We have to figure out what the product of DA is,
[tex]\begin{bmatrix}-1&2&3\\8&-4&0\\6&7&1\\ \end{bmatrix}\begin{bmatrix}1\\3\\5\\ \end{bmatrix}=\begin{bmatrix}a\\b\\c\\ \end{bmatrix}[/tex]
We know that,
[tex]\begin{bmatrix}a&b&c\\d&e&f\\g&h&i\\\end{bmatrix}\begin{bmatrix}x\\y\\z\\\end{bmatrix}=\begin{bmatrix}ax+by+cz\\dx+ey+fz\\gx+hy+iz\\\end{bmatrix}[/tex]
So,
[tex]a=-1\cdot1+2\cdot3+3\cdot5=-1+6+15=20[/tex]
[tex]b=8\cdot1+(-4)\cdot3+0\cdot5=8-12=-4[/tex]
[tex]c=6\cdot1+7\cdot3+1\cdot5=6+21+5=32[/tex]
So the solution is,
[tex]a,b,c=\boxed{20,-4,32}[/tex]
Hope this helps :)
Please help!
Solve for x
9514 1404 393
Answer:
x = 1
Step-by-step explanation:
The product of lengths to the two circle intercepts are the same for each secant.
7(7+9) = (8x)(8x+6x)
112 = 112x² . . . simplify
1 = x² . . . . . . divide by 112
x = 1 . . . . . . . take the square root (segment lengths are positive)
PLEASE HELP ME IM HAVING TROUBLE WITH IT
Answer:
True
False
Step-by-step explanation:
BC are on the same line so, the new [tex]B^{1}[/tex][tex]C^{1}[/tex] will also be on the same. Just a different line than the original. The both move the same distance when dilated.
CD and the new [tex]C^{1}[/tex][tex]D^{1}[/tex] cannot be the same length. The dilation will increase their length by 1[tex]\frac{2}{3}[/tex]
Catriona spotted a major problem having to do with patient billing. A number of people may have received the wrong bills. When should she have told her boss? O a) When she was evaluating how to alert the patients O b) After she sent patient notices out c) When she first noticed the problem O d) After she decided on a communication plan
Answer:
C
Step-by-step explanation:
When she first noticed the problem
A cube has an edge of 8cm. Calculate its Volume.
Answer:
512cm³
Step-by-step explanation:
to get the volume the formula is Base area x height
BA X H
=8x8x8 because all sides of a cube are equal
=512cm³
If you have a right triangle with legs a =6 and b= 8, what is the value of the hypotenuse? show work.
Answer:
10
Step-by-step explanation:
1. [tex]6^{2} + 8^{2} = c^{2}[/tex]
2 [tex]100 = c^{2}[/tex]
3. c = 10
Select the correct answer.
The Richter scale measures the magnitude, M, of an earthquake as a function of its intensity, I, and the intensity of a reference earthquake,
M= log (I/I)
.Which equation calculates the magnitude of an earthquake with an intensity 10,000 times that of the reference earthquake?
Answer:
[tex]M = \log(10000)[/tex]
Step-by-step explanation:
Given
[tex]M = \log(\frac{I}{I_o})[/tex]
[tex]I = 10000I_o[/tex] ---- intensity is 10000 times reference earthquake
Required
The resulting equation
We have:
[tex]M = \log(\frac{I}{I_o})[/tex]
Substitute the right values
[tex]M = \log(\frac{10000I_o}{I_o})[/tex]
[tex]M = \log(10000)[/tex]
The equation that calculates the magnitude of an earthquake with an intensity 10,000 times that of the reference earthquake is A. M = ㏒10000
Since the magnitude of an earthquake on the Richter sscale is M = ㏒(I/I₀) where
I = intensity of eartquake and I₀ = reference earthquake intensity.Since we require the magnitude when the intensity is 10,000 times the reference intensity, we have that I = 10000I₀.
Magnitude of earthquakeSo, substituting these into the equation for M, we have
M = ㏒(I/I₀)
M = ㏒(10000I₀./I₀)
M = ㏒10000
So, the equation that calculates the magnitude of an earthquake with an intensity 10,000 times that of the reference earthquake is A. M = ㏒10000
Learn more about magnitude of an earthquake here:
https://brainly.com/question/3457285
If a square root parent function is vertically compressed by a factor of 1/6,
what is the equation of the new function, G(x)?
