The answer for the first line segment : (-3,-7) (-4,0)
The answer for 2nd line segment is :(-3,8) (-9,-5)
Step-by-step explanation:
Let do line segment QR and ST. first.
Step 1: Find a line that contains a points that is perpendicular to the line of reflection
"A reflection of a pre image and new image is perpendicular to the line of reflection.
This means for points Q,S,T and R, there is a line that. contains one point that is perpendicular to the line of reflection.
A line that is perpendicular to the line of reflection is the negative reciprocal of the slope so this means all 4 lines must be on a different slopes but the slopes must be 1/2.
To simplify, things, here are the lines that will all 4 points be on
Point R will be on line y=1/2x-11/2Point Q will be on line y=1/2x+2Point S will be on line y=1/2x+19/2Point T will be on line y=1/2x-1/2Step 2: Find a point where both the line and line of reflection intersect at.
Now we need to find a line where both the line of reflections and the 4 lines will intersect at separately.
The line with Point R will intersect with the line of reflection at point (1,-5)The line with Point Q will intersect with line of reflection at Point (-2,1)The line with Point S will intersect at point (-5,7)The line worth Point T will intersect at Point(-1,-1).Step 3: Find the endpoints given the midpoint and the originally endpoint.
A reflection per and new image is equidistant from the point of reflection. So we. an say that the point where the line intersect is the midpoint of the pre and new image.
Using this info,
The endpoint for R prime is (-3, -7).The endpoint for Q prime is (-4,0). The endpoint of S prime is (-3,8).The endpoint of T prime is (-9,-5).Connect R prime and Q prime. And that the new line segments
Connects S prime and T prime and that the new line segments.
Use the substitution methed to solve the system of equations. Choose the correct ordered pair.
2y+5x=13
2y+3x=5
Solve both equations for 2y :
2y + 5x = 13 ==> 2y = 13 - 5x
2y + 3x = 5 ==> 2y = 5 - 3x
Solve for x :
13 - 5x = 5 - 3x
8 = 2x
x = 4
Solve for y :
2y = 13 - 5×4
2y = -7
y = -7/2
As an ordered pair, the solution is then the point (x, y) = (4, -7/2).
write 6x10x10x10x10 with an expont
Answer:
6x10^4
Step-by-step explanation:
I need help ASAP please
Answer:
5:10
6 (-2,0)
7 (-5,6)
8 (5,3)
9 No, ab=8 CD=6
Step-by-step explanation:
What is the coordinate of point P?
2.3
2.4
2.375
2.25
A number line is just that – a straight, horizontal line with numbers placed at even increments along the length. The coordinate of point p on the given number line is 2.375. The correct option is C.
What is a number line?A number line is just that – a straight, horizontal line with numbers placed at even increments along the length. It’s not a ruler, so the space between each number doesn’t matter, but the numbers included on the line determine how it’s meant to be used.
Given that there are 8 divisions between two whole numbers, now since the point P is on the third division. Therefore, the coordinate of point p will be,
Coordinate of point P = 2 + 3/8
=2 + 0.375
= 2.375
Hence, the coordinate of point p on the given number line is 2.375.
Learn more about the Number line here:
https://brainly.com/question/557284
#SPJ2
please Help with my area math question. I don't remember how to do it. multiply or add? and what is the answer to this?
Answer:
100 inches^3
Step-by-step explanation:
The volume of the back rectangle is
V = l*w*h
V = 8*5*1 = 40 inches ^3
The volume of the front rectangle is
V = 6*2*5 = 60 inches^3
Add the volumes
40+60 = 100 inches^3
Write the ratio as a fraction in simplest form, with whole numbers in the numerator and denominator. 2.1yd : 1.4yd
9514 1404 393
Answer:
3/2
Step-by-step explanation:
Multiplying numerator and denominator by 10 will convert the ratio to a ratio of whole numbers. Then dividing by the common factor of 7 will reduce it to simplest form.
[tex]\dfrac{2.1\text{ yd}}{1.4\text{ yd}}=\dfrac{2.1\times10}{1.4\times10}=\dfrac{21}{14}=\dfrac{3\times7}{2\times7}=\boxed{\dfrac{3}{2}}[/tex]
50T Q12 A man wants to buy bags of gravel to cover his driveway. He decides to work out the area of his driveway. 1 bag of gravel covers 14m2 3m Sketch of driveway Not to scale 3m 8m 6m What is the area of his driveway? How many bags of gravel must he buy?
