The ionization energy, or ionization potential, is the energy required to completely remove an electron from a gaseous atom or ion. The closer and more tightly bound an electron is to the nucleus, the more difficult it will be to remove, and the higher its ionization energy will be.
rank the following alkyl halides in order of their increasing rate of reaction with triethylamine: iodoethane 1-bromopropane 2-bromopropane
The order of increasing reaction rate of alkyl halides with triethylamine is iodoethane, 1-bromopropane, and 2-bromopropane.
When the primary alkyl halide reacts with the triethylamine, it's faster than the secondary alkyl halide. Since triethylamine is a strong, bulky base that tends to perform nucleophilic substitution, it undergoes a reaction with both primary and secondary alkyl halides. When halides react with triethylamine, the bond between nitrogen and carbon is formed.
In this reaction, the rate of reaction will be slower with secondary alkyl halides due to steric hindrance. Iodoethane will be more reactive than 1-bromopropane because of the higher electronegativity of iodine which makes it more prone to nucleophilic substitution. Based on the above discussion, the order of increasing rate of reaction with triethylamine is 2-bromopropane < 1-bromopropane < iodoethane.
Therefore, iodoethane is the most reactive of the three alkyl halides, 1-bromopropane is more reactive than 2-bromopropane and 2-bromopropane is the least reactive.
To know more about alkyl halides, refer here:
https://brainly.com/question/17063582#
#SPJ11
where and when in which state is gold found in nature
notable states in the United States where gold is found include California, Alaska, Colorado, Nevada, and South Dakota.
when:(gold rushes)
California (1848-1855)
Colorado (1858-1861)
Alaska (1896-1899)
South Dakota (1874-1877)
Georgia (1828-1849)
Montana (1862-1864)
Nevada (1859-1864)
Oregon (1851-1861)
North Carolina (1799-1848)
Devise a 6-step synthesis of a carboxylic acid from ethyne using the reagents provided. 1. reagent 1 4. reagent 4 2. reagent 2 5. reagent 5 3. reagent 3 6. reagent 6 H-CEC-H OH Reagent 1 is: Reagent 2 is: Reagent 3 is: Reagent 4 is: Reagent 5 is: Reagent 6 is:
6-step synthesis of a carboxylic acid.
Reagent 1 forming a vinyl chloride, Reagent 2 forming an acyl chloride, Reagent 3 forming a carbonyl chloride, Reagent 4 forming a carboxylic acid, Reagent 5 forming a carboxylate anion and Reagent 6 forming the desired carboxylic acidThis question requires a 6-step synthesis of a carboxylic acid from ethyne using the reagents provided. Here is the solution:
Reagent 1 (HCl) is added to ethyne (H-CEC-H), forming a vinyl chloride.Reagent 2 (Hg(OAc)2) is then added to the vinyl chloride, forming an acyl chloride.Reagent 3 (H2O2) is then added to the acyl chloride, forming a carbonyl chloride.Reagent 4 (K2Cr2O7) is then added to the carbonyl chloride, forming a carboxylic acid.Reagent 5 (NaOH) is then added to the carboxylic acid, forming a carboxylate anion.Finally, Reagent 6 (H2SO4) is added to the carboxylate anion, forming the desired carboxylic acid (OH).Learn more about reaction mechanism: brainly.com/question/26723105
#SPJ11
74. 5 g of KCl was dissolved in 1000. ML of water. What is the
molality of the solution? (Molar mass of KCI = 74. 5 g/mol)
m.
The molarity of the solution is 1.0 m
The first step is to convert the mass of KCl to moles:
Number of moles of KCl = 74.5 g / 74.5 g/mol = 1.0 mol
Next, we need to calculate the mass of water in kilograms:
Mass of water = 1000 mL x 1 L/1000 mL x 1 kg/L = 1 kg
Now we can calculate the molality of the solution:
Molality = moles of solute / mass of solvent (in kg)
Molality = 1.0 mol / 1 kg = 1.0 m
Therefore, the molality of the solution is 1.0 m.
To know more about molarity click here:
brainly.com/question/8732513
#SPJ4
For the reaction C + 2H2 → CH4, how many grams of carbon are required to produce 7.8 moles of methane, CH4 ?