O A. G(x)=1/6square root of x
B. G(x) = Square root of 6x
C. G(x) = 6 square root of x
D. G(x) = -6 square root of x
Answer:
the answer could be B i think cause that makes total sense
Write a linear equation in point slope form that passes through the points (-2,18) and (1,9)
Answer:
y-18=-3(x+2)
Step-by-step explanation:
The Slope-intercept form is -3x+12
According to the Fundamental Theorem of Algebra, which polynomial function has exactly 8 roots?
PLS HELP IM TIMED
Answer:
Option (1)
Step-by-step explanation:
Fundamental theorem of Algebra states degree of the polynomial defines the number of roots of the polynomial.
8 roots means degree of the polynomial = 8
Option (1)
f(x) = (3x² - 4x - 5)(2x⁶- 5)
When we multiply (3x²) and (2x⁶),
(3x²)(2x⁶) = 6x⁸
Therefore, degree of the polynomial = 8
And number of roots = 8
Option (2)
f(x) = (3x⁴ + 2x)⁴
By solving the expression,
Leading term of the polynomial = (3x⁴)⁴
= 81x¹⁶
Therefore, degree of the polynomial = 16
And number of roots = 16
Option (3)
f(x) = (4x² - 7)³
Leading term of the polynomial = (4x²)³
= 64x⁶
Degree of the polynomial = 6
Number of roots = 6
Option (4)
f(x) = (6x⁸ - 4x⁵ - 1)(3x² - 4)
By simplifying the expression,
Leading term of the polynomial = (6x⁸)(3x²)
= 18x¹⁰
Degree of the polynomial = 10
Therefore, number of roots = 10
At a store, 2 gallons of milk cost $6.
Which is the value of the ratio of dollars to gallons of milk?
0.33
per gallon
$3 per gallon
Answer:
B
Step-by-step explanation:
$3 per gallon
that is the procedure above
1. One half of a number added to a second
number equals 4. One half of the first
number decreased by the second number
equals zero. Find the two numbers.
Answer:
(4, 2)
Step-by-step explanation:
½x + y = 4
y = 4 - ½x
½x - y = 0
½x - (4 - ½x) = 0
½x - 4 + ½x = 0
x = 4
y = 4 - ½(4)
y = 2
Last question pls help me
Answer:
Step-by-step explanation:
684 dollars
It's camping season! Ernie and Bert set up their tents 15 m from
each other. Ernie has Tent 1 and Bert has Tent 2. The angle
between the line of sight from Bert's tent to the shower and the
line of sight from Bert's tent to Ernie's tent is 78 degrees. If
Ernie's tent is 19m away from the shower, is Bert 's tent closer or
further away from the shower and by how much? In your
calculations, round your angles to the nearest whole degree and
side measurements to the nearest tenth of a metre.
1
2
Answer:
The answer is "21.6".
Step-by-step explanation:
Let A stand for tent 1
Let B stand for tent 2
Let C be a shower
Using cosine formula:
[tex]c= \sqrt{b^2 +a^2 - 2ab\cdot \cos(C)}\\\\[/tex]
[tex]= \sqrt{(19)^2 + (15)^2 - 2\cdot 19 \cdot 15 \cdot \cos(78^{\circ})}\\\\= \sqrt{361 + 225 - 570\cdot \cos(78^{\circ})}\\\\ = \sqrt{586- 570\cdot \cos(78^{\circ})}\\\\= 21.6\\\\[/tex]
Therefore, you need to reduce the similarity from B to C which is the length from tent 2 to shower:
Tent 2 Distance to Dusk = 21.6m
Bert's tent is 21.6m away from the shower
find all the missing measurement
Answer:
find all the missing measurementJavier jogs 3/4 of a mile in 8/1/2 minutes.
If he keeps the same pace, how many minutes will it take him to jog 1 mile?
Answer:
11 1/3 minutes per mile.
Step-by-step explanation:
3/4 miles jogged in 8 1/2 minutes.
So 1 mile jogged in: 8 1/2 divided by 3/4 = 8 1/2 x 4/3 = (17 x 4) / (2 x 3) = 11 1/3 minutes per mile
Answer:
x = 11 1/3 minutes
Step-by-step explanation:
We can write a ratio to solve
3/4 mile 1 mile
----------------- = --------------
8 1/2 minutes x minutes
Using cross products
3/4 *x = 8 1/2
Multiply each side by 4/3
4/3 * 3/4x = 8 1/2 * 4/3
x = 17/2 * 4/3
x = 34/3
x = 11 1/3
Question 4 4 pts Lori buys a $1500 certificate of deposit (CD) that earns 6% interest that compounds monthly. How much will the CD be worth in: 5 years? 10 years? 486 months?