Answer:
hi amki nai patajjdkfkejd
True or false?
A function assigns each value of the independent variable to exactly one
value of the dependent variable.
A. True
B. False
SUB
Answer:
This statement would be true.
Step-by-step explanation:
find the measure of a
Answer:
Hello,
answer D 48°
Step-by-step explanation:
In the right triangle down, a+42°=90° ==> a=90°-42°=48°
Find the first five terms of the sequence..
Answer:
The Next fiver tems are - 2, -2,-8,-12,-16
Step-by-step explanation:
Answer:
2,-6,2,-6,2
Step-by-step explanation:
a1 = 2
an = -an-1 -4
Let n =2
a2 = -a1 -4 = -2-4 = -6
Let n=3
a3 = -a2 -4 = - (-6) -4 = +6 -4 = 2
Let n = 4
a4 = -a3 -4 = -2 -4 = -6
Let n=5
a5 = -a4 -4 = -(-6) -4 = +6-4 = 2
Factor 64a^3 -8b^3 Explain all steps.
Answer:
[tex]8(2a- b)(4a^2+ 2ab+ b^2)[/tex]
Step-by-step explanation:
factor out the 8
then you have the sum/difference of cubes..
look that up SOAP: same opposite, always a plus
[tex]64a^3 -8b^3\\8(8a^3 -b^3)[/tex]
[tex]8(2a- b)(4a^2+ 2ab+ b^2)[/tex]
help
What is 5 added to 3 4?
6. 12
Answer:
8.4
Step-by-step explanation:
jjdijendjndoendidnie
PLEASE HELPPPPPPPPPP
Answer:
167/346 or 0.483
Step-by-step explanation:
From the question given above, the following data were obtained:
Number of Tails (T) = 167
Number of Heads (H) = 179
Probability of tail, P(T) =?
Next, we shall determine total outcome. This can be obtained as follow:
Number of Tails (T) = 167
Number of Heads (H) = 179
Total outcome (S) =?
S = T + H
S = 167 + 179
Total outcome (S) = 346
Finally, we shall determine the probability of tails. This can be obtained as follow:
Number of Tails (T) = 167
Total outcome (S) = 346
Probability of tail, P(T) =?
P(T) = T / S
P(T) = 167 / 346
P(T) = 0.483
Thus, the probability of tails is 167/346 or 0.483
44y + 321x = 0 biết x=30000
Answer:
y= -240750/11
Step-by-step explanation:
44y + 321. 30000 = 0
44y = - 963000
y= -240750/11
PLEASE HELP
Solve the equation for y. Identify the slope and y-intercept then graph the equation.
2y-3x=10
Y=
M=
B=
Please Include a picture of the graph and show your work if you can
Hey there! I'm happy to help!
Here is our equation.
[tex]2y-3x=10[/tex]
Let's add 3x to both sides.
[tex]2y=3x+10[/tex]
Divide both sides by 2.
[tex]y=\frac{3}{2}x+5[/tex]
Here is slope intercept form.
[tex]y=mx+b\\m=slope\\b=y-intercept[/tex]
So, we can just find those two things in the equation, and here are our answers.
[tex]y=\frac{3}{2}x+5\\m=\frac{3}{2}\\b=5[/tex]
The graph is down below. If our y-intercept is 5, then one of our points is (0,5). You can then plug a random x-value into the formula to find another point and then draw the line going through the two points.
[tex]y=\frac{3}{2}(2)+5\\y=3+5\\y=8\\(2,8)[/tex]
Have a wonderful day and keep on learning! :D
Álgebra 2 need help
Answer:
first term = -1/5
I cant see part b (sorry its too blurry)
thirteenth term = -0.2
part d: -19a/95a -0.2a
Step-by-step explanation:
socratic
2. In a 100m race, Luke was 2m ahead of Azam. Chandra was 3m behind Luke, Maggie was 7m ahead of Chandra. Luke was 5m behind Darren. Who was in the first place?
Answer:
luke won
Step-by-step explanation:
he is 2 meters ahead of azam witch is in 2dn place
Below is a geometric sequence. 3, 9, 27, 51, ... (b) what is the common raters if the geometric sequence?
