in standard form.
Answer:
x^2+19
Step-by-step explanation:
When sketching a normal curve, what
value represents one standard deviation
to the right of the mean for the data set?
56, 54, 45, 52, and 48.
Answer:
The value representing one standard deviation to the right of the mean is 55.
Step-by-step explanation:
The provided data set is:
S = {56, 54, 45, 52, and 48}
Compute the mean and standard deviation as follows:
[tex]\mu=\frac{1}{n}\sum X=\frac{1}{5}\times [56+54+45+52+48]=51\\\\\sigma=\sqrt{\frac{1}{n}\sum (X-\mu)^{2}}=\sqrt{\frac{1}{5}\cdot {(56-51)^{2}+...+(48-51)^{2}}}=\sqrt{\frac{1}{5}\times 80}=4[/tex]
Compute the value representing one standard deviation to the right of the mean as follows:
[tex]X=\mu+1\cdot \sigma[/tex]
[tex]=51+(1\times 4)\\=51+4\\=55[/tex]
Thus, the value representing one standard deviation to the right of the mean is 55.
PLEASE help me with this question! No nonsense answers please. This is really urgent.
Answer:
The third option: x= [tex]\frac{8}{3} \pi[/tex]
Step-by-step explanation:
Arc length formula=[tex]\frac{Central Angle}{360} * 2\pi r[/tex]
Arc length = [tex]\frac{120}{360} *2\pi (4)[/tex]
=[tex]\frac{8}{3}\pi[/tex]
Can someone plz help me ASAP!!!!!!!!
Answer:
A) The number halfway between -2 and 6 is 2.
B) -10 is halfway between -18 and 8
Manuel made at least one error as he found the value of this expression. Identify the step in which Manuel made his first error. After identifying the step with the first error, explain the corrected steps and find the final answer.
Answer:
Manuel made his first mistake in step 2 leading to the continuous mistakes
Final answer=185
Step-by-step explanation:
Manuel made at least one error as she found the value of this expression. 2(-20) + 3[5/4(-20)] + 5[2/5(50)] + 4(50) Step 1: 2(-20) + 3(-25) + 5(20) + 4(50) Step 2: (3 + 2)(-20 + -25) + (5 + 4)(20 + 50) Step 3: 5(-45) + 9(70) Step 4: -225 + 630 Step 5: 405 Identify the step in which Chris made her first error. After identifying the step with the first error, write the corrected steps and find the final answer.
2(-20) + 3[5/4(-20)] + 5[2/5(50)] + 4(50)
Step 1: 2(-20) + 3(-25) + 5(20) + 4(50)
Step 2: -40 - 75 + 100 +
200
Step 3: -115 + 300
Step 4: 185
Manuel made his first error in step 2 by combining two different terms into one as he has done
(3 + 2)(-20 + -25) and also (5 + 4)(20 + 50)
Step 2: (3 + 2)(-20 + -25) + (5 + 4)(20 + 50)
Step 3: 5(-45) + 9(70) Step 4: -225 + 630 Step 5: 405
He should have evaluated the terms separately as I have done above, giving us 185 as the final answer in contrast to his 405 final answer.
You want to build supports at each end of a table in the shape of a triangle. What type of triangle would you use to act as the supports: acute, right, or obtuse? Why?
Answer:
obtuse
Step-by-step explanation:
because obtuse triangle would provide more support that acute or right as its bigger.
1) Complete the table
2) find the mean of the random variable x. Use the formula in the photo
Answer:
a. Please check the explanation for filling of the empty column on the table
b. The mean of the random variable x is 7/11
Step-by-step explanation:
a. Firstly, we are concerned with completing the table.
To do this, we simply need to multiply the values in the column of x by the values in the column of p(x)
Thus, we have the following;
2. 3 * 2/36 = 6/36
3. 4 * 3/36 = 12/36
4. 5 * 4/36 = 20/36
5. 6 * 5/36 = 30/36
6. 7 * 6/36 = 42/36
7. 8 * 5/36 = 40/36
8. 9 * 4/36 = 36/36
9. 10 * 3/36 = 30/36
10. 11 * 2/36 = 22/36
11. 12 * 1/36 = 12/36
b. We want to find the mean of the random variable x.