Round your answer to the nearest tenth. If you answer is a whole number like 4, report the answer as 4.0
Use the following molar masses. If you do not use these masses, the computer will mark your answer incorrect.:
Element Molar Mass
Hydrogen 1
Carbon 12
Answer:
The balanced chemical equation for the reaction is:
C + 2H2 → CH4
From the equation, we can see that 1 mole of carbon reacts with 2 moles of hydrogen to produce 1 mole of methane. Therefore, to produce 7.8 moles of methane, we would need:
1 mole of carbon = 1 mole of CH4 / 2 moles of H2 = 1/2 mole of CH4
7.8 moles of CH4 = 7.8 × (1/2) moles of C = 3.9 moles of C
Now, we can use the molar mass of carbon to convert moles to grams:
Atomic mass of carbon (C) = 12.01 g/mol
3.9 moles of C × 12.01 g/mol = 46.8 g of C
Therefore, we need 46.8 grams of carbon to produce 7.8 moles of methane (CH4). Rounded to the nearest tenth, the answer is 46.8 grams.
The electrons donated to the electron transport chain by NADH activate _____ proton pumps, while those donated by FADH2 activate ______ proton pumps.
The electrons donated to the electron transport chain by NADH activate 4 proton pumps, while those donated by FADH2 activate 2 proton pumps. Electron transport is the process by which electrons are passed from one molecule, such as NADH or FADH2, to another molecule, such as oxygen.
The electrons donated to the electron transport chain by NADH activate 10 proton pumps, while those donated by FADH2 activate 6 proton pumps.
What is the electron transport chain?
The electron transport chain (ETC) is a chain of molecules that move electrons down a gradient from a higher energy state to a lower energy state, releasing energy along the way. In eukaryotic cells, the electron transport chain is located in the inner mitochondrial membrane. Electrons from NADH and FADH2 are passed down the chain in the electron transport chain, which eventually generates a proton gradient used to create ATP. In the electron transport chain, NADH and FADH2 donate electrons to a chain of electron carriers, which then pump protons from the mitochondrial matrix to the intermembrane space. The number of proton pumps activated by electrons donated by NADH and FADH2 differ. Electrons donated by NADH activate ten proton pumps, while electrons donated by FADH2 activate six proton pumps. The electron transport chain is responsible for the generation of the proton motive force used by ATP synthase to create ATP, which is the main source of energy for the cell.
To know more about electron transport chain, click the below link:
https://brainly.com/question/24372542
#SPJ11
what is the expected color of the starch complex formed during this experiment?(A) The.correct answer is not shown. (B) orange-red (C) green (D) blue-black (E) yellow
When starch is treated with iodine solution, its color changes to Blue-black. Option c is correct.
This reaction is used as a test for the presence of starch in a sample. Iodine reacts with the helical amylose component of starch to form a dark blue complex, while amylopectin, which has a branched structure, forms a less intense blue color. This color change occurs due to the formation of an iodine-starch complex, which has a characteristic blue-black color. Therefore, the intensity of the color indicates the amount of starch present in the sample. Hence, option c is correct choice.
To know more about starch, here
brainly.com/question/14278135
#SPJ4
--The complete question is, When starch is treated with iodine solution, its color changes to
(A) Yellow
(B) Red
(C) Blue-black
(D) Green--
The volcano remains at level 4, the second-highest level on the
country’s volcano-alert system, which means a hazardous eruption
could happen in hours or days. Scientists say the threat of a major
eruption remains high because PHIVOLCS has
It appears to be related to a volcanic activity alert system in a certain country. The statement mentions that a volcano is currently at level 4, which is the second-highest level on the country's volcano-alert system.
A volcano is a graphical representation of the relationship between the energy changes and reaction progress in a chemical reaction. It is commonly used to describe acid-base reactions, where the reactants and products have different acid-base properties.
The volcano plot is a graph with the reaction rate or activity of a catalyst on the y-axis and the reaction-free energy or potential on the x-axis. It is named after its shape, which resembles a volcano with a peak representing the maximum reaction rate or activity.
The position of a reactant or catalyst on the volcano plot determines its ability to promote the reaction. If it is to the left of the peak, the reaction is thermodynamically favorable but kinetically slow. If it is to the right of the peak, the reaction is kinetically favorable but thermodynamically less favorable.
To learn more about Volcano visit here:
brainly.com/question/12945128
#SPJ4
Question: How many moles of H+ ions are present in the following aqueous solutions?(a) 1.40 L of 0.25 M perchloric acid(b) 6.8 mL of 0.92 M nitric acid(c) 2.6 L of 0.085 M hydrochloric acid
The number of moles of H+ ions present in the following aqueous solutions is as follows:-
(a) 1.40 L of 0.25 M perchloric acid= 0.35 mol H+ ions
(b) 6.8 mL of 0.92 M nitric acid= 0.00626 mol H+ ions
(c) 2.6 L of 0.085 M hydrochloric acid= 0.221 mol H+ ions
Molarity is used to determine the number of moles of a solute present in 1 liter of a solution.
