19. 68 because 90seconds 1hr 30 mons
How to divided 245 by 70
Show your work
Answer:
Step-by-step explanation:
Hello!
2 4 5 ∟ 70
-2 1 3, 5
------------------------
3 5 0
3 5 0
- --------------------------------
0 0 0
If the terminal side of an angle (θ) goes through the point (4 , -3) what is (θ)?
Answer:
The family of directions of the given vector is represented by [tex]\theta = 323.130^{\circ} \pm 360\cdot i[/tex], [tex]\forall \,i\in \mathbb{N}_{O}[/tex].
Step-by-step explanation:
According to the given information, vector stands in the 4th Quadrant ([tex]x > 0[/tex], [tex]y < 0[/tex]) and direction of the vector ([tex]\theta[/tex]) in sexagesimal degrees, is determined by following definition:
[tex]\theta = 360^{\circ} - \tan^{-1} \left(\frac{|y|}{|x|} \right)\pm 360\cdot i[/tex], [tex]\forall \,i\in \mathbb{N}_{O}[/tex]
Please notice that angle represents a function with a periodicity of 360°.
If we know that [tex]x = 4[/tex] and [tex]y = -3[/tex], then the direction of the vector is:
[tex]\theta = 360^{\circ}-\tan^{-1}\left(\frac{|-3|}{|4|} \right)\pm 360\cdot i[/tex]
[tex]\theta = 323.130^{\circ} \pm 360\cdot i[/tex]
The family of directions of the given vector is represented by [tex]\theta = 323.130^{\circ} \pm 360\cdot i[/tex], [tex]\forall \,i\in \mathbb{N}_{O}[/tex].
The percent of data between z=0.23 and z = 1.27 is
(Round to two decimal places as needed.)
Answer:
0.40905 - 0.10204 = .30701 = 30.7 %
Step-by-step explanation:
0.23 0.40905
1.27 0.10204
What is A11 for the geometric sequence 3,072, −1,536, -768, −384...?
Answer:
3
Step-by-step explanation:
The general formula of the series is 3072/(-2)^(n-1). A11=3072/(-2)^10=3
A dodgeball team at Lincoln Elementary School needs a team of 4 in order to compete against other schools. If there are 9 kids that want to be part of the team, how many different ways can you pick a team of 4
Answer:
3 ways
Step-by-step explanation:
point k is between j and l. if jk = x^2 - 4x , kl = 3x - 2 and jl = 28 write and solve an equation to find the lengths of jk and kl
Answer:
JK=12
KI=16
Step-by-step explanation:
[tex]K\in\ [JI]\ \Rightarrow\ |JK|+| KI |=|KI|\\\\x^2-4x+3x-2=28\\\\\Longleftrightarrow\ x^2-x-30=0\\\\\\\Longleftrightarrow\ x^2+5x-6x-30=0\\\\\\\Longleftrightarrow\ x(x+5)-6(x+5)=0\\\\\\\Longleftrightarrow\ (x+5)(x-6)=0\\\\x=-5\ (excluded)\ or\x=6\\\\\\\Longleftrightarrow\ \\|JK|=x^2-4x=6^2-4*6=36-24=12\\|KI|=3x-2=3*6-2=18-2=16\\\\Proof: 12+16=28\\[/tex]
According to Fidelity Investment Vision Magazine, the average weekly allowance of children varies directly as their grade level. In a recent year, the average allowance of a 9th-grade student was 9.66 dollars per week. What was the average weekly allowance of a 5 th-grade student?
The average weekly allowance of a 5th grade student as calculated using direct variation with the information provided by Fidelity Investment Vision Magazine is 5.367 dollars per week.
The question given is a direct variation problem:
Let:
• Average weekly allowance = [tex]a[/tex]
• Grade level = [tex]g[/tex]
If Average weekly allowance varies directly as grade level , then , then the direct variation between the variables can be expressed as :
[tex]a = k * g[/tex]
Where , [tex]k[/tex] = constant of proportionality
We can obtain the value of k from the given values of a and g
[tex]9.66 = k * 9\\9.66 = 9k\\k = 9.66/9[/tex]
Our equation becomes:
[tex]a = (9.66/9) * g[/tex]
[tex]a = (9.66/9) * 5\\a = 5.367[/tex] (rounded to 3 decimal places)
Hence, using proportional relationship, the average weekly allowance for a 5th grade student is [tex]5.367[/tex] per week
Learn more about direct variation here:
https://brainly.com/question/17257139
These two cones are similar. What is the value of x?