All what we need to do here is add all the values of x•P(x) together, then divide by 11.
Thus, we have
(2/36 + 6/36 + 12/36 + 20/36 + 30/36 + 42/36 + 40/36 + 36/36 + 30/36 + 22/36 + 12/36)/11
Since the denominator is same for all, we simply add all the numerators together;
(252/36) * 11 = 252/396 = 63/99 = 7/11
Find the length of the base and the height and calculate the area
Answer:
44
Step-by-step explanation:
base = 3- -5 = 8
height = 8 - -3 = 11
1/2 bh
1/2(8)(11) = 44
if your ans is correct i will choose you as a brainlist when the number of student of a school was increased by 30% it became 455. Find the previous number student.
Step-by-step explanation:
find 30% of 455
which is = 136.5
then subtract 136.5 from the original number(455)
455 - 136.5
=318.5 student
A cube whose edge is 20 cm 1 point
long, has circles on each of its
faces painted black. What is the
total area of the unpainted
surface of the cube if the
circles are of the largest
possible areas?(a) 90.72 cm2 (b)
256.72 cm² (c) 330.3 cm² (d)
514.28 cm?
Answer:
Unpainted surface area = 514.28 cm²
Step-by-step explanation:
Given:
Side of cube = 20 Cm
Radius of circle = 20 / 2 = 10 Cm
Find:
Unpainted surface area
Computation:
Unpainted surface area = Surface area of cube - 6(Area of circle)
Unpainted surface area = 6a² - 6[πr²]
Unpainted surface area = 6[a² - πr²]
Unpainted surface area = 6[20² - π10²]
Unpainted surface area = 6[400 - 314.285714]
Unpainted surface area = 514.28 cm²
Both Fred and Ed have a bag of candy containing a lemon drop, a cherry drop, and a lollipop. Each takes out a piece and eats it. What are the possible pairs of candies eaten? A. Lemon-lemon, cherry-lemon, lollipop-lollipop, lemon-cherry, cherry-cherry, lemon-lollipop, lollipop-cherry, cherry-lollipop, lollipop-lemon B. Cherry-lemon, lemon-lollipop, lollipop-cherry, lollipop-lollipop, lemon-lemon C. Lemon-cherry, lemon-cherry, lemon-cherry, lemon-lollipop, lemon-lollipop, lemon-lollipop, cherry-lollipop, cherry-lollipop, cherry-lollipop D. Lemon-lemon, cherry-lemon, lollipop-lollipop, lemon-lollipop, cherry-cherry, lemon-lollipop, lollipop-cherry, cherry-lemon, lollipop-lemon
Answer:
A. Lemon-lemon, cherry-lemon, lollipop-lollipop, lemon-cherry, cherry-cherry, lemon-lollipop, lollipop-cherry, cherry-lollipop, lollipop-lemon
Step-by-step explanation:
From the above question, we are told that both Fred and Ed have a bag of candy containing a lemon drop, a cherry drop, and a lollipop
There are two events here's
2 people = Fred and Ed
3 bags of different sweets = Lemon Cherry and Lollipop
The number of ways that both of them can eat this singly is calculated using combination formula
C(n, r) = nCr = n!/r! (n - r)!
n = 3, r = 2 = 3C2 = 3!/2! (3 - 2)!
= 3 × 2 × 1/2 × 1
= 3
We were asked to find the possible pairs
Hence = 3² = 9
There are 9 possible pairs through which Fred and Ed can eat their sweets and they are:
1) Lemon - Lemon
2) Cherry - Cherry
3) Lollipop - Lollipop
4) Lemon - Cherry
5) Cherry - Lemon
6) Lollipop - Cherry
7) Cherry - Lollipop
8) Lollipop - Lemon
9) Lemon - Lollipop.