Answer:
Step-by-step explanation:
5 years
[tex]1500(1+\frac{.06}{12})^{12*5}=2023.275229[/tex]
10 years
[tex]1500(1+\frac{.06}{12})^{10*12}=2729.095101[/tex]
486 months:
[tex]1500(1+\frac{.06}{12})^{486}=16935.47074[/tex]
round those as you please
Perform the following series of rigid transformations on ∆ABC: Translate ∆ABC by moving it 5 units to the right and 2 units up. Draw the line y = -x, and reflect ∆A'B'C' across the line. Rotate ∆A''B''C'' counterclockwise about the origin by 270°.
Answer:
The answer is below
Step-by-step explanation:
Transformation is the movement of a point from its initial location to a new location. Types of transformation are rotation, reflection, translation and dilation.
If a point A(x, y) is translated a units right and b units up, the new point is at A'(x + a, y + b).
If a point A(x, y) is reflected across the line y = -x, the new point is at A'(-y, -x).
If a point A(x, y) is rotated counterclockwise by 270 degrees, the new point is at A'(y, -x).
Let us assume that triangle ABC has vertices at A(-6, -1), B(-3, -3) and C(-1, -2).
If it is moved 5 units to the right and 2 units up, the new point is at A'(-1, 1), B'(1, -1) and C'(3, 0). If it is reflected across the line y = -x, the vertices are at A"(-1, 1), B"(1, -1) and C"(0, -3). If it is then rotated counterclockwise about the origin by 270°, the new point is at A'"(-1, -1), B"'(1, 1), C"'(3, 0)
Find the measure of the missing angles.
WILL GIVE BRAINLIEST
Answer:
h= 60
g= 120
m= 147
k= 33
Step-by-step explanation:
We know that all three lines are straight an continuous, so, at any given point the angles should add up to 180 degrees.
This immediately helps with angle h:
120 + h = 180
h = 60
As well as m:
33 + m = 180
m = 147
There are two ways to solve the next part:
First and most familiar way:
h + g = 180
60 + g = 180
g = 120
and:
m + k = 180
147 + k = 180
k = 33
The other way that I prefer is that the angles opposite of each other when two lines intersect are equal. I don't know if that makes sense, it's hard to explain in this format.
determine a simplified expression
Answer:
For Task B: [tex]3x^4 - 2x^3[/tex]
Step-by-step explanation:
Given that Volume = l*w*h, we can plug in the values on the diagram, so we get the equation (3x-2)([tex]\frac{1}{2}x[/tex])([tex]2x^2[/tex]) = [tex](\frac{3}{2} x^2 - x)(2x^2) = 3x^4-2x^3[/tex]. Hope this helps!!!
Given the function, calculate the following values:
Answer:
Step-by-step explanation:
MFP15017010 2021 Question 2 2.1 Calculate the following 2- and 3-digit numbers using strategic doubling: 34 2.1.2 340 2.13 277 214 00 (10) 2.15 500
Answer:
plz check ur school solution down.
Step-by-step explanation:
The degree of this expression 2x+3y=4
Answer:
1st degree
Step-by-step explanation:
You look at the largest exponet, right here, there are none so it would be 1st degree.
Answer:
1
Step-by-step explanation:
The degree of an expression with multiple exponents is the highest exponent in it. In this expression, there is no expression, so the answer will be 1 because there is no exponent and every variable and number has an invisible 1 as its exponent.
Hope this helps.
help I was never taught how to do this im confused
Answer:
36
Step-by-step explanation:
Area of a triangle = (bh)/2
Where b = base length and h = height
Given base length: 18ft
Given height: 4ft
This being known let's define the variables
b = 18
h = 4
Now to find the area we simply plug in these values into the formula
Area = (18)(4)/2
Simplify multiplication 18 * 4 = 72
Area = 72/2
Simplify division
Area = 36
A sales firm receives an average of three calls per hour on its toll-free number. For any given hour, find the probability that it will receive at least three calls. Use the Poisson distribution.