(a) The molarity of perchloric acid is given as 0.25 M. Thus, we can find the number of moles of H+ ions present in the given solution using the below formula:-
Moles of solute = Molarity x Volume in litres= 0.25 x 1.40= 0.35 mol H+ ions
(b) The volume of the given nitric acid is 6.8 mL, i.e. 0.0068 L. Thus, the number of moles of H+ ions present in this solution can be calculated using the below formula:-
Moles of solute = Molarity x Volume in liters= 0.92 x 0.0068= 0.00626 mol H+ ions
(c) The volume of the given hydrochloric acid is 2.6 L. Thus, we can find the number of moles of H+ ions present in the given solution using the below formula:-
Moles of solute = Molarity x Volume in liters= 0.085 x 2.6= 0.221 mol H+ ions
Learn more about moles https://brainly.com/question/15356425
#SPJ11
what was an early outcome of regime change in iraq?
Saddam Hussein's overthrow in 2003 was one of the early results of regime transition in Iraq. Given that Hussein had been in charge of Iraq's government and society for more than 20 years,
this represented a dramatic change in the political landscape of the nation. Regime transition, however, was followed by a turbulent era of political unrest and sectarian warfare. Broader geopolitical repercussions of the US-led invasion of Iraq and subsequent government change included strained ties with other nations in the region, a rise in anti-American sentiment, and the creation of new extremist organizations like ISIS. The long-term implications of the Iraqi government transition are still being discussed and examined, although is clear that the initial outcome was one of significant.
learn more about Iraq here:
https://brainly.com/question/29605758
#SPJ4
The substrate below is _______ and ______ undergo an Sn2 reaction when treated with a strong nucleophile. a. primary: will b. primary: will not c. secondary: will d. secondary: will not e. tertiary: will f. tertiary: will not
The substrate below is primary and will undergo an [tex]SN^2[/tex] reaction when treated with a strong nucleophile. The correct answer is b. primary: will.
[tex]SN^2[/tex] reaction: [tex]SN^2[/tex] (substitution nucleophilic bimolecular) reaction is a type of reaction mechanism that can be used to describe specific sorts of nucleophilic substitution reactions, in which a central atom is substituted by a nucleophile.There are two key factors that determine the rate of the [tex]SN^2[/tex] reaction: the strength of the nucleophile and the steric hindrance of the substrate.Strong Nucleophile: A strong nucleophile is one that can effectively donate a pair of electrons to a substrate. Strong nucleophiles are classified as "good" nucleophiles, whereas weak nucleophiles are classified as "bad" nucleophiles. An [tex]SN^2[/tex] reaction is typically performed with a strong nucleophile.Substrate: In the [tex]SN^2[/tex]mechanism, primary and secondary alkyl halides are excellent substrates. This is because the carbon atoms in these compounds are not as hindered as those in tertiary alkyl halides. As a result, nucleophiles can readily approach them to displace the leaving group. The tertiary alkyl halides are not good substrates for [tex]SN^2[/tex] reactions because the steric hindrance is too great. Therefore, the substrate below is primary and will undergo an [tex]SN^2[/tex] reaction when treated with a strong nucleophile.Learn more about substitution nucleophilic bimolecular reaction: https://brainly.com/question/30631335
#SPJ11
how many years does it take for plastic to decompose
Answer: how many years does it take for plastic to decompose?
Well, it depends on the plastic, regular plastic can take up to 20 years to decompose, however, plastic bottles can take up to 450 years to decompose.
When NH4NO3 is dissolved in water, the temperature of the water decreases. When NaOH is dissolved in a separate water sample, the temperature of the water increases. Based on these observations, it can be concluded that the dissolving of?
a. NH4NO3 is endothermic and the dissolving of NaOH is exothermic.
b. both salts are exothermic
c. NH4NO3 is exothermic and the dissolving of NaOH is endothermic
d. both salts are endothermic
NH4NO₃is endothermic and the dissolving of NaOH is exothermic. When NH4NO₃ is dissolved in water, the temperature of the water decreases. When NaOH is dissolved in a separate water sample, the temperature of the water increases.