Find a vector v that is perpendicular to the plane through the points
A=(5,−4,4), B=(−5,0,−3), and C=(−4,2,−5).
v =
The value of vector v that is perpendicular to the plane through the points is,
⇒ v = (6, - 27, - 24)
What is Multiplication?To multiply means to add a number to itself a particular number of times. Multiplication can be viewed as a process of repeated addition.
Given that;
Points are,
A = (5,−4,4), B = (−5,0,−3), and C = (−4,2,−5).
Hence, We get;
AB = [- 10, 4, - 7]
AC = [-9, 6, -9]
So, The value of vector v that is perpendicular to the plane through the points is,
⇒ v = AB x AC
⇒ v = (- 10, 4, - 7) x (- 9, 6, - 9)
⇒ v = (6, - 27, - 24)
Thus, The value of vector v that is perpendicular to the plane through the points is,
⇒ v = (6, - 27, - 24)
Learn more about the multiplication visit:
https://brainly.com/question/10873737
#SPJ2
write the greatest and smallest four digit number by using 7,8,0,9 digit
Please help do in an hour
Answer:
-4
Step-by-step explanation:
a1 = -8
an = an-1 +2
a2 = a1+2 = -8+2 = -6
a3 = a2+2 = -6+2 = -4
Find the solution of x – 13 = 25, and verify your solution using substitution.
options:
A)
x = 12, 12 + 13 = 25, 25 = 25
B)
x = 39, 39 – 13 = 25, 25 = 25
C)
x = 37, 37 – 13 = 25, 25 = 25
D)
x = 38, 38 – 13 = 25, 25 = 25
Answer:
x = 38
Step-by-step explanation:
x-13 = 25
Add 13 to each side
x-13+13 = 25+13
x = 38
Check
38-13 = 25
25=25
SAT scores are normally distributed with a mean of 1,500 and a standard deviation of 300. An administrator at a college is interested in estimating the average SAT score of first-year students. If the administrator would like to limit the margin of error of the 88% confidence interval to 15 points, how many students should the administrator sample? Make sure to give a whole number answer.
Answer:
The administrator should sample 968 students.
Step-by-step explanation:
We have to find our [tex]\alpha[/tex] level, that is the subtraction of 1 by the confidence interval divided by 2. So:
[tex]\alpha = \frac{1 - 0.88}{2} = 0.06[/tex]
Now, we have to find z in the Z-table as such z has a p-value of [tex]1 - \alpha[/tex].
That is z with a p-value of [tex]1 - 0.06 = 0.94[/tex], so Z = 1.555.
Now, find the margin of error M as such
[tex]M = z\frac{\sigma}{\sqrt{n}}[/tex]
In which [tex]\sigma[/tex] is the standard deviation of the population and n is the size of the sample.
Standard deviation of 300.
This means that [tex]n = 300[/tex]
If the administrator would like to limit the margin of error of the 88% confidence interval to 15 points, how many students should the administrator sample?
This is n for which M = 15. So
[tex]M = z\frac{\sigma}{\sqrt{n}}[/tex]
[tex]15 = 1.555\frac{300}{\sqrt{n}}[/tex]
[tex]15\sqrt{n} = 300*1.555[/tex]
Dividing both sides by 15
[tex]\sqrt{n} = 20*1.555[/tex]
[tex](\sqrt{n})^2 = (20*1.555)^2[/tex]
[tex]n = 967.2[/tex]
Rounding up:
The administrator should sample 968 students.
At a Noodles & Company restaurant, the probability that a customer will order a nonalcoholic beverage is .50. Find the probability that in a sample of 14 customers, at least 7 will order a nonalcoholic beverage
For each customer, there are only two possible outcomes. Either they will order an alcoholic beverage, or they will not. The probability of a customer ordering an alcoholic beverage is independent of any other customer, which means that the binomial probability distribution is used to solve this question..
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
And p is the probability of X happening.