Therefore, Option A is the correct option
Answer:
LEMONS BURN YOUR HOUSE DOWN JK its this A. Lemon-lemon, cherry-lemon, lollipop-lollipop, lemon-cherry, cherry-cherry, lemon-lollipop, lollipop-cherry, cherry-lollipop, lollipop-lemon
Step-by-step explanation:
From the above question, we are told that both Fred and Ed have a bag of candy containing a lemon drop, a cherry drop, and a lollipop
There are two events here's
2 people = Fred and Ed
3 bags of different sweets = Lemon Cherry and Lollipop
The number of ways that both of them can eat this singly is calculated using combination formula
C(n, r) = nCr = n!/r! (n - r)!
n = 3, r = 2 = 3C2 = 3!/2! (3 - 2)!
= 3 × 2 × 1/2 × 1
= 3
We were asked to find the possible pairs
Hence = 3² = 9
There are 9 possible pairs through which Fred and Ed can eat their sweets and they are:
1) Lemon - Lemon
2) Cherry - Cherry
3) Lollipop - Lollipop
4) Lemon - Cherry
5) Cherry - Lemon
6) Lollipop - Cherry
7) Cherry - Lollipop
8) Lollipop - Lemon
9) Lemon - Lollipop.
Therefore, Option A is the correct option
jim buys a calculator that is marked 30% off. If he paid $35, what was the original price?
Answer:
x = 50
Step-by-step explanation:
Let x be the original price.
He got 30% off
The discount is .30x
Subtract this from the original price to get the price he paid
x - .30x = price he paid
.70x = price he paid
.70x = 35
Divide each side by .7
.70x/.7 = 35/.7
x=50
Identify whether each phrase is an expression, equation, or inequality.
Term
Phrase
Expression
3 - 53 =y
Inequality
7-5 <2.9
2 + 0
Equation
24"
t
Answer:
The identities of the terms are;
3 - 53 = y is an equation
7.5 < 2.9 is an inequality
2 + 0 is an expression
t is a term
24" is a term
Step-by-step explanation:
An equation is an expression with the equal to sign
3 - 53 = y is an equation
An inequality is a mathematical expression that contains an inequality sign
7.5 < 2.9 is an inequality
A term is a sole number or variable or the product of variables and numbers that come before and after mathematical operators such as +, ×, -, or ÷
t and 24" are terms.
PLEASE HELP!!!
Which expression shows a way to find the area of the following rectangle?
Answer:
B
Step-by-step explanation:
This rectangle appears to have 7 boxes on the bottom, and 3 box for the side.
Since area is base×height
It would be 7×3
A study was conducted on students from a particular high school over the last 8 years. The following information was found regarding standardized tests used for college admitance. Scores on the SAT test are normally distributed with a mean of 982 and a standard deviation of 198. Scores on the ACT test are normally distributed with a mean of 19.6 and a standard deviation of 4.5. It is assumed that the two tests measure the same aptitude, but use different scales.If a student gets an SAT score that is the 20-percentile, find the actual SAT score.SAT score =What would be the equivalent ACT score for this student?ACT score =If a student gets an SAT score of 1437, find the equivalent ACT score.ACT score =
Answer:
Actual SAT Score = 815.284
Equivalent ACT Score = 15.811
The equivalent ACT Score = 29.95
Step-by-step explanation:
From the given information:
Scores on the SAT test are normally distributed with :
Mean = 982
Standard deviation = 198
If a student gets an SAT score that is the 20-percentile
Then ;
P(Z ≤ z ) = 0.20
From the standard z-score for percentile distribution.
z = -0.842
Therefore, the actual SAT Score can be computed as follows:
Actual SAT score = Mean + (z score × Standard deviation)
Actual SAT score = 982 + (- 0.842 × 198)
Actual SAT score = 982 + ( - 166.716)
Actual SAT score = 982 - 166.716
Actual SAT Score = 815.284
Scores on the ACT test are normally distributed with a mean of 19.6 and a standard deviation of 4.5.
Mean = 19.6
Standard deviation = 4.5
Equivalent ACT Score = 19.6 + (- 0.842 × 4.5)
Equivalent ACT Score = 19.6 + ( - 3.789)
Equivalent ACT Score = 15.811
If a student gets an SAT score of 1437, find the equivalent ACT score.