What is endothermic ?Endothermic reactions are chemical reactions that produce products by absorbing heat energy from their surroundings. These reactions reduce the temperature of their surroundings, resulting in a cooling effect.
to know more about endothermic , visit ;
brainly.com/question/23184814
#SPJ1
The partial pressure of oxygen in the atmosphere is digits. the partial 0.210 atm. Calculate the partial pressure in mm Hg and torr. Round each of your answers to 3 significant digits____mm Hg ____torr
The partial pressure of oxygen in the atmosphere is 0.210 atm.
Therefore, the partial pressure of oxygen in mm Hg is 0.210 atm x 760 = 158.6 mm Hg and the partial pressure of oxygen in torr is 0.210 atm x 760/101.325 = 1.55 torr.
The air in the atmosphere is composed of many different gases. The most common of these gases is nitrogen, which makes up 78% of the atmosphere.
Oxygen makes up 21% of the atmosphere, and the other gases make up 1%. The atmospheric pressure is the pressure created by the weight of the gases in the atmosphere.
The atmospheric pressure is measured in units of atmospheres (atm). The atmospheric pressure at sea level is usually around 1 atm, which is equal to 760 mm Hg and 101.325 torr.
This is the same pressure that you feel when you take a breath of air.
The partial pressure of a gas is the amount of pressure exerted by that gas alone, as opposed to the total atmospheric pressure. The partial pressure of oxygen in the atmosphere is 0.210 atm.
This means that, out of the total atmospheric pressure of 1 atm, 0.210 atm of the pressure is from oxygen.
Partial pressure is often measured in units of mm Hg or torr. To convert from atm to mm Hg, the value is multiplied by 760.
Therefore, the partial pressure of oxygen in mm Hg is 0.210 atm x 760 = 158.6 mm Hg and the partial pressure of oxygen in torr is 0.210 atm x 760/101.325 = 1.55 torr.
to know more about partial pressure refer here:
https://brainly.com/question/13199169#
#SPJ11
If a neutral object lost 2 electrons, what would it's charge be? would it be positive?
If a neutral object lost two electrons, it would have a positive charge.
Electrons are negatively charged subatomic particles that orbit around the positively charged nucleus in an atom. When an atom loses electrons, it becomes positively charged because the total negative charge from the electrons is reduced. The number of electrons in an atom determines its overall charge, and when electrons are lost, the atom's charge becomes more positive.
In this case, the neutral object would have a net positive charge equal to the number of protons in its nucleus, since it has lost two negatively charged electrons. Thus, the object would be positively charged after losing two electrons.
To learn more about electrons refer to:
brainly.com/question/28977387
#SPJ4
Which of the following molecules would have the highest boiling point?
A. hexane
B. 2-methylhexane
C. 2-propylpentane
D. octane
The molecule with the highest boiling point among the given options is 2-propylpentane. This is because the boiling point increases with the size of the molecule and branching lowers the boiling point. Thus, the correct option is C.
What is meant by boiling point?The boiling point is the temperature at which a liquid changes to a gas state at normal atmospheric pressure. The boiling point is the temperature at which a liquid's vapor pressure is equal to the atmospheric pressure, which is generally measured in kilopascals. When a liquid's vapor pressure equals the atmospheric pressure, the pressure acting on the surface of the liquid becomes equal to the pressure pushing down on the surface of the liquid.
The boiling point of a liquid is the temperature at which the vapor pressure equals the external or atmospheric pressure, resulting in the formation of a vapor bubble inside the liquid. When the vapor bubble leaves the liquid's surface, the boiling process is complete. The boiling point of a pure liquid changes with the external pressure, which influences the liquid's vapor pressure.
The reason for the difference in boiling points is the size of the molecule. The greater the size of the molecule, the greater the dispersion forces between molecules, the higher the boiling point. Also, branching lowers the boiling point, as branching reduces the surface area of the molecule, lowering the ability of the molecule to interact with one another.
Therefore, the correct option is C.
Learn more about Boiling point here:
https://brainly.com/question/25777663
#SPJ11
a dense metal named for its use by romans as pipes for plumbing is called?
The dense metal named for its use by Romans as pipes for plumbing is lead. Lead is a chemical element with the symbol Pb (Latin: plumbum) and atomic number 82.
Lead a heavy metal that is denser than most common materials. Lead is soft and malleable, and it has a low melting point when compared to other metals. It is usually found in ores, and it is widely distributed in the Earth's crust. Lead is pliable and soft, and it also has a low melting point. Lead has a tinge of blue when it is first cut, and it is bright and grey. When exposed to air, it tarnishes to a drab grey tone.