Answer:
At most 3 calls: 64.7%
At least 3 calls: 57.7%
5 or more calls: 18.5%
Step-by-step explanation:
A professor has learned that nine students in her class of 35 will cheat on the exam. She decides to focus her attention on ten randomly chosen students during the exam. a. What is the probability that she finds at least one of the students cheating
Answer:
[tex]\frac{73,331}{75,516}\approx 97.11\%[/tex]
Step-by-step explanation:
The probability that she will find at least one student cheating is equal to the probability that she finds no students cheating subtracted from 1.
Each time she randomly chooses a student the probability she will catch a cheater is equal to the number of cheaters divided by the number of students.
Therefore, for the first student she chooses, there is a [tex]\frac{9}{35}[/tex] chance that the student chosen is a cheater and therefore a [tex]\frac{26}{35}[/tex] chance she does not catch a cheater. For the second student, there are only 34 students to choose from. If we stipulate that the first student chosen was not a cheater, then there is a [tex]\frac{9}{34}[/tex] chance she will catch a cheater and a [tex]\frac{25}{34}[/tex] chance she does not catch the cheater.
Therefore, the probability she does not catch a single cheater after randomly choosing ten students is equal to:
[tex]\frac{26}{35}\cdot \frac{25}{34}\cdot \frac{24}{33}\cdot \frac{23}{32}\cdot \frac{22}{31}\cdot \frac{21}{30}\cdot \frac{20}{29}\cdot \frac{19}{28}\cdot \frac{18}{27}\cdot \frac{17}{26}[/tex]
Subtract this from one to get the probability she finds at least one of the students cheating after randomly selecting nine students. Let event A occur when the professor finds at least one student cheating after randomly selecting ten students from a group of 35 students.
[tex]P(A)=1-\frac{26}{35}\cdot \frac{25}{34}\cdot \frac{24}{33}\cdot \frac{23}{32}\cdot \frac{22}{31}\cdot \frac{21}{30}\cdot \frac{20}{29}\cdot \frac{19}{28}\cdot \frac{18}{27}\cdot \frac{17}{26},\\\\P(A)=1-\frac{2,185}{75,516},\\\\P(A)=\boxed{\frac{73,331}{75,516}}\approx 0.97106573441\approx \boxed{97.11\%}[/tex]
please help me please help me
14. largest 9510
15. smallest 1000000
16. n+6=22 —> n=22-6 —>n = 16
17. Add : 204 + 38429= 38633
PLEASE HEP ME
PLEASE HELP AND BE CORRECT BEFORE ANSWERING
9514 1404 393
Answer:
TrueTrueStep-by-step explanation:
The center of dilation (point D) is a point that doesn't move. Any line not through that point will be moved to a parallel location when a dilation factor is applied.
Any line through the center of dilation will still go through the center of dilation. Its slope does not change, so the line will appear to be the same.
AB ║ A'B' — True
AD ≅ A'D' — True
_____
You can see these relationships in the attached figure.
Need help due tomorrow
Answer:
[tex]Given:[/tex] Δ ABC ≈ ΔDEF
[tex]therefor:[/tex] A(ΔABC)/A(ΔDEF)=(BC)²/(EF)²
⇒ 34/A(ΔDEF)=9²/(13.5)²
⇒34/A(ΔDEF)=81/182.25
⇒A(ΔDEF)=34×182.25/81
⇒Area of ΔDEF=76.5 cm²
----------------------------------
Hope it helps...
Have a great day!!!
Absolute Value Equations
Answer:
4 is E, 5 is A
Step-by-step explanation:
4) Divide both sides by 5 to get |2x + 1| = 11, then solve for x to get 5 and -6.
5) Add 7 to both sides to get ½|4x - 8| = 10. Multiply both sides by 2 to get |4x - 8| = 20, then solve for x to get 7 and -3.
A party rental company has chairs and tables for rent. The total cost to rent 2 chairs and 5 tables is $53. The total cost to rent 8 chairs and 3 tables is $42. What is the cost to rent each chair and each table?
Answer:
c=cost of one chair rental
t=cost of one table rental
8c+3t=42
2c+5t=53
multiply the second equation, each term on both sides, by -4
8c+3t=42
-8c-20t=-212
add the two equations
-17t=-170
divide both sides by -17
t=$10 to rent one table
substitute t=10 into either original equation
2c+5(10)=53
2c+50=53
2c=3
c=$1.50 to rent one chair