Answer:
A
Step-by-step explanation:
Given that the cones are similar then corresponding dimensions are in proportion, that is
[tex]\frac{12}{2}[/tex] = [tex]\frac{3}{x}[/tex] ( cross- multiply )
12x = 6 ( divide both sides by 12 )
x = 0.5 → A
Find an equation equivalent to r = 1 + 2 sin 0 in rectangular coordinates.
Answer:
C
Step-by-step explanation:
r=1+2sin(theta)
r^2=r+2*r*sin(theta)
x^2+y^2=±sqrt(x^2+y^2)+2y
Find the equation (in terms of x) of the line through the points (-2,-3) and (4,-1)
Answer:
y = 1/3x - 7/3
Step-by-step explanation:
y2 - y1 / x2 - x1
-1 - (-3) / 4 - (-2)
2/6
= 1/3
y = 1/3x + b
-1 = 1/3(4) + b
-1 = 4/3 + b
-7/3 = b
please help, will give brainliest!!!!
Answer:
3
Step-by-step explanation:
3 - 3/x
----------------
1 - 1/x
Multiply the top and bottom by x
x(3 - 3/x)
----------------
x(1 - 1/x)
3x -3
------------
x-1
Factor the numerator
3(x-1)
-------
x-1
Cancel like terms
3
-----
1
3
Assume that two marbles are drawn without replacement from a box with 1 blue, 3 white, 2 green, and 2 red marbles. Find the probability that the first marble is white and the second marble is blue.
Answer:
3/56
Step-by-step explanation:
Probability is the ratio of the number of possible outcome to the number of total outcome.
Given that two marbles are drawn without replacement from a box with 1 blue, 3 white, 2 green, and 2 red marbles.
The total number of marbles in the box
= 1 + 3 + 2 + 2
= 8 marbles
The probability that the first marble is white and the second marble is blue
= 3/8 * 1/7
= 3/56
Regina has 3 bags of marbles. There are 25 marbles in each bag. She wants to put an equal number of marbles into 5 bags. Which expression would show how many marbles can go in each bag?
Answer:
(3 × 25)/5 marbles can go in each bag
Explanation:
Number of bags Regina has = 3
Number of marbles in each bag = 25
So, total number of marbles = 3 × 25
Number of marbles in each bag, if divided equally into 5 bags = (3 × 25)/5
Further:
Solving the expression,
(3 × 25)/5
= 75/5
= 15
So, the each bag has 15 marbles if they are equally divided into 5 bags.
Answer:
(25 x 3) / 5
Step-by-step explanation:
you have to do 25 x 3 to get the total amount of marbles. Then you have to divide that by the amount of bags.
Evaluate the expression: y – y ÷ 1 + x Use x = 7 and y = 3
Hi ;-)
[tex]x=7 \ and \ y=3\\\\y-y:1+x=3-3:1+7=3-3+7=0+7=\boxed7[/tex]
what is the area of triangle JHK?
9514 1404 393
Answer:
4.18 square units
Step-by-step explanation:
The area is given by the formula ...
A = 1/2bh
where b is the length of the base, and h is the perpendicular distance from the base to the opposite vertex.
A = 1/2(2.2)(3.8) = 4.18 . . . square units
A tour bus is traveling along a triangular path. The three straight lines form a right triangle. One leg of the triangle represents a distance of 8 miles. The other leg of the triangle is 4 miles shorter than the hypotenuse. What is the length of the hypotenuse of this triangle? Of the other leg?
Answer:
Hypotenuse=10 miles.
Short leg=6 miles.
Step-by-step explanation:
Set up triangle, leg 8 miles, hypotenuse x miles, short leg x-4 miles.Input into Pythagoras theorem.Simplify.8x=3x²-1 plz help me show your work
Answer:
Step-by-step explanation:
3 times 8= 24 • 24 = 576 - 1 =575
or
3•8=24•2=48-1=47
not sure
Answer:
The answer is [tex]x=\frac{4(+-)\sqrt{19} }{3}[/tex] in exact form or [tex]x=2.7863[/tex], [tex]x=-0.1196[/tex] in decimal form.
Step-by-step explanation:
To solve this equation, start by moving all expression to the left side of the equation, which will include subtracting [tex]3x^2[/tex] and adding 1 to both sides of the equation. The equation will look like [tex]8x-3x^2+1=0[/tex].