Three of lead's isotopes are ends of significant nuclear decay chains of heavier elements, and lead has the highest atomic number of any stable element. Even trace levels of lead are harmful, especially for young infants. Lead's historical significance:
Lead has been used by humans for thousands of years.
Lead was used in Ancient Rome for water pipes, and it was used to create water storage cisterns.
The malleability of lead, combined with its resistance to corrosion, made it a popular material for creating pipes to carry water.
Lead pipes were popularized by the Romans in the first century BC, but they were not universally embraced. They were seen as a luxury item and were not widely used until the 19th century, when mass-produced pipes made them more affordable.
For more such questions on Lead , Visit:
https://brainly.com/question/29801245
#SPJ11
benzil reacts with 1,2-diaminobenzene to give a compound with molecular formua c20h14n2. suggest a structure for this compound and write a reaction mechanism to show how it is formed.
The structure for this compound is a symmetrical diamide.
Mechanism of the reaction:Benzil (2,2-diphenylethane-1,2-dione) is a white or slightly yellowish crystalline powder.
Benzil reacts with 1,2-diaminobenzene to give a compound with a molecular formula of C20H14N2. A structure for this compound and a reaction mechanism for how it is formed are suggested.
Structure of the compound:The compound is a symmetrical diamide. The diamide is derived from the reaction of benzil and 1,2-diaminobenzene as a condensation reaction, which can be illustrated as follows:
Reaction mechanism:The reaction of benzil with 1,2-diaminobenzene forms the symmetrical diamide. Benzil is a highly reactive electrophile that reacts readily with nucleophiles.
The 1,2-diaminobenzene is a strong nucleophile that reacts readily with electrophiles. The reaction can be represented as a nucleophilic substitution reaction.
Benzil is first deprotonated by 1,2-diaminobenzene to form an anion. This intermediate has nucleophilic character and attacks the electrophilic benzil carbon atom.
The intermediate then eliminates a water molecule, resulting in the formation of the symmetrical diamide.Mechanism of the reaction:
Benzil (2,2-diphenylethane-1,2-dione) is a white or slightly yellowish crystalline powder. It is practically insoluble in water and is slightly soluble in alcohol and ether.
The 1,2-diaminobenzene is a highly reactive nucleophile that readily attacks electrophiles. It is a white or yellowish solid that is soluble in alcohol and ether.
Molecular formula of the compound:This compound has a molecular formula of C20H14N2.
to know more about diamide refer here:
https://brainly.com/question/30437242#
#SPJ11
A neutralization reaction produces H2O and LiNO3. Select the acid-base reactants for this neutralization reaction.
Group of answer choices
LiOH
HNO
LiNO
HNO3
HLi
The acid-base reactants for this neutralization reaction are LiOH and HNO3.
Explanation : Acid-base reactants for this neutralization reaction are LiOH and HNO3.The reaction between an acid and a base to form a salt and water is known as a neutralization reaction. It is an exothermic reaction because heat is generated when the acid and base are mixed. The products of the reaction are a salt and water (H2O).The neutralization reaction produces H2O and LiNO3. The neutralization reaction between LiOH and HNO3 forms LiNO3 and H2O as products.What is LiOH?LiOH is an alkali compound that is a base with a pH greater than 7. It is commonly known as lithium hydroxide. It is a highly corrosive substance that is used in a variety of industrial processes. It is used in the manufacture of lithium batteries, as well as in rocket fuel, in the purification of natural gas, and as a carbon dioxide absorbent.What is HNO3?Nitric acid is also known as aqua fortis, and it is a highly corrosive mineral acid. It is a potent oxidizing agent that is highly reactive with metals, creating flammable gases upon reaction. It is primarily used in the manufacture of fertilizers, explosives, and various organic chemicals. Nitric acid is a highly corrosive and toxic substance, and proper care should be taken when working with it.
For more such questions on Acid Base
https://brainly.com/question/23008798
#SPJ11
The following balanced chemical equation represents the burning of octane, one of the components of gasoline used to fuel engines.2C8H18(g) +25O2(g) --> 16CO2(g) + 18H2O(l)1. How many molecules of carbon dioxide are represented by the equation?2. How many moles of octante are represented by the equation?3. What is the simplified mole ratio of octane to carbon dioxide?4. What is the simplified mole ratio of oxygen to octane?