At a Noodles & Company restaurant, the probability that a customer will order a nonalcoholic beverage is .50
This means that [tex]p = 0.5[/tex]
Sample of 14 customers
This means that [tex]n = 14[/tex]
Probability that at least 7 will order a nonalcoholic beverage
This is:
[tex]P(X \geq 7) = 1 - P(X < 7)[/tex]
In which
[tex]P(X < 7) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5) + P(X = 6)[/tex]
Then
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 0) = C_{14,0}.(0.5)^{0}.(0.5)^{14} = 0.0001[/tex]
[tex]P(X = 1) = C_{14,1}.(0.5)^{1}.(0.5)^{13} = 0.0009[/tex]
[tex]P(X = 2) = C_{14,2}.(0.5)^{2}.(0.5)^{12} = 0.0056[/tex]
[tex]P(X = 3) = C_{14,3}.(0.5)^{3}.(0.5)^{11} = 0.0222[/tex]
[tex]P(X = 4) = C_{14,4}.(0.5)^{4}.(0.5)^{10} = 0.0611[/tex]
[tex]P(X = 5) = C_{14,5}.(0.5)^{5}.(0.5)^{9} = 0.1222[/tex]
[tex]P(X = 6) = C_{14,6}.(0.5)^{6}.(0.5)^{8} = 0.1833[/tex]
So
[tex]P(X < 7) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5) + P(X = 6) = 0.0001 + 0.0009 + 0.0056 + 0.0222 + 0.0611 + 0.1222 + 0.1833 = 0.3954[/tex]
[tex]P(X \geq 7) = 1 - P(X < 7) = 1 - 0.3954 = 0.6046[/tex]
0.6046 = 60.46% probability that at least 7 will order a nonalcoholic beverage.
For more on the binomial distribution, you can check https://brainly.com/question/15557838
What is the volume of the following rectangular prism?
Answer:
44/3
Step-by-step explanation:
V=L*W*H
WH=22/3
V=2*(22/3)
A car is traveling at a constant speed of 60 miles per hour. How many feet does it travel in 10 seconds?
Answer:
880 ft.
Step-by-step explanation:
First! We have to establish how many feet the car travels per hour.
60 (number of miles per hour) x 5280 (number of feet in a mile) = 316,800 (number of feet in an hour)
Next, since we know that there are 60 minutes in an hour we are going to divide our "number of feet in an hour" by 60 to get the "number of feet in a minute"
316,800 ÷ 60 = 5280
Once again, we are going to divide our "number of feet in a minute" by 60 to get the "number of feet per second".
5280 ÷ 60 = 88
Finally! We will multiple our "number of feet per second" by 10 to get how many feet the car can travel in 10 seconds.
88 × 10 = 880
So! Our car can travel 880 feet in 10 seconds.
Hope this Helps! :)
Have any questions? Ask below in the comments and I will try my best to answer.
-SGO
(07.03. 07.04 MC)
Part A: The area of a square is (4x2 + 20x + 25) square units. Determine the length of each side of the square by factoring the area expression completely. Show
your work (5 points)
Part B: The area of a rectangle is (4x2 - 9y2) square units. Determine the dimensions of the rectangle by factoring the area expression completely. Show your work
(5 points)
Answer:
A) 4x^2+20x+25=(2x)^2+2*(2x)*5+5^2=(2x+5)^2
Area=(side)^2, side=sqrt(area)=sqrt((2x+5)^2)=2x+5
B) 4x^2-9y^2=(2x-3y)(2x+3y), these are the dimensions of the rectangle
A) The length of each side of the square is (2x + 5).
B) The dimensions of the rectangle are (2x - 3y) and (2x + 3y).
Used the concept of a quadratic equation that states,
An algebraic equation with the second degree of the variable is called a Quadratic equation.
Given that,
Part A: The area of a square is [tex](4x^2 + 20x + 25)[/tex] square units.
Part B: The area of a rectangle is [tex](4x^2 - 9y^2)[/tex] square units.
A) Now the length of each side of the square is calculated by factoring the area expression completely,
[tex](4x^2 + 20x + 25)[/tex]
[tex]4x^2 + (10 + 10)x + 25[/tex]
[tex]4x^2 + 10x + 10x + 25[/tex]
[tex]2x (x + 5) + 5(2x + 5)[/tex]
[tex](2x + 5) (2x+5)[/tex]
Hence the length of each side of the square is (2x + 5).