Then, use the quadratic formula to find the solutions to the equation. The quadratic formula looks like [tex]\frac{-b(+-)\sqrt{b^2-4ac} }{2a}[/tex].
For this problem, the quadratic variables are as follows:
[tex]a=-3\\b=8\\c=1[/tex]
The next step is to substitute the values [tex]a=-3[/tex], [tex]b=8[/tex], and [tex]c=1[/tex] into the quadratic formula and solve for x. The quadratic formula will look like [tex]\frac{-8(+-)\sqrt{8^2-4(-3)(1)} }{2*-3}[/tex]. To simplify the equation, start by simplifying the numerator, which will look like [tex]x=\frac{-8(+-)2\sqrt{19} }{2*-3}[/tex]. Then, multiply 2 by -3 and simplify the equation, which will look like [tex]x=\frac{4(+-)\sqrt{19} }{3}[/tex]. The final answer is [tex]x=\frac{4(+-)\sqrt{19} }{3}[/tex] in exact form. In decimal form, the final answer is [tex]x=2.7863[/tex], [tex]x=-0.1196[/tex].
Because of the relatively high interest rates, most consumers attempt to pay off their credit card bills promptly. However, this is not always possible. An analysis of the amount of interest paid monthly by a bank's Visa cardholders reveals that the amount is normally distributed with a mean of 27 dollars and a standard deviation of 9 dollars.
A. What proportion of the bank's Visa cardholders pay more than 29 dollars in interest?
B. What proportion of the bank's Visa cardholders pay more than 35 dollars in interest?
C. What proportion of the bank's Visa cardholders pay less than 14 dollars in interest?
D. What interest payment is exceeded by only 18% of the bank's Visa cardholders?
Answer:
a. 0.4129 = 41.29% of the bank's Visa cardholders pay more than 29 dollars in interest.
b. 0.1867 = 18.67% of the bank's Visa cardholders pay more than 35 dollars in interest.
c. 0.0742 = 7.42% of the bank's Visa cardholders pay less than 14 dollars in interest.
d. An interest payment of $35.2 is exceeded by only 18% of the bank's Visa cardholders.
Step-by-step explanation:
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Mean of 27 dollars and a standard deviation of 9 dollars.
This means that [tex]\mu = 27, \sigma = 9[/tex]
A. What proportion of the bank's Visa cardholders pay more than 29 dollars in interest?
This is 1 subtracted by the p-value of Z when X = 29, so:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{29 - 27}{9}[/tex]
[tex]Z = 0.22[/tex]
[tex]Z = 0.22[/tex] has a p-value of 0.5871.
1 - 0.5871 = 0.4129
0.4129 = 41.29% of the bank's Visa cardholders pay more than 29 dollars in interest.
B. What proportion of the bank's Visa cardholders pay more than 35 dollars in interest?
This is 1 subtracted by the p-value of Z when X = 35, so:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{35 - 27}{9}[/tex]
[tex]Z = 0.89[/tex]
[tex]Z = 0.89[/tex] has a p-value of 0.8133.
1 - 0.8133 = 0.1867
0.1867 = 18.67% of the bank's Visa cardholders pay more than 35 dollars in interest.
C. What proportion of the bank's Visa cardholders pay less than 14 dollars in interest?
This is the p-value of Z when X = 14. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{14 - 27}{9}[/tex]
[tex]Z = -1.445[/tex]
[tex]Z = -1.445[/tex] has a p-value of 0.0742.
0.0742 = 7.42% of the bank's Visa cardholders pay less than 14 dollars in interest.
D. What interest payment is exceeded by only 18% of the bank's Visa cardholders?
This is the 100 - 18 = 82nd percentile, which is X when Z has a p-value of 0.82, so X when Z = 0.915.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]0.915 = \frac{X - 27}{9}[/tex]
[tex]X - 27 = 0.915*9[/tex]
[tex]X = 35.2[/tex]
An interest payment of $35.2 is exceeded by only 18% of the bank's Visa cardholders.
What is the perimeter of CDE?
A. 37.8 units
B. 39 units
C. 32.5 units
D. 35.6 units
This value is approximate.
=============================================================
Explanation:
To find the perimeter, we simply add up the lengths of the three external sides.
The horizontal side from D to E is 16 units long since |-10-6| = 16. I subtracted the x coordinates of the points and applied absolute value. You could also count out the spaces and you should count 16 spaces from D to E.