1. The balanced chemical equation shows that for every 2 molecules of octane burned, 16 molecules of carbon dioxide are produced. Therefore, the number of molecules of carbon dioxide represented by the equation is 16.
Solutions to rest of the questions2. The balanced chemical equation shows that for every 2 molecules of octane burned, 25 molecules of oxygen are required. Therefore, the ratio of octane to oxygen is 2:25. From this, we can determine the number of moles of octane represented by the equation by dividing the given amount of oxygen by the ratio:
25 mol O2 × (2 mol C8H18 / 25 mol O2) = 2 mol C8H18
Therefore, the equation represents 2 moles of octane.
3. The simplified mole ratio of octane to carbon dioxide can be determined by dividing both sides of the equation by the coefficient of octane (2):
2C8H18(g) +25O2(g) → 16CO2(g) + 18H2O(l)
Dividing by 2, we get:
C8H18(g) + 12.5O2(g) → 8CO2(g) + 9H2O(l)
The simplified mole ratio of octane to carbon dioxide is therefore 1:8.
4. The simplified mole ratio of oxygen to octane can be determined in the same way, by dividing both sides of the equation by the coefficient of octane:
2C8H18(g) +25O2(g) → 16CO2(g) + 18H2O(l)
Dividing by 2, we get:
C8H18(g) + 12.5O2(g) → 8CO2(g) + 9H2O(l)
The simplified mole ratio of oxygen to octane is therefore 12.5:1.
Learn more about octane here https://brainly.com/question/29657423
#SPJ1
what gas law(two varible relationship) is employed to deflate a football? state the name and show the equation
The gas law that is employed to deflate a football is Boyle's law.
Boyle's law states that for a fixed amount of gas at a constant temperature, the pressure and volume of the gas are inversely proportional to each other. The equation for Boyle's law is:
[tex]P_{1} V_{1} /P_{2} V_{2}[/tex]
Where [tex]P_{1}[/tex] is the initial pressure of the gas, [tex]V_{1}[/tex] is the initial volume of the gas,[tex]P_{2}[/tex] is the final pressure of the gas, and [tex]V_{2[/tex] is the final volume of the gas. In the case of deflating a football, the pressure of the air inside the football is reduced by letting some of the air out. The volume of the football decreases as the pressure decreases, and this is in accordance with Boyle's law.
Therefore, The Boyle's Law is used to deflate a football. It states that the volume of a gas is inversely proportional to its pressure, when the temperature is constant.
To know more about Boyle's law refer here :
https://brainly.com/question/1696010
#SPJ11
how many chirality centers are there in a 2-ketohexose?
The correct answer is that a 2-ketohexose has three chirality centers, one at each of the carbon atoms numbered 3, 4, and 5.
A 2-ketohexose is a six-carbon sugar with a ketone functional group at the second carbon atom. In general, a chirality center, also known as a stereocenter, is an atom in a molecule that is bonded to four different substituents, resulting in two or more non-superimposable mirror image structures. For a six-carbon sugar, there are typically four chirality centers, one at each of the carbon atoms numbered 2, 3, 4, and 5. However, in a 2-ketohexose, the ketone functional group at carbon 2 eliminates the chirality center at that carbon, resulting in only three chirality centers at carbon atoms 3, 4, and 5. Therefore, a 2-ketohexose has three chirality centers, one at each of the carbon atoms numbered 3, 4, and 5.
To learn more about chirality centers click the link below
brainly.com/question/29842209
#SPJ4
(3marks) Question.07: Ammonia is produced when nitrogen and hydrogen gases react at high pressures and temperatures: N₂(g) + 3H₂(g) → 2NH3(g) At intervals, the system is cooled to between -10 °C and -20 °C, causing some of the ammonia to liquefy so that it can be separated from the remaining nitrogen and hydrogen gases. The gases are then recycled to make more ammonia An average ammonia plant might make 1000 metric tons of ammonia per day. When 4.0 x 107 L of hydrogen gas at 503 °C and 155 atm reacts with an excess of nitrogen, what is the maximu volume of gaseous ammonia that can be formed at 20.6 °C and 1.007 atm?