B) the dimensions of the rectangle are calculated by factoring the area expression completely,
[tex](4x^2 - 9y^2)[/tex]
[tex](2x)^2 - (3y)^2[/tex]
[tex](2x - 3y) (2x + 3y)[/tex]
Therefore, the dimensions of the rectangle are (2x - 3y) and (2x + 3y).
To learn more about the rectangle visit:
https://brainly.com/question/2607596
#SPJ4
1. Write the polynomial function that models the given situation.A rectangle has a length of 12 units and a width of 11 units. Squares of x by x units are cut out of each corner, and then the sides are folded up to create an open box. Express the volume V of the box as a polynomial function in terms of x.
2. Write the polynomial function that models the given situation. A square has sides of 24 units. Squares x + 1 by x + 1 units are cut out of each corner, and then the sides are folded up to create an open box. Express the volume V of the box as a function in terms of x.
3. Write the polynomial function that models the given situation. A cylinder has a radius of x + 6 units and a height 3 units more than the radius. Express the volume V of the cylinder as a polynomial function in terms of x.
Answer:
1. (12 - 2x)(11 - 2x)x
2. 4(11 - 2x)²(x + 1)
3. π(x³ + 15x² + 63x + 81)
Step-by-step explanation:
1. Write the polynomial function that models the given situation.
A rectangle has a length of 12 units and a width of 11 units. Squares of x by x units are cut out of each corner, and then the sides are folded up to create an open box. Express the volume V of the box as a polynomial function in terms of x.
Since the length of the rectangle is 12 units and its width 11 units and squares of x by x units are cut from its corners, it implies that a length x is cut from each side. So, the length of the open box is L = 12 - 2x and its width is w = 11 - 2x.
Since the cut corners of the rectangle are folded, the side x which is cut represents the height of the open box, h. so, h = x
So, the volume of the open box V = LWh = (12 - 2x)(11 - 2x)x
2. Write the polynomial function that models the given situation. A square has sides of 24 units. Squares x + 1 by x + 1 units are cut out of each corner, and then the sides are folded up to create an open box. Express the volume V of the box as a function in terms of x.
Since the square has sides of 24 units and squares of x + 1 by x + 1 units are cut from its corners, it implies that a length x + 1 is cut from each corner and the length 2(x + 1) is cut from each side. So, the length of side open box is L = 24 - 2(x + 1) = 24 - 2x - 2 = 24 - 2 - 2x = 22 - 2x = 2(11 - x)
Since the cut corners of the square are folded, the side x + 1 which is cut represents the height of the open box, h. so, h = x + 1
Since the area of the base of the pen box is a square, its area is L² = [2(11 - 2x)]²
So, the volume of the open box V = L²h = [2(11 - 2x)]²(x + 1) = 4(11 - 2x)²(x + 1)
3. Write the polynomial function that models the given situation. A cylinder has a radius of x + 6 units and a height 3 units more than the radius. Express the volume V of the cylinder as a polynomial function in terms of x.
The volume of a cylinder is V = πr²h where r = radius and h = height of cylinder.
Given that r = x + 6 and h is 3 units more than r, h = r + 3 = x + 6 + 3 = x + 9
So, V = πr²h
V = π(x + 3)²(x + 9)
V = π(x² + 6x + 9)(x + 9)
V = π(x³ + 6x² + 9x + 9x² + 54x + 81)
V = π(x³ + 15x² + 63x + 81)
Please help I’m really stuck!!
Step 1: Solve for one variable
---I will be using the first equation and solving for a.
a + c = 405
a = 405 - c
Step 2: Substitute into the other equation
---Now that we have a value for a, we can substitute that value into the second equation. Then, we can solve for c.
12a + 5c = 3950
12(405 - c) + 5c = 3950
4860 - 12c + 5c = 3950
-12c + 5c = -910
-7c = -910
c = 130
Step 3: Plug back into the first equation
---We now know one variable, which means we can plug back into our first equation and solve for the other.
a = 405 - c
a = 405 - 130
a = 275
Answer: 275 adults, 130 children
Hope this helps!
In a geometric sequence, t4 = 8 and t7 = 216. Find the value of t2
Question 14 plz show ALL STEPS ASAP
Answer:
8/9
Step-by-step explanation:
Let the geometric series have the first term=a and common ratio=r. ATQ, ar^3=8 and ar^6=216. r^3=27. r=3. a=8/3^3=8/27. t2=ar=8/9