Unfortunately, the diagonal lengths aren't as straight forward. We have two options here: The pythagorean theorem, or the distance formula.
I'll go with the distance formula.
Let's find the distance from C to D, aka the length of side CD
[tex]C = (x1,y1) = (-1,-2)\\\\D = (x2,y2) = (-10,0)\\\\d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}\\\\d = \sqrt{(-1-(-10))^2 + (-2-0)^2}\\\\d = \sqrt{(-1+10)^2 + (-2-0)^2}\\\\d = \sqrt{(9)^2 + (-2)^2}\\\\d = \sqrt{81 + 4}\\\\d = \sqrt{85}\\\\d \approx 9.2195\\\\[/tex]
Side CD is roughly 9.2195 units long.
Repeat this idea to find the length of CE
[tex]C = (x1,y1) = (-1,-2)\\\\E = (x2,y2) = (6,0)\\\\d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}\\\\d = \sqrt{(-1-6)^2 + (-2-0)^2}\\\\d = \sqrt{(-7)^2 + (-2)^2}\\\\d = \sqrt{49 + 4}\\\\d = \sqrt{53}\\\\d \approx 7.2801\\\\[/tex]
Side CE is roughly 7.2801 units long
The perimeter of triangle CDE is approximately...
P = DE+CD+CE
P = 16 + 9.2195 + 7.2801
P = 32.4996
This then rounds to 32.5 units. The answer is choice C.
The average of two numbers is 5x. If one of the numbers is 2x + 3, find the other number.
Answer:
8x-3
Step-by-step explanation:
Average of 2 numbers means add the two numbers and divide by 2
(y+z)/2 = 5x
Let z = 2x+3
(y+2x+3)/2 = 5x
Multiply each side by 2
y+2x+3 = 10x
Subtract 2x from each side
y+3 = 10x-2x
y+3 = 8x
Subtract 3
y = 8x-3
The other number is 8x-3
Probability that a person is chosen at random
Answer:
152 / 370
Step-by-step explanation:
Total number of people
152+218 = 370
P( own a dog) = people said yes / total
= 152 / 370
what is the sum of √-2and√-18
For this question, we need to simplify some radicals and combine like terms. One thing for sure that should be noticed is the fact that both of these radicals are going to be imaginary, as they both have negatives inside of them.
Let's simplify the radicals:
√-2 = ← Note the negative
i√2
√-18 = ← Note the negative here as well
i√18 =
i√2·3·3 =
i√2·3² =
3i√2
Now, all we have to do is combine like terms:
i√2 + 3i√2 = 4i√2
At the beginning of a basketball season, the Spartans won 35 games out of 98 games. At this rate, how many games will they win in a normal 116 game season?
Find the missing side length in the image below
Answer:
? = 5
Step-by-step explanation:
Recall: when 2 transversal lines cuts across 3 parallel lines, the parallel lines are divided proportionally by the transversals.
Therefore:
?/10 = 3/6
Cross multiply
?*6 = 3*10
?*6 = 30
Divide both sides by 6
? = 30/6
? = 5
In the arithmetic sequence -7, -6, -5 what term is 2?
The term 2 is the ___th term of the sequence
Answer:
10th term
Step-by-step explanation:
The equation of the arithmetic sequence is an=-7+(n-1)*1=-8+n, plugging in 2 and solving for n we have
2=-8+n, n=10
Find the difference: -18 - (-18)
Answer:
0
Step-by-step explanation:
-18-(-18)
= -18+18 [(+) + (+)=(+)]
=0 [(-) + (-)=(-)]
x = either 100 , 140 , or 120
Compare the functions shown below:
f(x) = 7x + 3 g(x) tangent function with y intercept at 0, 2 h(x) = 2 sin(3x + π) − 1
Find the value of this expression
Answer:
[tex] \frac{(3) ^{2} + 3}{3 - 1} [/tex]
[tex] \frac{9 + 3}{3 - 1} [/tex]
[tex] \frac{12}{2} [/tex]
= 6
can someone help me, please?
Answer:
0
2
-1
Step-by-step explanation:
from f(0) we find that
y = mx - 1
from f(-1) we find that the equation is
y = -3x - 1
1)
inverse f(x) :
x = -3y - 1
y = -(x + 1) / 3 x = -1
y = -(-1 + 1) / 3
y = 0
2)
y also equal to 0 since x = -1
3)
f^-1(2) = -(2+1) / 3
= -3/3
= -1
f(-1) = 2