The volume of the ammonia that can be produced from the reaction that has been written is; 155 * 10^7 L
What is the ideal gas equation?We know that;
PV = nRT
For the hydrogen;
n = PV/RT
n = 155 * 4.0 x 10^7 /0.082 * 776
n = 620 * 10^7/63.63
n = 9.7 * 10^7 moles
Now the reaction equation is;
N₂(g) + 3H₂(g) → 2NH3(g)
3 moles of hydrogen produced 2 moles of ammonia
9.7 * 10^7 moles will produce 9.7 * 10^7 moles * 2 moles/ 3 moles
x = 6.5 * 10^7 moles
For the volume of the ammonia;
V = nRT/P
V = 6.5 * 10^7 moles * 0.082 * 293.6/1.007
V = 155 * 10^7 L
Learn more about ammonia:https://brainly.com/question/14672082
#SPJ1
choose the elements that are metalloids look for applications of these elements in real life argon antimony boron mercury calcium zinc germanium silicon selenium astatine
Answer:
Boron,silicon,germanium,arsenic,antimony,tellurium, polonium, astatine.
if a molecular substance has strong intermolecular forces, the molecules at the surface of the liquid are held ____ tightly and vaporize _____ easily than molecules with weaker intermolecular forces. the amount of substance in the vapor phase will be ____ than for molecules with weak intermolecular forces and the vapor pressure will therefore be_____. multiple choice question. A. more; less; greater; higher B. less; more; greater; higher C. more; less; less; lower D. less; more; less; lower
The correct option is A. "more; less; greater; higher".
Explanation: Intermolecular forces refer to the forces of attraction and repulsion between molecules. These forces determine the physical properties of a substance, such as melting point, boiling point, and solubility.
A molecular substance with strong intermolecular forces means that the molecules are held tightly together, which requires more energy to overcome to break the bond.
The molecules at the surface of the liquid are held more tightly and vaporize less easily than molecules with weaker intermolecular forces. Molecules with weaker intermolecular forces are more likely to escape from the surface of the liquid and form the vapor phase.
Therefore, the amount of substance in the vapor phase will be less for molecules with strong intermolecular forces.
The vapor pressure is the pressure exerted by the vapor phase of a substance in equilibrium with its liquid or solid phase. The vapor pressure increases as the temperature increases or the amount of substance in the vapor phase increases.
Since the amount of substance in the vapor phase is less for molecules with strong intermolecular forces, the vapor pressure will be greater for molecules with weaker intermolecular forces.
to know more about force refer here
https://brainly.com/question/13191643#
#SPJ11
If a molecular substance has strong intermolecular forces, the molecules at the surface of the liquid are held less tightly and vaporize more easily than molecules with weaker intermolecular forces. The amount of substance in the vapor phase will be greater than for molecules with weak intermolecular forces and the vapor pressure will therefore be higher.The correct answer is b.
Molecules are held together by the force of attraction between the atoms in them, but there are also forces between the molecules. These forces are called intermolecular forces. For example, the intermolecular forces that exist between water molecules are hydrogen bonding, while the intermolecular forces between propane molecules are van der Waals forces.
The boiling point of a liquid is determined by the strength of the intermolecular forces between the molecules that make up the liquid. The stronger the intermolecular forces, the higher the boiling point.
Learn more about intermolecular forces here:
brainly.com/question/9328418
#SMJ11
hydrocarbons are composed primarily of which two elements?
Answer: carbon and hydrogen
Explanation:
Hydrocarbons are a group of chemical organic compounds composed of carbon and hydrogen
A scientist did a test to compare two substances: substance Q and substance R.
At room temperature, both substances are liquid. When the scientist transferred
the same amount of energy out of both substances, only one substance
changed phase while the other did not. Which substance changed phase, and
how did it change? *
Substance Q changed phase because the attraction of the molecules was able to
overcome their slower movement. Its molecules now move in place.
Substance Q changed phase because the strong attraction between molecules made
their movement slower. Its molecules now move in place.
Substance R changed phase because the weak attraction between molecules let them
move faster. Its molecules now move around each other.
Substance R changed phase because the attraction was able to overcome the slower
molecules. Its molecules now move away from each other.
Based on the information provided, the correct answer is:
Substance R changed phase because the weak attraction between molecules let them move faster. Its molecules now move around each other.
This is because when the scientist transferred the same amount of energy out of both substances, only one substance changed phase while the other did not. This indicates that one of the substances has a lower boiling point than the other. Since both substances are liquids at room temperature, it means that the substance that changed phase must have vaporized (turned into gas) while the other substance did not.
Substance R must have a weaker intermolecular force of attraction between its molecules compared to Substance Q. This means that Substance R has a lower boiling point, which allowed its molecules to move around each other and form a gas phase when energy was transferred out of it. In contrast, Substance Q remained in the liquid phase because its molecules had stronger intermolecular forces of attraction that held them together.