So , if the SAT Score = 1437
Then , using the z formula , we can determine the equivalent ACT Score
[tex]z = \dfrac{X - \mu}{\sigma}[/tex]
[tex]z = \dfrac{1437 - 982}{198}[/tex]
[tex]z = \dfrac{455}{198}[/tex]
z =2.30
The equivalent ACT Score = 19.6 + (2.30 × 4.5)
The equivalent ACT Score = 19.6 + 10.35
The equivalent ACT Score = 29.95
Find the graph of the inequality y<-1/5X+1.
Answer:
Please refer to attached image for the graph of inequality.
Step-by-step explanation:
Given the inequality:
[tex]y<-\dfrac{1}{5}x+1[/tex]
To graph this, first let us convert it to corresponding equality.
[tex]y=-\dfrac{1}{5}x+1[/tex]
As we can see that the above equation is a linear equation in two variables so it will be a straight line.
Now, let us find at least two points on the above equation so that we can plot them and then extend it to get the complete graph.
Two points that can be easily found, are:
1st put [tex]x = 0[/tex] , [tex]y=-\frac{1}{5}\times 0+1 =1[/tex]
So one point is (0, 1 )
Now, put y = 0,
[tex]0=-\frac{1}{5}\times x+1\\\Rightarrow 1=\frac{1}{5}\times x\\\Rightarrow x = 5[/tex]
Second point is (5, 0)
Let us plot the points on the graph and extend the straight line.
Now, we know that it is an inequality, the are will be shaded.
As there is no equal to sign in the inequality, so the line will be dashed.
Let us consider one point and check whether that satisfies the inequality or not.
If the point is satisfied in the inequality, we will shade that area towards the point.
Let us consider the point (0, 0).
0 < 0 +1
Point is satisfied.
Please refer to the attached image for the graph of given inequality.
8 less than half of n
Answer:
n/2>8
Step-by-step explanation:
Half of N is N/2
And if 8 is less that half of N or N/2
then
N/2 has to be greater than 8
N/2>8
SIMPLIFY.
(5c^2 + c) - (3c^2 + 11c)
Answer:2 c^2 - 10c
Step-by-step explanation:
Find the area of quadrilateral ABCD. [Hint: the diagonal divides the quadrilateral into two triangles.]
A. 28.93 units²
B. 29.98 units²
C. 29.79 units²
D. 30.73 units²
Answer:
Area of quadrilateral ABCD = 29.79 units² (Approx)
Step-by-step explanation:
Area of triangle ABD
s = (3.48+8.66+8.6) / 2
s = 10.37
Area of triangle ABD = √10.37(10.37-8.66)(10.37-8.6)(10.37-3.48)
Area of triangle ABD = √212.4616
Area of triangle ABD = 14.5760625 unit²
Area of triangle ACD
s = (3.54+8.84+8.6) / 2
s = 10.49
Area of triangle ACD = √10.49(10.49-8.6)(10.49-8.84)(10.49-3.54)
Area of triangle ACD = √227.3558
Area of triangle ACD = 15.0783222 unit²
Area of quadrilateral ABCD = Area of triangle ABD + Area of triangle ACD
Area of quadrilateral ABCD = 14.5760625 unit² + 15.0783222 unit²
Area of quadrilateral ABCD = 29.6542units²
Area of quadrilateral ABCD = 29.79 units² (Approx)
whats the squareroot of 72 needs to be simplified
Answer: 6√2
Step-by-step explanation: The easiest way to do this problem is to factor 72 as 2 · 36, then recognize 36 as a perfect square, 6 · 6.
There's no need to factor further because the 6's pair up
so a 6 comes out of the radical leaving a 2 inside.
So our answer is 6√2.
Always be on the lookout for perfect squares!
Work is attached below.
How to do this question plz answer me step by
Answer:
481.92
Step-by-step explanation:
First find the increase
466.98 * 3.2%
466.98 * .032
14.94336
Add this to the original amount
466.98+14.94336
481.92336
Round to 2 decimal places
481.92