To know more about Molecules, visit: brainly.com/question/19922822
#SPJ4
(a) 0.12 g of magnesium reacted to produce 0.20 g of magnesium oxide.
Calculate the number of moles of oxygen gas (O₂) that reacted.
Relative atomic mass (A): 0 = 16
(b)
The student repeated the experiment without a lid on the crucible.
Suggest why the mass of magnesium oxide produced would be different without a lid on the crucible.
(a) The number of moles of oxygen gas (O₂) that reacted is 0.00325 mol.
(b) When the experiment is repeated without a lid on the crucible, the magnesium oxide produced will react with any oxygen present in the air.
What is the number of moles of oxygen?(a) To calculate the number of moles of oxygen gas (O₂) that reacted, we need to first determine the number of moles of magnesium that reacted using its atomic mass:
Mass of magnesium (Mg) = 0.12 g
Atomic mass of Mg = 24.31 g/mol (from periodic table)
Number of moles of Mg = Mass of Mg / Atomic mass of Mg
= 0.12 g / 24.31 g/mol
= 0.00494 mol
The balanced chemical equation for the reaction between Mg and O₂ to produce MgO is:
2Mg + O₂ → 2MgO
From the equation, we can see that 2 moles of Mg react with 1 mole of O₂ to produce 2 moles of MgO.
Therefore, the number of moles of O₂ that reacted can be calculated as follows:
Number of moles of MgO produced = Mass of MgO / Molar mass of MgO
= 0.20 g / (24.31 g/mol + 16.00 g/mol)
= 0.00650 mol
Since 2 moles of MgO are produced from 1 mole of O₂, the number of moles of O₂ that reacted can be calculated as:
Number of moles of O₂ = Number of moles of MgO produced / 2
= 0.00650 mol / 2
= 0.00325 mol
(b) When the experiment is repeated without a lid on the crucible, the magnesium oxide produced will react with any oxygen present in the air. This will cause the mass of magnesium oxide produced to be greater than when the experiment was conducted with a lid on the crucible, as more oxygen will react with the magnesium.
Additionally, any water vapor or other gases present in the air may also react with the magnesium oxide, further affecting the mass of the final product. Therefore, the mass of magnesium oxide produced will be different without a lid on the crucible due to the presence of additional reactants in the air.
Learn more about number of moles here: https://brainly.com/question/13314627
#SPJ1
a student finds an unlabeled bottle of liquid under his kitchen sink. which investigation would best help him identify the unknown liquid as acidic, basic, or neutral?
Titration is the best investigation to identify an unknown liquid as acidic, basic, or neutral by measuring its pH level.
A student finds an unlabeled bottle of liquid under his kitchen sink. Titration is the investigation that would best help him identify the unknown liquid as acidic, basic, or neutral.
Titration is the chemical method used to find the amount of acid or base in a given substance. This method is a laboratory technique used to measure the concentration of a known solution (the titrant) with a solution of an unknown concentration (the analyte).
The unknown solution is slowly added to the known solution until it reacts completely, allowing us to calculate the concentration of the unknown solution. Titration may be used to identify an unknown solution as acidic, neutral, or basic by determining its pH level. It's a highly precise technique that's often used in analytical chemistry laboratories to measure the concentration of chemicals.
Learn more about liquid: https://brainly.com/question/1313076
#SPJ11
A chemist prepares a solution of iron(III) bromide, FeBr3, by measuring out 0.59 kg of iron(III) bromide. Calculate the concentration (in mol/L) of the chemist's iron(III) bromide solution.
The concentration of the chemist's Iron(III) bromide solution is 2.147 mol/L.
Iron(III) bromide, also known as ferric bromide, is a coordination compound with the formula FeBr₃. It is a powerful Lewis acid and has an octahedral molecular geometry.
It is a potent catalyst for organic reactions and is used as a starting material for the synthesis of other compounds. The chemical formula for iron(III) bromide is FeBr₃.
The molar mass of FeBr₃ is: 55.85 + 79.90 × 3 = 274.55 g/mol
The number of moles of FeBr₃:
mass of FeBr₃ = 0.59 kg = 590 g number of moles of FeBr₃ = mass / molar mass
= 590 / 274.55
= 2.147 mol
Thus, the concentration of the chemist's iron(III) bromide solution is 2.147 mol/L.
Learn more about Iron(III) bromide solution problems here:
https://brainly.com/question/29452093
#SPJ11